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Preface
The evidence that greenhouse gas emissions, primarily from

fossil fuel combustion, is and will increasingly be a principal

cause of climate change has been compelling for some

time. Although uncertainties remain, the threat is

sufficiently real for research now to focus not only on the

climate system itself but also on how changes in the climate

system in future might affect the functioning of natural

ecosystems.

In this book, we are concerned with how climate change

might affect freshwater ecosystems. The ideas and

examples presented in the book stem largely from the

‘Euro-limpacs’ project, a major EU-funded project on ‘the

impact of global change on European freshwater

ecosystems’. Euro-limpacs brought together lake, river and

wetland scientists from across Europe to assess not only the

direct impacts of climate change on freshwaters but also its

potential indirect impact through interactions with other

stresses such as changes in hydromorphology, nutrient

loading, acid deposition and toxic substance exposure.

A wide variety of approaches was used in the project

ranging from the analysis of lake sediment and long-term

instrumental records to identify past impacts of climate

change, to the use of experiments, space-for-time

substitution and modelling to assess what might happen in

future under different climate scenarios.

The project also considered the implications of future

climate change for the management of freshwater

ecosystems in Europe, especially the extent to which

current policies and practices designed to improve the

ecological status of freshwater ecosystems need to be

modified in light of projected future climate change.

This book brings together the key results from the project.

Its structure follows the design of the Euro-limpacs project,



first assessing the probable effects of climate change and

then considering management issues.

Richard W. Battarbee
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1

Introduction

Brian Moss, Richard W. Battarbee and Martin

Kernan

Changing climate and a

changing planet

In June 2008, one of us chanced upon a shepherd repairing

his five-ft high (he didn’t deal in metres) dry limestone walls

on the uplands near Asby Scar in Cumbria, north-west

England. We exchanged pleasantries that inevitably, this

was Britain after all, embraced the weather. It was a bright

warm day. But ‘Bleak in winter up here’ I said. ‘Not so much

in the past fifteen years’ he replied, ‘Before that the snow

lay in drifts hiding the walls, but not any more’. It was yet

another anecdotal sliver of evidence to complement the

mass of information assembled by the Intergovernmental

Panel on Climate Change (IPCC 2007) on the reality of global

warming.

That Fourth Report of the IPCC summarized changes to

date (Fig 1.1) that included an almost 1°C increase in the

northern hemisphere mean air temperature, over the years

since the industrial revolution accelerated the yet unabated

burning of fossil fuels. It presented evidence that these

processes were related and that we could have high

confidence that the temperature rise was largely human-

induced. Linked with it have been changes in the

distribution of rainfall, with generally more falling in winter



or wet seasons and less in the summer and dry seasons.

There has been an increase in sea level of about 20 cm,

largely due to thermal expansion of the huge mass of

oceanic water, to which the melting of the mountain and

polar glaciers is now making a contribution. And there has

been an increase in the frequency of extreme weather

events, such as cyclones, droughts and floods. In turn, there

have been numerous records of changes in the phenology of

species (Sparks & Carey 1995; Roy & Sparks 2000;

Parmesan & Yohe 2003; Hays et al. 2005; Adrian et al. 2006)

and a steady migration polewards of a variety of the more

mobile species (Walther et al. 2002; Root et al. 2003).

Figure 1.1 Summary of climate and sea-level change to

date. (a) Global average temperature. (b) Global average

sea level. (c) Northern hemisphere snow cover. (From

Climate Change 2007: The Physical Science Basis.

Contribution of Working Group I to the Fourth Assessment

Report of the Intergovernmental Panel on Climate Change

(eds S. Solomon, M. Manning, Z. Chen, et al.). Cambridge

University Press, Cambridge and New York.)



Climate is a master variable, and all activity on this planet

eventually depends upon it. It determines the overall

structure of natural biomes, be they deserts, grasslands or

deciduous or evergreen forests. It has driven the evolution

of life histories, the dynamics of food webs and the



development of homeostases. It fixes the circulation of the

oceans, the availability of nutrients to the plankton

community, the onset of rain and ripening for crops and the

reflectance of radiation from the Poles. It manifests itself in

the day-to-day weather, a preoccupation of everyone, not

just the British. It is the greatest determinant of leisure

travel, and, in its extremes, a source of extreme misery to

match its delights of balmy summer days, exciting ski runs

and the fresh spring rain. A major change in climate is a

very considerable issue.

Changing ideas on planetary

function

Ecologists have long sought to explain the huge variation of

natural systems: the tapestry of weather and soil-related

detail on land and physical and chemical detail in water that

fits into a grand pattern of climate zones. G.E. Hutchinson

(1965) (Fig 1.2) linked the ways that organisms evolve, as

both grand and local patterns change, in his metaphor of

the ecological (or environmental) theatre and the

evolutionary play. His concept, in the 1960s, was very much

one of the players adjusting to the nature of the theatre and

then to each other. The generally accepted paradigm was

that the physicochemical setting, the geology and climate,

determined the biology and ecology of living organisms.

Twenty years later, James Lovelock (1988) (Fig 1.2) began

an overturning of this by a spectroscopic examination of the

chemistry of the atmospheres of Earth and its sister planets

and a study of Earth’s oceans. He calculated that the

chemical state of Earth was very far from that expected by a

simple chemical equilibrium of the available elements, and

inferred that it was determined, and maintained, by the

activities of living organisms rather than physicochemically

imposed upon them for their response. Moreover, the state



was regulated within the limits between which our particular

biochemical system could persist. There is still controversy

about the underlying mechanism of the regulation, but not

about its existence. Such a change in paradigm is key to our

understanding of the mutual interactions of climate and

living organisms that this book is about. By altering our

atmosphere, we challenge the entire biosphere system, and

although we can predict some immediate physical effects,

we have little idea about what the ultimate biological

consequences might be.

Figure 1.2 (a) G.E. Hutchinson and (b) James Lovelock.

The IPCC has made a range of predictions about how

climate will change over the regions of the Earth, based on

a range of assumptions about how human societies will

react as the first of the changes are experienced. There is a

problem, however, in these predictions. They all hold to the

former model of living systems responding to imposed

conditions. They are models of simple physicochemical



control. They do not allow for the likelihood of positive

ecological feedbacks. Temperature influences many

biological processes, but not in a linear way. More usual is

some sort of exponential relationship in which the process

accelerates or decelerates to a point of death as

temperature changes linearly. A key process in regulating

the carbon dioxide content of the atmosphere is the storage

of carbon as organic matter in soils and peat deposits or as

calcite in the ocean sediments, derived from the scales of

planktonic coccolithophorids or the matrices of corals

(Lovelock 1988). If the temperature change induces more

carbon dioxide or methane release, through increases of

respiration using organic matter stored in soils and

sediments, for example, or through inhibition of calcite

formation in the walls of marine organisms, a positive

feedback on further temperature increase may be induced

and the greenhouse effect may be reinforced. Temperature

changes predicted for the future may thus have been

underestimated, and climate modellers are now attempting

to rectify this.

The system that maintains the non-equilibrium, equable

state of the planet is the biosphere. The biosphere has, for

convenience, been divided up into atmosphere, hydrosphere

and lithosphere: air, ocean and land. And the lithosphere is

thought of in terms of biomes: tundra, coniferous forest,

deciduous forest, tropical forest, scrub savannah, grassland

and desert. In turn, these may be divided into constituent

ecosystems, which Arthur Tansley (1935) defined as more or

less self-contained systems of living organisms, and their

biologically produced debris, in their physicochemical

setting. In truth, this idea was an artefact of working in the

greatly subdivided landscape of the British Isles, where

several thousand years of human activity have entirely

compartmented the landscape. Our upland shepherd, with

his walls, in a sense influences our ecological as well as



climatic thinking. For convenience we nonetheless talk of

woodland, heath, saltmarsh, river and lake ecosystems. But

the pristine biosphere was ultimately a continuum that

adjusted mutually, gradually and in many dimensions to

changing climatic and geological conditions, and in

considering freshwaters in particular, the greatest

understanding comes from seeing them as intimately linked

with the land and atmosphere. It is sometimes convenient,

however, for the process of accounting for change to see

the parts rather than the whole.

A report as authoritative as that of the IPCC, the

Millennium Ecosystem Assessment, appeared in 2005. It

received much less publicity, for though weather is

immediately noticeable to people everywhere, the fate of

distant oceans, tundras and savannahs is not, unless you

are a deep sea mariner, Inuit hunter or Masai herder. But

major changes (Fig 1.3) have happened to most natural

ecosystems, and are continuing to happen to most of them,

as a result of climate change and also because of many

other, independent drivers that depend on the workings of

global economics and the needs of a rising population. It is

expected that we will have lost over half of the world’s land

ecosystems to agriculture or development by 2050. The

urbanites may not be noticing this but the consequences

will nonetheless be huge, for it is these natural ecosystems

that regulate the nature of the biosphere. We have

absolutely no idea how much of them can be damaged

without serious consequences for human survival. All we

know is that such systems, honed by the utterly ruthless

mechanisms of natural selection to be as near fit for

purpose as possible, are just as crucial to us, indeed much

more fundamentally so, than the local grocer, filling station

or hospital. The chemistry of the biosphere is the ultimate

sine qua non of our existence. Damaged ecosystems,

including all agricultural ones, do not store as much carbon



as intact ones. James Lovelock’s contribution was to point

this out.

Figure 1.3 Projected losses of major ecosystems and

biomesa. (From Millennium Ecosystem Assessment 2005.)



We have responded rather oddly to the increasing damage

we have caused by attempting to value in classical

economic terms the goods and services we draw from

ecosystems, to demonstrate their importance (Costanza et

al. 1997; Balmford et al. 2002). This has been influential in

drawing attention to their very great apparent value and in

helping communicate with economists and politicians. But

perhaps we have completely missed the point. They are not

items that can be used, misused, repaired, ignored or

traded at will. They are outside the current economic

system. What they do in maintaining the equable state of

the planet for all living organisms, including us, is so

fundamental as to be priceless. It would be inconceivable,

as William Shakespeare (1623) well knew 400 years ago,

through the wonderful speech of Portia in The Merchant of

Venice, to value the blood as a separate component of the

body. What is sine qua non supersedes evaluation. Yet we

damage the biosphere as casually as we throw away our

rubbish, and in contemplating the hitherto effects of climate

change, we fail to realize that the loss of ecosystems and

the changing climate are mutually linked. Indeed, we

blithely cost the damage of climate change (Stern 2006) as

we cost the goods and services we are losing through

application of the same approach of classical economics. We

have failed to see the interaction of climate, ecology and

equability. Our attempts to mitigate climate change, in a

desperate bid to avoid disruption of our societies, may

inevitably be doomed to failure unless we begin to see the

whole picture and not just the components we find most

convenient to our cash economy.


