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 Preface     

  Our knowledge and understanding of allergic dis-
eases of the respiratory tract, such as asthma and 
rhinoconjunctivitis, has improved to a point where 
new therapies are being developed for patient benefi t. 
Part of the problem in developing therapies has been 
our rather simplistic view of the allergic cascade 
and its components, as well as the over - reliance of 
the pharmaceutical and biotechnology industries on 
simple animal models of antigen sensitization and 
subsequent challenge to screen for active compounds. 
Asthma is a chronic relapsing disorder that varies its 
natural history over the life course and in which many 
environmental factors play a role beyond allergen 
exposure. This does not mean that enormous progress 
is not being made in these diseases, but that our ability 
to model the differing manifestations of asthma and 
associated disorders is limited. In addition, new tech-
nologies have led to the discovery of new targets in 
the airways that help link immunologic and infl am-
matory features to those of altered airway structure 
and function. Even within these immunologic mecha-
nisms, we are gaining a wider appreciation of the role 
of the innate as well as the adaptive response and 
the importance of the formed airway elements such 
as epithelial cells, smooth muscle, nerves, and blood 
vessels in contributing to and supporting ongoing 
infl ammation and tissue injury. 

 To give greater consideration to these issues in 
 Infl ammation and Allergy Drug Design , we have 
asked world leaders in their respective fi elds to 
provide us with the most up - to - date knowledge of 

the biologic science that underpins the pathophysiol-
ogy of asthma and related disorders. We have divided 
the book into three parts covering the cells involved, 
their cytokines, chemokines, and growth factors, and 
mediators. What is so different about this book is 
the authors ’  skills in embedding their fi eld of inter-
est in the concept of asthma being a chronic relaps-
ing condition. While each chapter develops in some 
detail the cutting - edge developments in a particular 
fi eld, it is also clear that important interconnections 
between the fi elds are providing a new framework for 
reviewing asthma, especially the interactions between 
environmental exposures and the subsequent develop-
ment of different subphenotypes (stratifi ed medicine). 

 We believe the book is state - of - the art in terms of 
providing the reader with a superb reference source 
and a global perspective of each fi eld, which should 
be helpful for clinical and basic scientists interested 
in the mechanisms of these disorders, irrespective of 
their academic, clinical, or industrial affi liations. The 
three editors are indebted to the way the authors have 
responded to requests for chapters in their fi elds, cov-
ering the most exciting recent developments, and as 
a result the value of the book as a whole has greatly 
increased. The editors would also value readers ’  views 
on this publication and interactions that may fl ow 
from it. 

   Kenji Izuhara, Stephen T. Holgate, 
and Marsha Wills - Karp 

 April 2011        
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Novel  a nti -  i nfl ammatory  d rugs 
 b ased on  t argeting  l ung  d endritic 
 c ells and  a irway  e pithelial  c ells  
  Bart N.     Lambrecht ,   1,2       Maud     Plantinga ,   1       Monique     Willart ,   1   and 
    Hamida     Hammad    1    
   1 Department of Respiratory Diseases, Laboratory of Immunoregulation and Mucosal 
Immunology, University Hospital Ghent, Ghent, Belgium  
   2 Department of Pulmonary Medicine, Erasmus University Medical Center, 
Rotterdam, the Netherlands       

  1 

   General  f unction of  d endritic  c ells 
in the  i mmune  s ystem:  i nduction 
of  i mmunity 

 Dendritic cells (DCs) were originally defi ned by their 
capacity both to effi ciently process and present anti-
gens and to prime na ï ve T cells  [1] . Immature DCs 
are situated in the periphery at sites of antigen expo-
sure. In the periphery, DCs are specialized in antigen 
recognition and uptake. Under homeostatic condi-
tions and particularly upon recognition of pathogens, 
DCs migrate to the T - cell area of draining nodes, 
where they screen the repertoire of na ï ve T cells for 
antigen - specifi c T cells that can be directed against the 
pathogen. Upon cognate T - cell receptor (TCR) – major 
histocompatibility complex (MHC) – peptide interac-
tion, DCs subsequently form more stable interactions, 
and optimally induce T - cell effector function by pro-
viding co - stimulatory molecules and T - cell stimulatory 
and survival cytokines. In homeostatic conditions, 
only harmless antigens or self antigens are presented 
to T cells. Owing to their lack of complete induc-
tion of co - stimulatory molecules and cytokines in 
DCs, these antigens induce only abortive T - cell proli-
feration and/or lead to a T - cell response in which 
regulatory T cells (Tregs) are induced. This system 
allows for dangerous antigens to be eliminated, 
while avoiding overt immune - mediated damage in 
response to harmless environmental antigens and self 
antigens.  

  The  i ncreasing  c omplexity of  l ung 
 d endritic  c ell  s ubsets 

 It is now clear that at least fi ve different subsets of 
DCs can be found in the lungs (Figure  1.1 ). These 
subsets vary in origin, anatomical location, expres-
sion of cell surface markers and endocytic recep-
tors, responsiveness to chemokines, and migratory 
behavior. Most importantly, there is division of labor 
between these various lung DC subsets, which makes 
a closer distinction between subsets almost imperative 
if one is to understand the biology of lung DCs  [2] . 
The mouse lung is grossly divided into large conduct-
ing airways and lung interstitium, which contains 
alveolar septa and capillaries where gas exchange 
takes place  [3] . The conducting airways of all species 
studied are lined with an intraepithelial, highly den-
dritic network of MHCII high  CD11c hi  cells that are 
mostly CD11b  −   and, at least in the mouse and rat, 
express langerin and the mucosal integrin CD103 
( α  E  β  7 ), and have the propensity to extend dendrites 
into the airway lumen by forming tight junctions 
with bronchial epithelial cells  [4] . Immediately below 
the epithelium, the lamina propria of the conducting 
airways contains MHCII high  CD11c high  cells that are 
mostly CD11b and are a rich source of proinfl am-
matory chemokines  [5] . A similar broad division into 
CD11b  +   and CD11b  −   can also be applied to lung 
interstitial DCs  [6,7] . As both CD11b  +   and CD11b  −   
subsets express high levels of CD11c, they are best 

Infl ammation and Allergy Drug Design, First Edition. Edited by Kenji Izuhara, Stephen T. Holgate, Marsha Wills-Karp.
© 2011 Blackwell Publishing Ltd. Published 2011 by Blackwell Publishing Ltd.



CHAPTER 1

4

forming tight junctions with airway epithelial cells 
and extending their dendrites into the airway lumen, 
analogous to the situation in the gut. Following 
antigen uptake across the airway epithelial barrier, 
DCs migrate to draining mediastinal lymph nodes 
(LNs) in order to stimulate na ï ve T cells  [8,9] . As 
most allergens are immunologically inert proteins, 
the usual outcome of their inhalation is tolerance 
and thus infl ammation does not develop upon 
chronic exposure  [10] . This is best displayed in the 
model antigen ovalbumin (OVA). When given to 
the airways of na ï ve mice, it induces tolerance to 
a subsequent immunization with OVA in adjuvant, 
and effectively inhibits the development of airway 
infl ammation — a feature of true immunologic tol-
erance  [10] . It was therefore long enigmatic how 
sensitization to natural allergens occurred. An impor-
tant discovery was the fact that most clinically impor-

described as conventional DCs (cDCs) in order to 
differentiate them from another population of CD11c int  
plasmacytoid DCs (pDCs) that express Siglec - H, 
the bone marrow stromal antigen 1, and the B - cell 
marker B220. Under infl ammatory conditions, such 
as viral infection, allergen challenge, or lipopolysac-
charide (LPS) administration, there is recruitment of 
additional subsets of CD11b  +   monocyte - derived DCs 
that rapidly upregulate CD11c and retain expression 
of Ly6C as a remnant of their monocytic descent, and 
are easily confused with resident CD11b  +   cDCs  [7] .    

  Function of  l ung  d endritic  c ells: 
 i nduction of  t olerance in  s teady  s tate and 
 b ridging  i nnate and  a daptive  i mmunity 

 Airway DCs form a dense network in the lung that 
is ideally placed for sampling inhaled antigens by 

     Figure 1.1     Lung dendritic cell (DC) subsets. In steady -
 state conditions (depicted on the left) conventional DCs 
(subdivided into CD11b  +   and CD11b  −   subsets) line the 
conducting airways. They can also be found back in the 
deeper interstitial compartments, obtained by enzymatic 
digestion of peripheral lung. Plasmacytoid DCs (pDCs) are 
also found in both compartments with a slight preference 
for the interstitial compartment. Finally, the alveolar space 
contains DCs that can be easily confused with alveolar 
macrophages if one does not take autofl uorescence of 

the latter into account. Under infl ammatory conditions, 
there is recruitment of CD11b  +   monocytes to the lungs 
and these rapidly become DCs. They can still express 
Ly6C as part of their monocytic descent. In viral infection 
as well as in some cancers there is also recruitment of 
interferon - producing killer DCs, a subset of natural killer 
(NK) cells that can be mistaken for pDCs in view of their 
intermediate expression of CD11c and expression of the 
B - cell marker B220. One way of discriminating these is via 
staining for NK1.1. cDC, conventional DC.  

Steady state

Resident cDC

Plasmacytoid DC Interferon prod. killer DC

Alveolar Mac

Alveolar DC

CD11b–

CD11c+
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DC sentinel behavior and activation in the lungs  [18] . 
Using a series of radiation chimeric mice in which 
either radioresistant stromal cells or radiosensitive 
hematopoietic cells were defi cient in the LPS receptor 
TLR4, we demonstrated that the initial dynamic scan-
ning behavior of lung DCs as well as their directed 
migration to the mediastinal nodes in response to LPS 
inhalation was largely dependent on TLR4 signaling 
on epithelial cells  [19] .   

 It is immediately clear from analysis of the 
common characteristics of clinically relevant aller-
gens that most have the potential to modify epithe-
lial barrier function and to activate airway epithelial 
cells or innate and adaptive immune cells, like DCs 
and basophils (see Chapter  21 ). For example, HDM 
( Dermatophagoides pteronyssinus)  fecal pellets con-
tain many allergens (Der p 1 to 9 )  that have either 
proteolytic activity or enhance TLR responsiveness, 
explaining why HDM acts as an allergen and a Th2 
adjuvant. Der p 1 increases the permeability of the 
bronchial epithelium, as measured by a decrease in 
transepithelial electrical resistance by cleaving the 
tight junction proteins claudin and occludin, thus 
increasing access to the DC network  [20] . In addi-
tion to these proteolytic effects of HDM,  β  - glucan -
 rich motifs of HDM were able to trigger human 
bronchial epithelial cells, most likely via the dectin - 1 
receptor, and downstream Syk signaling to produce 
CCL20, a major chemokine, thus causing attraction 
of lung DCs (see Figures  1.2  and  1.3 )  [21] . Along 
the same line, TLR4 signaling is also involved in 
the recognition of the HDM allergen  [22] . In an 
elegant study, Trompette  et al.   [23]  recently dem-
onstrated that Der p 2 is a functional homolog of 
the adaptor MD - 2 (also known as LY96), the LPS -
 binding component of the TLR4 signaling complex, 
thus stabilizing TLR4 expression on bronchial epi-
thelial cells. In the same setting of TLR4 radiation 
chimerics, we have shown that it is mainly the 
epithelial TLR4 - driven response that activates Th2 
immunity to the HDM allergen by releasing innate 
pro - Th2 cytokines, like granulocyte – macrophage 
colony - stimulating factor (GM - CSF), thymic stromal 
lymphopoietin (TSLP), IL - 33, and IL - 25 (Figures  1.2  
and  1.3 )  [19] . The TLR C - type lectin, or proteolytic -
 mediated activation of epithelial cells by HDM can 
lead to release of these innate cytokines or other 
mediators that subsequently program DCs to become 
Th2 inducers  [19] .    

tant allergens, such as the major house dust mite 
(HDM) allergen Der p 1, are proteolytic enzymes 
that can directly activate DCs or epithelial cells to 
break the process of tolerance and promote Th2 
responses  [11,12] . However, other allergens such 
as the experimental allergen OVA do not have any 
intrinsic activating properties. For these antigens, 
contaminating molecules or environmental exposures 
(respiratory viruses, air pollution) might initiate on 
DC activation  [13] . Eisenbarth  [14]  showed that 
low - level Toll - like receptor (TLR) 4 agonists mixed 
with harmless OVA prime DCs to induce a Th2 
response by inducing their full maturation, yet not 
their production of interleukin 12 (IL - 12). This is 
clinically important information as most natural aller-
gens such as HDM, cockroach, and animal dander 
contain endotoxin and undoubtedly other TLR ago-
nists  [15] . 

 From the above, is seems that the decision between 
tolerance or immunity (in the lungs) is controlled by 
the degree of maturity of the myeloid DCs (mDCs) 
that interact with na ï ve T cells, a process that is 
driven by signals from the innate immune system 
 [16] . Indeed, it has been shown that immature mDCs 
induce abortive proliferation in responding T cells 
and induce Tregs  [17] . Another level of complexity 
arose when it was shown that (respiratory) tolerance 
might be a function of a subset of pDCs  [10] . The 
removal of pDCs from mice using depleting anti-
bodies led to a break in inhalational tolerance to 
OVA and to the development of asthmatic infl am-
mation  [10] .  

  Sentinel  f unction of  l ung  d endritic  c ells 
 r equires  i nstruction by  e pithelial  c ells 

 Most of the lung DC migration to the mediastinal 
lymph node results from some form of insult to the 
lung, be it microbial, physical, or toxic in nature. 
Based on the anatomical distribution of even the most 
exposed DCs, it is immediately clear that DCs are 
basically always covered by a layer of epithelial cells 
that seals off the inhaled air by the formation of 
tight junctions (Figure  1.2 ). It is therefore possible 
that in the absence of any TLRs or other activat-
ing signals, the DCs do not extend dendrites across 
this epithelial barrier. We recently hypothesized that 
airway epithelial cells might be instructive in causing 
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     Figure 1.2     Interactions between epithelial cells and 
dendritic cells (DCs) in the airways. DCs sample the 
airway lumen by forming dendritic extensions in between 
epithelial cells. The cells form tight junctions with 
epithelial cells by expressing occludin and claudin family 
members as well as zona occludens 1. In addition, the 
cells attach to airway epithelial cells using E - cadherin 
and CD103 expressed by a subset of DCs that probes the 
airway lumen. Enzymatically active allergens can activate 

protease - activated receptors (PARs) expressed by epithelial 
cells followed by nuclear factor -  κ B (NF -  κ B) activation and 
the production of chemokines and cytokines by epithelial 
cells that attract and activate DCs. Allergens often contain 
Toll - like receptor (TLR) agonists and C - type lectin 
agonists; triggering through these also induces NF -  κ B 
activation and DC activation either directly or indirectly 
via effects on epithelial cells that also express TLRs and 
C - type lectin receptors.  
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  Induction of  T h2  r esponses: 
 c ollaboration between  DC  s  and  i nnate 
 i mmune  c ells 

 In the fi eld of lung immunology, several groups have 
shown that either endogenous lung DCs  [10,24,25]  
or adoptively transferred bone marrow - derived DCs 
 [26]  are suffi cient to induce Th2 responses to inhaled 
antigens. Studies by Eisenbarth ’ s group  [24]  have ele-
gantly shown that triggering TLR4 on lung - derived 
DCs by administering low doses of LPS promotes 
Th2 cell development through a myeloid differen-
tiation primary response gene 88 (MyD88) - dependent 
pathway. There is also evidence to suggest that 
CD11c  +   DCs are necessary for Th2 responses. The 
Th2 - inducing adjuvant alum is used by many groups 

to induce Th2 sensitization to inhaled OVA. However, 
these Th2 responses, as read out by induced T - cell 
proliferation, Th2 cytokine production, and IgG1 
production, were eliminated when CD11c  +   DCs were 
depleted when using diphtheria toxin treatment in 
CD11cDTR Tg mice  [27,28] . Likewise, alum - exposed 
DCs clearly induced Th2 polarization from na ï ve TCR 
Tg T cells in a process requiring caspase - 1 and IL - 1 β  
production.  In vitro  studies have also amply dem-
onstrated that human DCs exposed to allergens like 
the HDM Der p 1 allergen  [29]  and pollen extracts 
(containing phytoprostanes and NADPH oxidases) 
 [30]  acquire Th2 polarizing capacity, even if IL - 4 
is not made by these exposed DCs. Several papers 
have recently demonstrated a crucial role for 
basophils in Th2 immunity  [31 – 33] , as they provide 
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     Figure 1.3     Early innate cytokine responses that promote 
allergic infl ammation. Allergen triggering of protease -
 activated receptor 2 (PAR2) by C - type lectin receptors or 
by contaminating endotoxin acting on Toll - like receptors 
(TLRs) initiates the production of thymic stromal 
lymphopoeitin (TSLP), granulocyte – macrophage colony -
 stimulating factor (GM - CSF), and interleukin 33 (IL - 33) 
by airway epithelial cells. These cytokines are known 
as DC - activating cytokines. For example, TSLP induces 
immediate innate immune functions in DCs leading to 
chemokine - driven recruitment of Th2 cells and eosinophils 
to the airways, possibly providing a source for polarizing 
Th2 cell - associated cytokines. Epithelial cells produce 
CCL20 in a process involving tumor necrosis factor 
alpha - related apoptosis - inducing ligand (TRAIL) and 
IL - 25 in a process requiring matrix metalloproteinase 7 
(MMP7). The effects of CCL20 and IL - 25 are to further 
attract innate immune cells and Th2 cells to the lungs. 

TSLP and IL - 33 stimulate the functions of mast cells and 
basophils. In mast cells, there is immediate release of 
the Th2 effector cytokines that can attract and activate 
eosinophils in a T - cell - independent way. Following 
innate immune induction, TSLP (and IL - 33) trigger the 
maturation of DCs so that they migrate to the mediastinal 
lymph nodes and induce the polarization of infl ammatory 
Th2 cells in an OX40L - dependent fashion. In contrast to 
most other triggers that induce DC maturation, TSLP -
 induced maturation is not accompanied by the production 
of IL - 12, thereby explaining Th2 cell polarization. Mast 
cells and basophils can also serve an important role for 
providing an early source of IL - 4 for Th2 development. 
Basophils are recruited to draining lymph nodes in a 
process requiring TSLP. Together with mediators released 
by mast cells and basophils, effector Th2 cells control the 
salient features of asthma.  
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tion in circulating CD11c  +   cells, showing that these 
cells are recruited from the bloodstream in response 
to allergen challenge  [40,41] . In stable asthma, the 
number of CD1a  +   DCs is increased in the airway 
epithelium and lamina propria, and these numbers 
are reduced by treatment with inhaled corticoster-
oids  [42] . Based on the above argumentation in mice 
studies of asthma, it is very likely that part of the effi -
cacy of inhaled steroids might be due to their effects 
in dampening airway DC function.  

  Novel  t argets for  a nti -  i nfl ammatory 
 d isease  b ased on  k nowledge 
of  DC  -  e pithelial  b iology 

  Blocking  i nnate  p ro -  T h2  i nstructive  c ytokines 

  Thymic  s tromal  l ymphopoietin, a  u nique  d endritic 
 c ell -  i nstructive  s ignal 
 Thymic stromal lymphopoietin is a 140 amino acid 
IL - 7 - like four - helix bundle cytokine that has potent 
DC - modulating capacities by binding its receptor 
complex, composed of the IL - 7 receptor (IL - 7R) and 
the TSLP receptor (TSLPR)  [43] . TSLP can directly 
activate DCs to prime na ï ve CD4  +   T cells to differ-
entiate into proinfl ammatory Th2 cells that secrete 
IL - 4, IL - 5, IL - 13, and TNF -  α , but not IL - 10, and 
express the prostaglandin D 2  receptor CRTH2 (chem-
oattractant receptor - homologous molecule expressed 
on Th2 cells), a T - cell phenotype that is also found 
in asthmatic airways  [44] . This pathway involves the 
induction of the Th2 - prone co - stimulatory molecule 
OX40L and the production of the Th2 - attractive 
chemokines CCL17 and CCL22 by DCs  [44]  (Figure 
 1.3 ). In addition to its effects on DCs, TSLP can also 
activate human mast cells to produce Th2 - associated 
effector cytokines in the absence of T cells or IgE 
cross - linking  [45]  (Figure  1.3 ). 

 The most convincing evidence for a role for TSLP 
in DC - driven Th2 cell development came from studies 
in mice that conditionally overexpressed TSLP in the 
lungs. These mice mounted a vigorous DC - driven 
primary Th2 cell response to environmental antigens 
in the airways  [46] . By contrast,  Tlspr  –  – /    –  –   mice fail 
to develop an antigen - specifi c Th2 cell infl ammatory 
response in the airways unless they are supplemented 
with wild - type CD4  +   T cells  [47] . Taken together, 
these data suggest that TSLP produced by the lung 
epithelium might represent a crucial factor that can 

an important source of IL - 4 early during an innate 
response to parasite infection and proteolytic aller-
gens like HDM or papain, and at the same time also 
serve as bona fi de antigen - presenting cells (APCs) that 
provide peptide - major histocompatibility complex 
(MHC), co - stimulatory molecules, and instructive Th 
polarizing signals. We foresee a scenario by which 
resident lymph node basophils collaborate with migra-
tory DCs, providing an early source of IL - 4 to promote 
or sustain Th2 immunity (Figure  1.3 ). In this regard, 
eosinophils, mast cells, and natural killer T (NKT) 
cells might be similar innate helpers for Th2 immunity 
driven by DCs  [34,35] .  

  Dendritic  c ells in  e stablished  a llergic 
 a irway  i nfl ammation 

 Not only do DCs play a role in the primary immune 
response to inhaled allergens, they are also crucial 
for the outcome of the effector phase in asthma. The 
number of mDCs is increased in the airways of sen-
sitized and challenged mice during the acute phase of 
the response  [36] . The mechanisms for this enhanced 
recruitment are that DC precursors, most likely at the 
monocyte stage of development, are attracted from 
the bone marrow via the bloodstream to the lung in 
a CCR2 - dependent way  [37] . However, during the 
chronic phase of the pulmonary response, induced 
by prolonged exposure to a large number of aerosols, 
respiratory tolerance develops through unclear mech-
anisms. During this regulatory phase, the number of 
mDCs in the lungs steadily decreased, and this was 
associated with a reduction of bronchial hyperreactiv-
ity (BHR). Infl ammation, however, reappeared when 
mDCs were given  [38] . The role of mDCs in the 
secondary immune response was further supported 
by the fact that their depletion at the time of allergen 
challenge abrogated all the features of asthma, includ-
ing airway infl ammation, goblet cell hyperplasia, and 
bronchial hyperresponsiveness  [9,39] . antigenain the 
defect was restored by intratracheal injection of 
CD11b  +   infl ammatory mDCs, but not by other APCs 
such as macrophages. It therefore seems that infl am-
matory mDCs are both necessary and suffi cient for 
secondary immune responses to allergens. 

 In humans, allergen challenge leads to an accumu-
lation of myeloid, but not plasmacytoid DCs to the 
airways of asthmatics, concomitantly with a reduc-
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with unmyelinated nerve endings in and beneath the 
airway mucosa and produce neurotransmitters  [54] . 
Lung DCs express receptors for prostaglandins and 
these acutely released infl ammatory mediators can 
profoundly impact on the migration and maturation 
of the cell  [55,56] . Endogenously released metabo-
lites like extracellular adenosine triphosphate (ATP) 
trigger purinergic receptors on lung DCs, and in this 
way relay information about allergen - induced platelet 
aggregation or metabolic cell stress to the cells of the 
immune system through widely expressed purinergic 
receptors  [57,58] . Eosinophil and mast cell degranu-
lation can lead to the release of eosinophil - derived 
neurotoxin (EDN) and histamine that can feed back 
on DCs and promote further Th2 responses  [59] . 
Clearly, much more effort is required before we can 
fully grasp the importance of these infl ammatory 
mediators and DAMPs in explaining the chronicity of 
asthma  [58] . These endogenous DAMPs are obvious 
targets for intervention, and blocking their produc-
tion or neutralizing their effects has proven to be 
successful in intervening in mouse models of asthma.    

  Direct  b locking of  d endritic  c ell  f unction 

 If DCs are so crucial in mounting and maintaining 
immune responses to inhaled allergens, then interfer-
ing directly with their function could constitute a 
novel form of treatment for allergic diseases. A strat-
egy to eliminate DCs from the airways is probably not 
a valuable option, as local depletion of airway DCs 
was recently shown to lead to severe exacerbation of 
respiratory viral infections like infl uenza, whereby 
the virus failed to be cleared from the lungs and 
led to severe systemic illness  [7] . Therefore, we are 
favoring the idea of targeting the fi ne - tuning mecha-
nisms whereby DCs maintain allergic infl ammation. 
Recently, several new molecules have been identifi ed 
that may alter DC function in allergic infl ammation 
and therefore could be possible therapeutic targets. 
Many of these compounds were fi rst discovered by 
their potential to interfere with DC - driven Th2 cell 
sensitization. The sphingosine 1 - phosphate recep-
tor antagonist FTY720 is currently used in clinical 
trials for multiple sclerosis and transplant rejection. 
When given locally in the lungs of mice with estab-
lished infl ammation, it strongly reduced infl amma-
tion by suppressing the T - cell stimulatory capacity 
and migratory behavior of lung DCs without causing 

initiate allergic responses at the epithelial - cell surface. 
Therefore, it will be very important to study how 
the production of TSLP by epithelial cells and other 
infl ammatory cells is regulated.  

   IL  - 25,  IL  - 33, and  GM  -  CSF  
 The polarization of Th2 cells induced by TSLP -
 matured DCs is further enhanced by IL - 25, which 
is produced by epithelial cells, basophils, and eosi-
nophils  [48] . Several reports showed that airway 
epithelial cells can produce IL - 25 in response to 
an innate immune response to allergens, a process 
requiring epithelial cleaving of IL - 25 by matrix met-
alloproteinase 7 (Figure  1.3 )  [19,49] . GM - CSF is 
released by bronchial epithelial cells in response to 
HDM exposure, as well as a number of environ-
mental sensitizers like diesel exhaust particles and 
cigarette smoke. GM - CSF promotes DC maturation 
and breaks inhalation tolerance, and previous studies 
demonstrated that HDM - driven asthma is neutralized 
by blocking GM - CSF  [50] . IL - 33 is made by epithe-
lial cells, boosts Th2 - cytokine production, and pro-
motes goblet cell hyperplasia. It was recently shown 
to also promote Th2 differentiation by programming 
the function of DCs  [51] . Obviously, these cytokines 
could be high on the list for targeting infl ammation 
in asthma, either individually or simultaneously, by 
blocking the innate receptors like TLR4, C - type lectin 
receptors, or protease - activated receptors that induce 
them  [19,21,52] .   

  Blocking  e ndogenous  DAMP  s  that  c ontribute 
 t o  DC   a ctivation in  a sthma 

 Dendritic cells express a plethora of receptors for 
endogenous danger - associated molecular patterns 
(DAMPs; Figure  1.4 ) that are released at sites of 
ongoing infl ammation. For example, DCs express 
receptors (protease activated receptors [PARs]) that 
are activated by proteolytic proteins like tryptase 
and thrombin  [29] . Shortly after insult to the vas-
cular compartment or after pathogen entry in the 
mucosa, complement activation occurs. Lung DCs 
can sense this  “ acute alert ”  through expression of 
the C5a and C3a anaphylatoxin receptors  [53] . 
DCs also express neuropeptide receptors, which can 
respond to the neurotransmitters that are released in 
response to axon refl exes or efferent neural responses, 
this is supported by the fact that lung DCs synapse 
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     Figure 1.4     Dendritic cells (DCs) express extracellular 
and intracellular receptors that recognize pathogen -
 associated molecular patterns (PAMPs) that are found 
inside microbial motifs, as well as a wide variety of C - type 
lectin receptors that discriminate glycosylation patterns 
on self versus non - self proteins. What is less emphasized 
in the literature is that they also express receptors that 
recognize an ongoing infl ammation response. Although 
PAMP receptors are mainly triggered by microbial motifs, 
it is possible that they are also activated by self ligands 
such as heat shock proteins. Tryptase, which is released 
by mast cells, and thrombin, which is released during the 
blood coagulation process, can trigger protease - activated 
receptors (PARs). Complement activation is an early innate 
immune reaction in response to allergen inhalation and 
can also lead to alterations in DC function. Infl ammation 
often leads to the production of prostaglandins that 
can either stimulate (through the type 4 prostaglandin 

E 2  receptor, EP4) DC activation or dampen it (through 
the type 1 prostaglandin D 2  [DP1] and prostaglandin I 2  
receptor [IP]). As airway DCs  “ live ”  in close proximity 
to unmyelinated nerve endings, the various neuropeptides 
that are released during neurogenic infl ammation can 
also activate DCs by triggering neurokinin 1 (NK1) and 
the calcitonin gene - related protein receptor (CGRPR). 
Necrotic cell death leads to the release of damage -
 associated molecular patterns (DAMPs). Extracellular 
adenosine triphosphate (ATP) triggers a broad family of 
purinergic P2X and P2Y receptors. Uric acid is recognized 
by the NALP3 (NACHT - , LRR - , and pyrin - domain -
 containing protein) receptor. The chromatin - binding 
protein high - mobility group box 1 protein (HMGB1) is 
released by necrotic cells and triggers the receptor for 
advanced glycation end products (RAGE). (BDCA, blood 
dendritic cell antigen; TLR, Toll - like receptor; NLR, 
NOD - like receptor).  
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lymphopenia, which is caused when the drug is given 
orally  [60] . FTY720 inhibited the potential of DCs 
to form stable synapses with na ï ve antigen - specifi c 
T cells as well as effector Th2 cells, providing a pos-
sible explanation as to how these drugs might work 
to inhibit allergic infl ammation. The drugable spleen 
tyrosine kinase (Syk) pathway has been shown to be 
crucial for Th2 induction by airway DCs  [61] , and 
downstream of this pathway the signaling intermedi-
ate PI3K δ  might similarly be very drugable. 

 As the number and activation status of lung CD11b  +   
DCs during secondary challenge seems crucial for 
controlling allergic infl ammation, studying the factors 
that control recruitment, survival, or egress of DCs 
from the lung during allergic infl ammation will be 
important, as this might reveal new therapeutic targets 
 [37] . Eicosanoid lipid mediators, such as prostaglan-
dins and leukotrienes, can also infl uence the migra-
tion of lung DCs  [56] . Selective agonists of particular 
receptors for members of the prostaglandin family 
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lites of prostaglandins include agonists of the peroxi-
some proliferator - activated receptor  γ  (PPAR γ ) family. 
Pharmacologic PPAR γ  agonists like the antidiabetic 
drug rosiglitazone were able to modify lung DC func-
tion and stimulate the formation of IL - 10 - producing T 
cells, thus suppressing features of asthma  [66] . Finally, 
the stimulation of the IgA - inducing capacities of lung 
DCs might be a possible strategy that could have 
prolonged effects in allergic disease akin to the effects 
of desensitization immunotherapy  [67] .   

  Concluding  r emarks 

 It is now clear that DCs and epithelial cells play 
crucial roles in the initiation and maintenance of 
allergic airway infl ammation. Interfering with their 
function, either directly or indirectly via disruption 
of intercellular communication, promises to provide 
novel therapeutics for this disease.  
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