

NEURODEGENERATION

the molecular pathology of dementia
and movement disorders

SECOND EDITION

Edited by
Dennis W. Dickson and Roy O. Weller

 WILEY-BLACKWELL

Neurodegeneration:
The Molecular Pathology of
Dementia and Movement Disorders

Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders

EDITED BY

DENNIS W. DICKSON MD

Professor of Pathology

Departments of Pathology (Neuropathology) and Neuroscience

Mayo Clinic, Jacksonville, FL, USA

ROY O. WELLER MD PhD FRCPPath

Emeritus Professor of Neuropathology

Clinical Neurosciences

University of Southampton School of Medicine

Southampton General Hospital

Southampton, UK

SECOND EDITION

 WILEY-BLACKWELL

A John Wiley & Sons, Ltd., Publication

www.intsocneuropathol.com

This edition first published 2011, © 2003, 2011 by International Society of Neuropathology

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
111 River Street, Hoboken, NJ 07030-5774, USA"

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

ISBN: 9781405196932

A catalogue record for this book is available from the Library of Congress and the British Library.

This book is published in the following electronic formats: ePDF 9781444341225; Wiley Online Library 9781444341256; eBook 9781444341232

Set in 9.25 on 12pt Minion by Toppan Best-set Premedia Limited, Hong Kong

Contents

List of Contributors, viii

Preface, xii

List of Abbreviations, xiii

Part 1 Introduction: Basic Mechanisms of Neurodegeneration

1 Introduction to Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders, 3
Dennis W. Dickson

2 Cell Death and Neurodegeneration, 6
Violetta N. Pivtoraiko and Kevin A. Roth

3 Oxidative Stress and Balance in Neurodegenerative Diseases, 10
George Perry, Siddhartha Mondragón-Rodríguez, Akihiko Nunomura, Xiongwei Zhu, Paula I. Moreira and Mark A. Smith

4 Protein Aggregation in Neurodegeneration, 13
Adriano Aguzzi and Veronika Kana

5 Protein Degradation in Neurodegeneration: The Ubiquitin Pathway, 18
Lynn Bedford, Robert Layfield, Nooshin Rezvani, Simon Paine, James Lowe and R. John Mayer

6 Genetics of Neurodegeneration, 22
John Hardy

7 Transgenic Animal Models of Proteinopathies, 26
Naruhiko Sahara, Heather Melrose, Simon D'Alton and Jada Lewis

Part 2 Alzheimer's Disease and Aging

8 Clinical Aspects of Alzheimer's Disease, 39
David Knopman

9 Genetics of Alzheimer's Disease, 51
Lars Bertram and Rudolph E. Tanzi

10 Neuropathology of Alzheimer's Disease and its Variants, 62
Charles Duyckaerts and Dennis Dickson

11 Amyloid- β Production, 92
Colin L. Masters and Konrad Beyreuther

12 Elimination of Amyloid β from the Brain, its Failure in Alzheimer's Disease and Implications for Therapy, 97
Roy O. Weller, Seth Love and James A.R. Nicoll

Part 3 Tauopathies

13 Introduction to the Tauopathies, 105
Michel Goedert

14 Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17, 110
Bernardino Ghetti, Zbigniew K. Wszolek, Bradley F. Boeve, Salvatore Spina and Michel Goedert

15 Progressive Supranuclear Palsy and Corticobasal Degeneration, 135
Dennis W. Dickson, Jean-Jaques Hauw, Yves Agid and Irene Litvan

16 Pick's Disease, 156
David G. Munoz, Huw R. Morris and Martin Rossor

- 17 Argyrophilic Grain Disease, 165
Markus Tolnay and Heiko Braak
- 18 Parkinsonism–Dementia Complex of Guam, 171
Kiyomitsu Oyanagi, Tomoyo Hashimoto and Mineo Yamazaki
- 19 Postencephalitic Parkinsonism, 179
Kurt A. Jellinger

Part 4 Synucleinopathies

- 20 Introduction to α -Synucleinopathies, 191
Maria Grazia Spillantini
- 21 Parkinson's Disease, 194
Kurt A. Jellinger
- 22 Dementia with Lewy Bodies and Parkinson's Disease Dementia, 224
Paul G. Ince
- 23 Lewy Bodies in Conditions other than Disorders of α -Synuclein, 238
Coro Paisán-Ruiz, Laura Parkkinen and Tamas Revesz
- 24 Multiple System Atrophy, 242
Janice L. Holton, Andrew J. Lees and Tamas Revesz

Part 5 Trinucleotide Repeat Disorders

- 25 Introduction to Trinucleotide Repeat Diseases, 255
H. Brent Clark
- 26 Huntington's Disease, 258
John C. Hedreen and Raymund A.C. Roos
- 27 Spinocerebellar Ataxias, 273
Hidehiro Mizusawa, H. Brent Clark and Arnulf H. Koeppen
- 28 Friedreich's Ataxia, 288
Arnulf H. Koeppen
- 29 Dentatorubral-pallidolusian Atrophy, 299
Hitoshi Takahashi, Mitsunori Yamada and Shoji Tsuji
- 30 Spinal and Bulbar Muscular Atrophy, 307
Gen Sobue, Hiroaki Adachi and Masahisa Katsuno

Part 6 Prion Disorders

- 31 Introduction to Prion Disorders, 315
Adriano Aguzzi and Veronika Kana
- 32 Sporadic Creutzfeldt–Jakob Disease, 322
Herbert Budka, Mark W. Head, James W. Ironside, Pierluigi Gambetti, Piero Parchi and Fabrizio Tagliavini
- 33 Genetic Creutzfeldt–Jakob Disease, 336
Piero Parchi, Pierluigi Gambetti and Sabina Capellari
- 34 Fatal Familial and Sporadic Insomnia, 346
Piero Parchi, Sabina Capellari and Pierluigi Gambetti
- 35 A New Prion Disease: Protease-Sensitive Prionopathy, 350
Pierluigi Gambetti, Gianfranco Puoti, Qingzhong Kong and Wenquan Zou
- 36 Variant Creutzfeldt–Jakob Disease, 354
James W. Ironside, Mark W. Head and Robert G. Will
- 37 Gerstmann–Sträussler–Scheinker Disease, 364
Bernardino Ghetti, Fabrizio Tagliavini, Gabor G. Kovacs and Pedro Piccardo
- 38 Kuru, 378
Catriona Ann McLean
- 39 Iatrogenic Creutzfeldt–Jakob Disease, 381
James W. Ironside, Richard S.G. Knight and Mark W. Head

Part 7 Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis/Motor Neuron Disease

- 40 Introduction, 389
James Lowe
- 41 Frontotemporal Lobar Degeneration with TDP-43 Pathology, 393
Ian R.A. Mackenzie and Manuela Neumann
- 42 Neuronal Intermediate Filament Inclusion Disease, 404
Nigel J. Cairns
- 43 Frontotemporal Lobar Degeneration with FUS Immunoreactive Inclusions, 412
Manuela Neumann and Ian R.A. Mackenzie

44 Amyotrophic Lateral Sclerosis, Primary Lateral Sclerosis and Spinal Muscular Atrophy, **418**
Michael J. Strong, Tibor Hortobágyi, Koichi Okamoto and Shinsuke Kato

Part 8 Other Neurodegenerative Disorders

45 Introduction: Genetic Analysis as a Lumper and Splitter in Neurodegenerative Disease, **437**
John E. Duda

46 Inherited Amyloidoses and Neurodegeneration: Familial British Dementia and Familial Danish Dementia, **439**
Tamas Revesz, Agueda Rostagno, Gordon Plant, Tammaryn Lashley, Blas Frangione, Jorge Ghiso and Janice L. Holton

47 Neurodegeneration with Brain Iron Accumulation, **446**
John E. Duda and Kurt A. Jellinger

48 Familial Encephalopathy with Neuroserpin Inclusion Bodies, **456**
Richard L. Davis and George H. Collins

49 Hereditary Ferritinopathies, **461**
Ruben Vidal, Marie Bernadette Delisle, Olivier Rascol and Bernardino Ghetti

Index, **467**

List of Contributors

Hiroaki Adachi

Department of Neurology
Nagoya University Graduate School of Medicine
Nagoya, Japan

Yves Agid

Institut du Cerveau et de la Moelle épinière
Hôpital Pitié-Salpêtrière
Paris, France

Adriano Aguzzi

Institute of Neuropathology
University Hospital Zürich
Zürich, Switzerland

Lynn Bedford

School of Biomedical Sciences
University of Nottingham Medical School
Queen's Medical Centre
Nottingham, UK

Lars Bertram

Neuropsychiatric Genetics Group
Department of Vertebrate Genomics
Max-Planck Institute for Molecular Genetics
Berlin, Germany

Konrad Beyreuther

Network for Aging Research
University of Heidelberg
Heidelberg, Germany

Bradley F. Boeve

Department of Neurology
Mayo Clinic
Rochester, MN, USA

Heiko Braak

Center for Clinical Research
Department of Neurology
University of Ulm
Ulm, Germany

Herbert Budka

Institute of Neurology
Medical University Vienna
Vienna, Austria

Nigel J. Cairns

Department of Pathology and Immunology
Washington University School of Medicine
St Louis, MO, USA

Sabina Capellari

Department of Neurological Sciences
University of Bologna
Bologna, Italy

H. Brent Clark

Department of Laboratory Medicine and Pathology
University of Minnesota Medical School
Minneapolis, MN, USA

George H. Collins

Department of Pathology
SUNY Upstate Medical University
Syracuse, NY, USA

Simon D'Alton

Center for Translational Research of
Neurodegenerative Disease and
Department of Neuroscience
University of Florida
Gainesville, FL, USA

Richard L. Davis

Department of Pathology
SUNY Upstate Medical University
Syracuse, NY, USA

Marie Bernadette Delisle

University Hospital of Toulouse
Toulouse, France

Dennis W. Dickson

Department of Pathology (Neuropathology) and
Neuroscience
Mayo Clinic
Jacksonville, FL, USA

John E. Duda

Parkinson's Disease Research, Education and Clinical
Center
Philadelphia VA Medical Center, and Department of
Neurology
University of Pennsylvania School of Medicine
Philadelphia, PA USA

Charles Duyckaerts

Raymond Escourolle Neuropathology Laboratory
Hôpital de la Salpêtrière
Paris, France

Blas Flangione

Department of Pathology
New York University School of Medicine
New York, NY, USA

Pierluigi Gambetti

Institute of Pathology and
National Prion Disease Pathology Surveillance
Center
Case Western Reserve University
Cleveland, OH, USA

Bernardino Ghetti

Department of Pathology and Laboratory Medicine
Indiana University School of Medicine
Indianapolis, IN, USA

Jorge Ghiso

Department of Pathology
New York University School of Medicine
New York, NY, USA

Michel Goedert

Medical Research Council Laboratory
of Molecular Biology
Cambridge, UK

Maria Grazia Spillantini

Brain Repair Centre
Department of Clinical Neurosciences
University of Cambridge
Cambridge, UK

John Hardy

Department of Molecular Neuroscience and
Reta Lilla Weston Laboratories
Institute of Neurology
Queen Square
London, UK

Tomoyo Hashimoto

Department of Neuropathology
Tokyo Metropolitan Institute for Neuroscience;
Department of Safety and Health
Tokyo Gas Co. Ltd.,
Tokyo, Japan

Jean-Jaques Hauw

Anatomopathologie (Neurologique) Hôpital
Pitié-Salpêtrière
Paris, France

Mark W. Head

National CJD Surveillance Unit
Western General Hospital
Edinburgh, UK

John C. Hedreen

Harvard Brain Tissue Resource Center
Department of Psychiatry
Harvard Medical School and McLean Hospital
Belmont, MA, USA

Janice L. Holton

Department of Molecular Neuroscience
UCL Institute of Neurology
University College London
London, UK

Tibor Hortobágy

Department of Clinical Neuroscience
NIHR Biomedical Research Centre for Mental Health
and MRC Centre for Neurodegeneration Research
Institute of Psychiatry
King's College London
London, UK

Paul G. Ince

Sheffield Institute for Translational Neuroscience
Department of Neuroscience
University of Sheffield
Sheffield, UK

James W. Ironside

National CJD Surveillance Unit
Western General Hospital
Edinburgh, UK

Kurt A. Jellinger

Institute of Clinical Neurobiology
Medical University Vienna
Vienna, Austria

Veronika Kana

University Hospital Zürich
Institute of Neuropathology
Zürich, Switzerland

Shinsuke Kato

Department of Neuropathology
Institute of Neurological Sciences
Tottori University
Yonago, Japan

Masahisa Katsuno

Department of Neurology
Nagoya University Graduate School of Medicine;
Institute for Advanced Research
Nagoya University,
Nagoya, Japan

Richard S.G. Knight

National CJD Surveillance Unit
Western General Hospital
Edinburgh, UK

David Knopman

Department of Neurology
Mayo Clinic
Rochester, MN, USA

Arnulf H. Koeppen

VA Medical Center and
Departments of Neurology and Pathology
Albany Medical College
Albany, NY, USA

Quingzhong Kong

National Prion Disease Pathology Surveillance
Center
Case Western Reserve University
Cleveland, OH, USA

Gabor G. Kovacs

Institute of Neurology
Medical University Vienna
Vienna, Austria

Tammaryn Lashley

Department of Molecular Neuroscience
UCL Institute of Neurology
University College London
London, UK

Robert Layfield

School of Biomedical Sciences
University of Nottingham Medical School
Queen's Medical Centre
Nottingham, UK

Andrew J. Lees

Department of Molecular Neuroscience
UCL Institute of Neurology
University College London
London, UK

Jada Lewis

Center for Translational Research of
Neurodegenerative Disease and
Department of Neuroscience
University of Florida
Gainesville, FL, USA

Irene Litvan

Department of Neurology
University of Louisville School of Medicine
Louisville, KY, USA

Seth Love

Department of Neuropathology
Institute of Clinical Neurosciences
University of Bristol
Bristol, UK

James Lowe

School of Molecular Medical Sciences
University of Nottingham Medical School
Queen's Medical Centre
Nottingham, UK

Ian R.A. Mackenzie

Department of Pathology and Laboratory Medicine
University of British Columbia
Vancouver, BC, Canada

Colin L. Masters

Mental Health Research Institute
National Neuroscience Facility
The University of Melbourne
Melbourne, Australia

R. John Mayer

School of Biomedical Sciences
University of Nottingham Medical School
Queen's Medical Centre
Nottingham, UK

List of Contributors

Catriona Ann McLean

Department of Anatomical Pathology
The Alfred Hospital
Prahran, Australia

Heather Melrose

Department of Neuroscience
Mayo Clinic
Jacksonville, FL, USA

Hidehiro Mizusawa

Department of Neurology
Tokyo Medical and Dental University
Tokyo, Japan

Siddhartha Mondragón-Rodríguez

Département de Physiologie
Université de Montréal
Montreal, QC, Canada

Paula I. Moreira

Center for Neuroscience and Cell Biology
University of Coimbra
Coimbra, Portugal

Huw R. Morris

MRC Centre for Neuropsychiatric Genetics and Genomics
Cardiff University School of Medicine
Cardiff, UK

David G. Munoz

Department of Laboratory Medicine and Pathobiology
St. Michael's Hospital and Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital
University of Toronto
Toronto, ON, Canada

Manuela Neumann

Institute of Neuropathology
University Hospital of Zürich
Zürich, Switzerland

James A.R. Nicoll

Clinical Neurosciences
University of Southampton School of Medicine
Southampton, UK

Akihiko Nunomura

Department of Neuropsychiatry
Interdisciplinary Graduate School of Medicine and Engineering
University of Yamanashi
Yamanashi, Japan

Koichi Okamoto

Department of Neurology
Gunma University Graduate School of Medicine
Gunma, Japan

Kiyomitsu Oyanagi

Department of Neuropathology
Tokyo Metropolitan Institute for Neuroscience
Tokyo, Japan;
Division of Neuropathology
Department of Brain Disease Research
Shinshu University School of Medicine
Nagano, Japan

Simon Paine

School of Biomedical Sciences
University of Nottingham Medical School
Queen's Medical Centre
Nottingham, UK

Coro Paisán-Ruiz

Departments of Neurology,
Psychiatry and Genetics and Genomic Sciences
Mount Sinai School of Medicine
New York, NY, USA

Piero Parchi

Department of Neurological Sciences
University of Bologna
Bologna, Italy

Laura Parkkinen

Department of Molecular Neuroscience
UCL Institute of Neurology
University College London
London, UK

George Perry

Neurosciences Institute and Department of Biology
University of Texas at San Antonio
San Antonio, TX, USA

Pedro Piccardo

Center for Biologic Evaluation and Research
Food and Drug Administration
Rockville, MD, USA

Violetta N. Pivtoraiko

Department of Pathology
University of Alabama at Birmingham
Birmingham, AL, USA

Gordon Plant

The National Hospital for Neurology and Neurosurgery
London, UK

Gianfranco Puoti

National Prion Disease Pathology Surveillance Center
Case Western Reserve University
Cleveland, OH, USA

Olivier Rascol

Departments of Neurosciences and Clinical Pharmacology
University Hospital of Toulouse
Toulouse, France

Tamas Revesz

Department of Molecular Neuroscience
UCL Institute of Neurology
University College London
London, UK

Nooshin Rezvani

School of Biomedical Sciences
University of Nottingham Medical School
Queen's Medical Centre
Nottingham, UK

Raymund A.C. Roos

Department of Neurology
Leiden University Medical Center
Leiden, The Netherlands

Martin Rossor

Dementia Research Centre
Department of Neurodegeneration
UCL Institute of Neurology
University College London
London, UK

Agueda Rostagno

Department of Pathology
New York University School of Medicine
New York, NY, USA

Kevin A. Roth

Department of Pathology
University of Alabama at Birmingham
Birmingham, AL, USA

Naruhiro Sahara

Center for Translational Research of Neurodegenerative Disease and
Department of Neuroscience
University of Florida
Gainesville, FL, USA

Mark A. Smith

Deceased

Department of Pathology
Case Western Reserve University
Cleveland, OH, USA

Gen Sobue

Department of Neurology
Nagoya University Graduate School of Medicine
Nagoya, Japan

Salvatore Spina

Department of Pathology and Laboratory Medicine
Indiana University School of Medicine
Indianapolis, IN, USA

Michael J. Strong

Department of Clinical Neurological Sciences
The University of Western Ontario and the Robarts
Research Institute
London, ON, Canada

Fabrizio Tagliavini

Division of Neuropathology
Carlo Besta Neurological Institute
Milan, Italy

Hitoshi Takahashi

Department of Pathology
Brain Research Institute
Niigata University
Niigata, Japan

Rudolph E. Tanzi

Genetics and Aging Research Unit
Massachusetts General Hospital
Charlestown, MA, USA

Markus Tolnay

Institute of Pathology
Basel University Hospital
Basel, Switzerland

Shoji Tsuji

Department of Neurology
Graduate School of Medicine
University of Tokyo
Tokyo, Japan

Ruben Vidal

Department of Pathology and Laboratory Medicine
Indiana University School of Medicine
Indianapolis, IN, USA

Roy O. Weller

Clinical Neurosciences
University of Southampton School of Medicine
Southampton, UK

Robert G. Will

National CJD Surveillance Unit
Western General Hospital
Edinburgh, UK

Zbigniew K. Wszolek

Department of Neurology
Mayo Clinic
Jacksonville, FL, USA

Mitsunori Yamada

Department of Clinical Research
Saigata National Hospital
Niigata, Japan

Mineo Yamazaki

Department of Neuropathology
Tokyo Metropolitan Institute for Neuroscience;
Department of Neurology
Nippon Medical School
Tokyo, Japan

Xiongwei Zhu

Department of Pathology
Case Western Reserve University
Cleveland, OH, USA

Wenquan Zou

National Prion Disease Pathology Surveillance
Center
Case Western Reserve University
Cleveland, OH, USA

Preface

One of the major roles of the International Society of Neuropathology (ISN) is to promote world-wide education and research in the pathology of neurological disease for the enhancement of care and treatment of patients. As the interface between neuropathology and other scientific and clinical disciplines became increasingly blurred, a series of books on the "Pathology and Genetics" of neurological disease was initiated by Dr Paul Kleihues to promote mutual understanding and collaboration.

The first book in the series was on *Brain Tumours* (1997); that is now in its fourth edition as the *WHO Classification of Tumours of the Central Nervous System*, edited by David N. Louis, Hiroko Ohgaki, Otmar D. Wiestler and Webster K. Cavenee and published by WHO Press (2007). A further four books were published by ISN between 2001 and 2005 with Yngve Olsson as Series Editor: *Structural and Molecular Basis of Skeletal Muscle Diseases*, Volume Editor George Karpati (2002); *Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders*, Volume Editor Dennis Dickson (2003); *Developmental Neuropathology*, Volume Editors Jeffrey A. Golden and Brian Harding (2004); *Pathology and Genetics of Cerebrovascular Diseases*, Volume Editor Hannu Kalimo (2005). Each volume brought together expertise from multiple international authors writing in a standard format that allowed readers to navigate the different chapters with ease. These features led to the considerable success of the series.

Publication of the "Pathology and Genetics" series has entered a new phase with a new publisher and a new Series Editor. As publisher of the very successful ISN Journal *Brain Pathology*, Wiley-Blackwell has been appointed to publish the ISN book series. Following wide international consultation, a second edition of *Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders* was selected as a priority for publication with Dennis Dickson and Roy Weller as Volume Editors. This reflects

the considerable and momentous advances that have occurred in the field of neurodegeneration since the publication of the first edition. Many of the authors from the first edition have been retained and every chapter has been rewritten and thoroughly updated. The format that is familiar to readers of the first edition has also been retained but new sections have been added to reflect advances in the field. In its multidisciplinary approach, the volume concentrates on pathology, genetics, molecular biology and biochemistry in relation to clinical aspects of neurodegenerative disease, imaging and the new therapies that are on the horizon. There is some overlap between volumes in the series, such that vascular dementia is covered in the previous book on cerebrovascular diseases.

I would like to thank Dennis Dickson as Volume Editor for establishing the structure of the current book on neurodegeneration and for inspiring the authors. Our thanks go to the 96 authors who put so much effort and expertise into ensuring the high quality of the text and illustrations. Sadly, one author, Mark Smith, died in a road accident at the end of 2010 but will be remembered through his contribution to this book.

Finally, who will benefit from reading this book on neurodegeneration? Our aim was to provide succinct and well-ordered chapters for instant access to the concepts and many of the details of the pathology and genetics of neurodegenerative disease to further the multidisciplinary interests of pathologists, clinicians and neuroscientists involved in research and in the diagnosis and care of patients with neurodegenerative disease. We trust that our aspirations will be fulfilled.

*Roy O. Weller
Series Editor*

List of Abbreviations

1C2	antibody to the expanded polyglutamine repeat segment of TBP	ANG	angiogenin
3-NP	3-nitropropionic acid	AOPD	adult-onset Parkinson's disease
5-HT	5-hydroxytryptamine (serotonin)	AOS	apraxia of speech
5-HIAA	5-hydroxyindolacetic acid	apoE	apolipoprotein E (protein)
8-OHG	8-hydroxydeoxyguanosine	<i>APOE</i>	apolipoprotein E (gene)
17-AAG	17-allylaminogeldanamycin	<i>APOJ</i>	apolipoprotein J (gene)
α Syn	α -synuclein	APP	β -amyloid precursor protein
AA	amyloid associated	AR	androgen receptor, autosomal recessive
$\text{A}\beta$	amyloid β	ARSACS	autosomal recessive spastic ataxia of Charlevoix and Saguenay
$\text{A}\beta$ 40	$\text{A}\beta$ isoform of 40 amino acids	ArG	argyrophilic grains
$\text{A}\beta$ 42	$\text{A}\beta$ isoform of 42 amino acids	ARJP	autosomal recessive juvenile parkinsonism
ABC	ATP-binding cassette	ASM	acid sphingomyelinase
ABri	amyloid-Bri	Atg	autophagy-associated protein
ABriPP	amyloid-Bri precursor protein	ATP	adenosine triphosphate
ACE	angiotensin-converting enzyme	AV	autophagic vacuole
ACE-1	angiotensin-converting enzyme 1 (protein)	AVED	ataxia with isolated vitamin E deficiency
AChE	acetylcholinesterase	BASE	bovine amyloidotic spongiform encephalopathy
AD	Alzheimer's disease	BCSG1	breast cancer-associated protein 1
ADan	amyloid-Dan	BDNF	brain-derived neurotrophic factor
ADanPP	amyloid-Dan precursor protein	BI	basophilic inclusion
ADCA	autosomal dominant cerebellar ataxia	BIBD	basophilic inclusion body disease
ADom	autosomal dominant	BN	ballooned neuron
ADPath	Alzheimer's disease pathology	bp	base pairs
aFTLD-U	atypical frontotemporal lobar degeneration with ubiquitininated inclusions	BSE	bovine spongiform encephalopathy
AGD	argyrophilic grain disease	bvFTD	behavioral variant frontotemporal dementia
AGE	advanced glycation endproducts	CA	hippocampal pyramidal cell sector (cornu ammonis)
AIDS	acquired immunodeficiency syndrome	CAA	cerebral amyloid angiopathy
AIF	apoptosis-inducing factor	CAB	calbindin
ALP	autophagy-lysosomal pathway	CADASIL	cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
ALS	amyotrophic lateral sclerosis	CAMCOG	Cambridge Cognition test battery
ALSbi	ALS with behavioral impairment	CAP	caudate-accumbens-putamen
ALSci	ALS with cognitive impairment	CB	coiled bodies
ALS-PD	amyotrophic lateral sclerosis parkinsonism/dementia complex of Guam	CBD	corticobasal degeneration
AMPA	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid	CBGD	corticobasal ganglionic degeneration
		CBS	corticobasal syndrome

List of Abbreviations

CBP	CREB-binding protein	EOAH	ataxia with oculomotor apraxia and hypoalbuminemia
CCA	cerebellar cortical atrophy	EOFAD	early-onset familial Alzheimer's disease
CDK	cyclin-dependent kinase	EOPD	early-onset Parkinson's disease
CDR	Clinical Dementia Rating	ER	endoplasmic reticulum
CEI	cholinesterase inhibitor	ERAD	ER-associated degradation system
CERAD	Consortium to Establish a Registry of Alzheimer's Disease	ESES	electrical status epilepticus during slow-wave sleep
ChAT	choline acetyltransferase	fALS	familial amyotrophic lateral sclerosis
CHMP2	charged multivesicular body protein 2B gene	FBD	familial British dementia
CI	confidence interval	fCJD	familial Creutzfeldt–Jakob disease
CJD	Creutzfeldt–Jakob disease	FDC	follicular dendritic cell
CLU	clusterin (gene)	FDD	familial Danish dementia
CM	center median	FDG-PET	2-deoxy-2[F-18]fluoro-D-glucose positron emission tomography
CNS	central nervous system	FENIB	familial encephalopathy with neuroserpin inclusion bodies
COMT	catechol-o-methyl-transferase	FFI	fatal familial insomnia
CPEB	cytoplasmic polyadenylation element-binding protein	FLAIR	fluid attenuation inversion recovery
CR	Congo red	FRDA	Friedreich's ataxia
CR1	complement component (3b/4b) receptor 1 (gene)	<i>frda</i>	frataxin gene
CREB	cAMP-responsive element-binding protein	FSE	fast spin echo
CSF	cerebrospinal fluid	FSH	follicle-stimulating hormone
CST3	cystatin C (gene)	FTD	frontotemporal dementia
CT	computed tomography	FTDP	frontotemporal dementia and parkinsonism
CWD	chronic wasting disease	FTDP-17T	frontotemporal dementia and parkinsonism linked to chromosome 17 caused by <i>Tau</i> mutations
CXCL8	interleukin 8 (gene/protein; alternative name of IL-8)	FTL	ferritin light chain
CXCR2	chemokine (C-X-C motif) receptor 2	FTLD	frontotemporal lobar degeneration
CysC	cystatin C (protein)	FTLD-FUS	frontotemporal lobar degeneration with FUS pathology
DAT	dopamine transporter	FTLD-MND	frontotemporal lobar degeneration with motor neuron disease type inclusions
DBS	deep brain stimulation	FTLD-ni	frontotemporal lobar degeneration with no inclusions
DLB	dementia with Lewy bodies	FTLD-tau	frontotemporal lobar degeneration with tau pathology
DLDH	dementia lacking distinctive histopathology	FTLD-TDP	frontotemporal lobar degeneration with TDP-43 pathology
DM	diabetes mellitus	FTLD-U	frontotemporal lobar degeneration with ubiquitininated inclusions
DMX	dorsal motor nucleus of the vagus nerve	FTLD-UPS	frontotemporal lobar degeneration with UPS pathology
DN	dentate nucleus/dystrophic neurites	FUS	fused in sarcoma
DNA	deoxyribonucleic acid	FUS	fused in sarcoma gene
DOPAC	3,4-dihydroxyphenyl acetic acid	GAA	guanine-adenine-adenine
DRAM	damage-regulated autophagy modulator	GAB2	GRB2-associated binding protein 2 (gene)
DRG	dorsal root ganglion	GABA	γ-amino butyric acid
DRN	dorsal raphe nucleus	GABAA	γ-amino butyric acid A
DRPLA	dentatorubropallidoluysian atrophy	GAD	glutamate decarboxylase
DUB	deubiquitylating enzyme	GBA	glucocerebrosidase/acid β-glucosidase
DWI	diffusion-weighted imaging	GCI	glial cytoplasmic inclusion
EAAT-2	excitatory amino acid transporter 2	GDNF	glia-derived neurotrophic factor
ECL	enhanced chemoluminescence	GFAP	glial fibrillary acidic protein
EEG	electroencephalography	GFP	green fluorescent protein
EL	encephalitis lethargica		
ELISA	enzyme-linked immunosorbent assay		
EM	electron microscopy		
EMG	electromyography		
eNOS	endothelial nitric oxide synthase		
EOAD	early-onset Alzheimer's disease		

GFT	glial fibrillary tangle	LCCA	late cortical cerebellar atrophy
GHAI	granular hazy astrocytic inclusion	LD	linkage disequilibrium
GNI	glial nuclear inclusion	LDL	low-density lipoprotein
GlcCer	glucosylceramide	LDLR	low-density lipoprotein receptor (gene/protein)
GP	globus pallidus	L-dopa	levodopa
gPD	genetic prion disease	L-ferritin	light subunit of holoferritin
GPe/GPi	external/internal globus pallidus	LH	luteinizing hormone
GRN	progranulin gene	LHRH	luteinizing hormone-releasing hormone
GSK-3 β	glycogen-synthase-kinase 3 β	LMN	lower motor neuron
GSS	Gerstmann–Sträussler–Scheinker syndrome	LOAD	Lewy neurite
Guam PDC	parkinsonism-dementia complex of Guam	LRP-1	late-onset Alzheimer's disease
GVD	granulovacuolar degeneration	LRRK2	low-density lipoprotein receptor-related protein-1
GWAS	genome-wide association study	M	leucine-rich repeat serine/threonine-protein kinase 2
HADC	histone deacetylase	MAF	methionine
HD	Huntington's disease	MAO	minor allele frequency
HE, H&E	hematoxylin and eosin	MAP	monoamine oxidase
Het-s	heterokaryon incompatibility protein	MAPT	microtubule-associated protein
HF	hereditary ferritinopathy	MBP	microtubule-associated protein tau
hGh	human growth hormone	MCI	myelin basic protein
HMW	high molecular weight	MED	mild cognitive impairment
hnRNP	heterologous ribonucleoprotein	MERRF	male erectile dysfunction
HSD	Hallervorden–Spatz disease	MHC	myoclonus epilepsy associated with ragged-red fibers
HSP	heat shock protein	MIBG SPECT	major histocompatibility complex
HTT	huntingtin	MIM	[¹²³ I]metaiodobenzylguanidine single photon emission computed tomography
HuGENet	Human Genome Epidemiology Network	MJD	Mendelian Inheritance in Man
HVA	homovanillic acid	MM	Machado–Joseph disease
IB	inclusion body	MMSE	methionine/methionine
IBMPFD	inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia	MND	Mini Mental State Examination
IBZM SPECT	[¹²³ I]iodobenzamide single photon emission computed tomography	MPTP	motor neuron disease
ICAM1	intercellular adhesion molecule 1	MR	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
iCJD	iatrogenic Creutzfeldt–Jakob disease	MRC CFAS	magnetic resonance
IDE	insulin degrading enzyme	MRI	Medical Research Council Cognitive Function and Aging Study
IFC	inferior frontal cortex	mRNA	magnetic resonance imaging
IFT74	intraflagellar transport 74 gene	MRS	messenger ribonucleic acid
IGF-1	insulin-like growth factor-1	MSA	magnetic resonance spectroscopy
IHC	immunohistochemistry	MSA-C	multiple system atrophy
IL8	interleukin 8 (gene/protein)	MSA-P	multiple system atrophy, cerebellar variant
ILBD	incidental Lewy body disease	MSN	multiple system atrophy, parkinsonian variant
ILOCA	idiopathic late-onset cerebellar ataxia	mTOR	medium spiny neurons
INAD	infantile neuroaxonal dystrophy	MUNE	mammalian target of rapamycin
iNOS	inducible nitric oxide synthase	M/V	motor unit number estimate
IPD	idiopathic Parkinson's disease	MWM	methionine/valine
IR	immunoreactive	NA	Morris water maze
ISEL	<i>in situ</i> end labeling	NAC	nucleus accumbens
ISF	interstitial fluid	NACP	non-amyloid component
ITM2B	integral membrane protein 2B	NAD	non-amyloid plaque component
JHD	juvenile Huntington's disease	NAIP	neuroaxonal dystrophy
JNK	c-Jun N-terminal kinase	NBIA1/2	neuronal apoptosis inhibitory protein
LB	Lewy body	NBM	neurodegeneration with brain iron accumulation type 1/2
LBD	Lewy body disease		nucleus basalis of Meynert
LBHI	Lewy body-like hyaline inclusions		
LC	locus coeruleus		

List of Abbreviations

NCI	neuronal cytoplasmic inclusion	PGC-1	proliferator-activated receptor gamma coactivator-1
NDD	neurodegenerative diseases	PGRN	progranulin
NE	norepinephrine	PH-8	phenylalanine hydroxylase
NEP	neprolysin	PHF	paired helical filament
NF	neurofilament	PIB	Pittsburgh compound B
NF-H	neurofilament heavy subunit	PICALM	phosphatidylinositol binding clathrin assembly protein (gene)
NF- κ B	nuclear factor kappaB	PiD	Pick's disease
NF-L	neurofilament light subunit	PINK1	PTEN-induced putative kinase 1
NF-M	neurofilament medium subunit	PK	proteinase K
NFT	neurofibrillary tangle	PKAN	pantothenate kinase-associated neurodegeneration
NI	nuclear inclusion	PLAN	PLA2G6-associated neurodegeneration
NIA	National Institute on Aging	PLS	primary lateral sclerosis
NIBD	neurofilament inclusion body disease	PMA	progressive muscular atrophy
NIFID	neuronal intermediate filament inclusion disease	PMCA	protein misfolding cyclic amplification
NII	neuronal intranuclear inclusion	PME	progressive myoclonus epilepsy
NINDS-SPSP	National Institute of Neurological Disorders and the Society for Progressive Supranuclear Palsy	Pmel17	melanocyte protein 17 precursor
NM	neuromelanin	PML	promyelocytic leukemia protein
NMDA	N-methyl-D-aspartate	PMP-22	peripheral nerve myelin protein 22
NMI	nuclear membrane indentation	PNFA	progressive non-fluent aphasia
NNI	neuronal nuclear inclusion	pNFP	phosphorylated neurofilament protein
NP	neuritic plaque	PNS	peripheral nervous system
NPC	Niemann-Pick type C disease	PRNP	prion protein gene
NPDPSC	National Prion Disease Pathology Surveillance Center	PrP	prion protein
NREM	non-rapid eye movement	PrP ^C	cellular prion protein
NSE	neuron-specific enolase	PrP-CAA	prion protein cerebral amyloid angiopathy
NT	neuropil thread	PrP ^{Dis}	disease-associated prion protein
OMIM	Online Mendelian Inheritance in Man	PrP ^{res}	protease-resistant (disease-associated) prion protein
OPC	olivopontocerebellar	PrP ^{Sc}	scrapie prion protein
OPCA	olivopontocerebellar atrophy	PSD	pseudoperiodic synchronous discharges
OR	odds ratio	PSEN1	presenilin 1
OS	oxidative stress	PSEN2	presenilin 2
P ₀	peripheral nerve myelin zero	PSP	progressive supranuclear palsy
PAC	P1-derived artificial chromosome	PSPr	protease-sensitive prionopathy
PAF	pure autonomic failure	PSWC	periodic sharp-wave complex
PAGF	pure akinesia with gait failure	PVM	perivascular macrophage
PAS	periodic acid-Schiff	RBD	rapid eye movement sleep behavioral disorder
PB	Pick bodies	RBP	RNA-binding proteins
PBP	progressive bulbar palsy	RCL	reactive center loop
PCA	posterior cortical atrophy	REM	rapid eye movement
PCD	programmed cell death	RIP	receptor interacting protein kinase
PCR	polymerase chain reaction	RNA	ribonucleic acid
PD	Parkinson's disease	RNP	ribonucleoprotein complexes (aka RNA granules)
PDC	parkinsonism-dementia complex	ROS	reactive oxygen species
PDD	Parkinson's disease dementia	RS	Richardson's syndrome
PEP	postencephalitic parkinsonism	SAA	serum amyloid A protein
Per	peripherin	sALS	sporadic amyotrophic lateral sclerosis
PET	positron emission tomography	SBMA	spinobulbar muscular atrophy
PET blot	paraffin-embedded tissue blot	SCA	spinocerebellar ataxia/atrophy
PF	parafascicular	SCD	spinocerebellar degeneration
p-FTAA	pentameric formic thiophene acetic acid	sCJD	sporadic Creutzfeldt-Jakob disease
PGBD1	piggyBac transposable element derived 1 (gene)		

SCNA	α -synuclein gene	TF	transferrin (gene/protein)
SD	spongiform degeneration, semantic dementia	TFG	tau-positive fine granule
SDS	Shy–Drager syndrome	TGF	transforming growth factor
SDT	senile dementia with tangles	TH	tyrosine hydroxylase
Serpin	serine proteinase inhibitor	TNF- α	tumor necrosis factor α (protein)
SERPINA	clade A serpin peptidase inhibitor	TN1	tyrosine kinase, non-receptor 1 (gene)
SETX	senataxin	TTR	transthyrethin
SF	straight filaments	TSE	transmissible spongiform encephalopathy, turbo-spin echo
sFI	sporadic fatal insomnia	TUNEL	terminal deoxynucleotidyl transferase dUTP nick end labeling
siRNA	small inhibitory ribonucleic acids	Ub	ubiquitin
SMA	spinal muscular atrophy	ub-ir	ubiquitin-immunoreactive
SMN	survival motor neuron	UCH	ubiquitin carboxyl-terminal hydrolase
SN	substantia nigra	UMN	upper motor neuron
SND	striatonigral degeneration	UPR	unfolded protein response
SNpc	substantia nigra pars compacta	UPS	ubiquitin-proteasome system
SOD	superoxide dismutase	UTR	untranslated region
SOD1	copper/zinc superoxide dismutase	V	valine
SORL1	sortilin-related receptor (gene)	VAMP	vesicle-associated membrane protein
SorLA	sortilin-related receptor (protein)	VAPB	vesicle-associated membrane protein
SP	senile plaque/substance P	vCJD	variant Creutzfeldt–Jakob disease
SPECT	single photon emission computed tomography	VCP	valosin containing protein gene
SPECT rCBF	single photon emission computed tomography regional cerebral blood flow	VEGF	vascular endothelial growth factor
ST	straight tubule	VEN	von Economo neurons
STN	subthalamic nucleus	VH	visual hallucinations
Sup35	yeast suppressor 35	VLDL	very low-density lipoprotein
TARDBP	transactive response DNA binding protein gene	VMAT2	vesicular monoamine transporter
TBP	TATA binding protein	VTA	ventral tegmental area
TCS	transcranial sonography	VV	valine/valine
TDP-43	transactive response DNA binding protein with M_r 43 kDa	WHO	World Health Organization

1 Introduction: Basic Mechanisms of Neurodegeneration

1

Introduction to Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders

Dennis W. Dickson

Department of Pathology (Neuropathology) and Neuroscience, Mayo Clinic, Jacksonville, FL, USA

Introduction

Neurodegenerative diseases share the common property of neuronal loss of specific populations of neurons, encapsulating the concept of selective vulnerability. Neuronal loss in many of these conditions involves anatomically related functional systems, such as the extrapyramidal and pyramidal motor systems or the higher order association and limbic cortices. The particular system affected determines the clinical presentation; in fact, the distribution of the pathology is more predictive of the clinical presentation than the molecular nature of the pathology, as illustrated in tauopathies and frontotemporal degenerations. It remains one of the major unattained goals of modern research on the degenerative diseases to determine the molecular basis for selective vulnerability.

While much of the focus in research on neurodegeneration is directed to neurons, the role of glia in neurodegenerative disorders is also increasingly recognized [1]. Glia, especially astrocytes, display reactive changes as a part of virtually every neurodegenerative disorder. More recently, oligodendroglia and astrocytes have been implicated in fundamental abnormalities of multiple system atrophy [2] and several of the tauopathies [3].

The other glial cells that play a role in virtually all neurodegenerative disorders are microglia. Microglia are cells of the mononuclear phagocytic system that respond to virtually all forms of cellular injury. They are also the cells linked to neuroinflammation, a term used to refer to innate immune responses in the brain characterized by activated microglia, but sparse or no blood-borne leukocytes. Neuroinflammation has been studied most extensively in Alzheimer's disease (AD) [4] and Parkinson's disease (PD) [5], but is common to virtually all neurodegenerative disorders.

Molecular classification of neurodegenerative disorders

Most textbooks on neurodegenerative disorders have used a classification scheme based upon either the clinical syndromes or the anatomical distribution of pathology. In contrast, this book takes a different approach by using a classification based upon molecular mechanisms, rather than clinical or anatomical boundaries. Major advances in molecular genetics and the application of biochemical and immunocytochemical techniques to neurodegenerative disorders have generated this new approach. Throughout most of the current volume, diseases are clustered according to the proteins that accumulate within cells or in the extracellular compartments or according to a shared pathogenetic mechanism, such as trinucleotide repeats that are a feature of specific genetic disorders.

β -amyloid

The most common of the neurodegenerative disorders is AD, in which mutations in the amyloid precursor protein (APP) gene or genes related to APP metabolism strongly implicate amyloid in the pathogenesis of AD [6]. In addition to β -amyloid deposits, AD is also associated with neurofibrillary degeneration characterized by accumulation of aggregates of the microtubule-associated protein tau within vulnerable neurons. Although there may be some common factors in the pathogenesis of all amyloidoses, neurodegenerative disorders associated with accumulation of amyloids other than β -amyloid, such as familial British dementia (FBD), are discussed separately. Similarly, the primacy of prion protein in Creutzfeld–Jakob disease (CJD) warrants its consideration in the context of other transmissible spongiform encephalopathies rather than in association with the β -amyloidoses.

Tau

In addition to AD, neurofibrillary pathology is present in a range of disorders. While previously considered a relatively non-specific response of neurons to diverse insults, this view has changed with the discovery that mutations in the tau gene (*MAPT*) cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T) [7]. Disorders in which abnormalities in tau are considered to play a critical role in disease pathogenesis have been referred to as tauopathies [8]. This group of disorders includes both genetically determined and sporadic conditions, including FTDP-17T, Pick's disease, progressive supranuclear palsy, Guam Parkinson dementia complex, argyrophilic grain disease and others.

α -Synuclein

The second most common neurodegenerative disorder is PD, which has long been associated with Lewy bodies in vulnerable neurons. The discovery of mutations in the gene for α -synuclein (*SNCA*) in familial PD [9] and the later recognition that α -synuclein was the major structural component of Lewy bodies [10] raised α -synuclein to the level of a major class of diseases. Biochemical and structural alterations in α -synuclein have been detected in several disorders in addition to PD, including dementia with Lewy bodies, pure autonomic failure and multiple system atrophy.

Trinucleotide repeats

Huntington's disease (HD) is one of the most extensively studied hereditary neurodegenerative diseases. The discovery that the mutations in the gene encoding huntingtin (*HTT*) lead to expansion of a trinucleotide repeat, specifically CAG, in the coding region of *HTT* [11] revealed a common molecular mechanism for a group of disorders that are grouped in this book as the trinucleotide repeat diseases [12]. Not all trinucleotide repeat diseases are associated with CAG repeats and not all of the repeats are in the coding region of the gene. Moreover, the range of clinical and pathological phenotypes in trinucleotide repeat disorders is wide. Nevertheless, these disorders have a shared genetic signature that now warrants their current grouping. Future research may eventually disclose pathomechanisms that will provide a more rational basis for subclassification of these disorders.

Prions

A common theme for many of the degenerative disorders is the formation of abnormal conformers of normal cellular proteins that have an increased tendency to aggregate and to be transmissible from cell to cell [13]; the prion disorders are the archetypal example of conformational disorders. There are few differences between the pathogenic and normal cellular form of PrP besides conformation, yet this is sufficient to lead to a fulminant and invariably fatal neurodegeneration. Prion diseases, like many of the other neurodegenerative disorders, include sporadic and familial forms. Even the sporadic forms may have a genetic predisposition, specifically polymorphisms in the prion protein gene (*PRNP*) [14].

TDP-43 and FUS

Since the first edition of this book, major advances have been made in the discovery of common molecular mechanisms between frontotemporal lobar degenerations (FTLD) and motor neuron disease or amyotrophic lateral sclerosis (ALS) [15]. Specifically, the major protein that accumulates in the most common forms of FTLD and ALS is the RNA/DNA binding protein, TDP-43. Mutations in the gene for TDP-43 (*TARDBP*) cause some forms of familial ALS, while other genes are implicated in FTLD, such as the genes for progranulin (*GRN*) and valosin containing protein/p97 (*VCP*) [16]. In addition to FTLD and ALS, TDP-43 has also been detected in other disorders [17], where it appears to be a secondary disease process, not dissimilar to α -synuclein pathology (Lewy bodies) that can occur in the setting of a range of other disorders, especially AD [5]. Evidence that RNA/DNA binding proteins are fundamental to this group of disorders is derived from the study of another member of the protein family, i.e. FUS/TLS [18]. This protein is mutated in rare forms of familial motor neuron disease, and FUS protein accumulates in neuronal inclusions in rare forms of FTLD that are negative for TDP-43 pathology [19]. Interestingly, most cases of FTLD associated with inclusions enriched in intermediate filaments (neuronal intermediate filament inclusions disease – NIFID [20]) also have FUS pathology. These advances now provide a rational basis for grouping these disorders.

Shared mechanisms in neurodegenerative disorders

Despite their clinical and pathological diversity, many of the neurodegenerative disorders share certain fundamental disease processes, including oxidative stress and programmed cell death, as well as disorders of protein aggregation or protein degradation, or both. These topics are the focus of chapters in the first part of this book. Programmed cell death is an attractive mechanism to explain selective vulnerability of neuronal populations since most neurodegeneration is not associated with influx of blood-borne inflammatory cells, as is the case with other types of tissue damage, such as necrosis. The molecular pathways involved in activation of apoptosis fall in two categories – intrinsic and extrinsic. The extrinsic pathway is triggered by extracellular ligands and their cell surface receptors, while intrinsic pathways act through changes in mitochondrial permeability, thus linking mitochondria to both oxidative stress and cell death mechanisms. Mitochondria are one of the major sources of reactive oxygen species generated as byproducts of oxidative phosphorylation. Accumulation of reactive oxygen species and the cellular defenses against oxidative stress are implicated in a number of neurodegenerative disorders.

One consequence of cellular oxidative stress is post-translational modification (e.g. nitration) of proteins. These proteins take on abnormal properties that may lead to changes in their solubility and promote aggregation. Aggregation of abnormal conformers

of neuronal and glial proteins is increasingly recognized as a common mechanism of a number of neurodegenerative disorders, as noted for prion protein. The role of protein–protein interaction, protein aggregation and changes in structural properties suggests that abnormal conformation of proteins is critical to aggregation and inclusion formation. Accompanying protein aggregation and accumulation are usually evidence of aberration of the normal cellular mechanisms for protein degradation. In addition to the actions of cellular and extracellular proteases, two major pathways exist for protein degradation that involves cellular organelles adapted for this purpose – lysosomes and proteasomes. Much current research in neurodegenerative disease is focused on the role of ubiquitin proteasomal system in basic cellular processes as well as in disease. Lysosomal pathways, particularly autophagy, may also be involved in a number of neurodegenerative disorders and interaction of the two processes is increasingly recognized.

In addition to these major disease mechanisms, Part 1 also includes an overview of recent advances in genetics, which underpins the molecular classification of disease that is the basis for the organization of the book. Chapter 7 is a review of some of the animal models most widely used to study human neurodegenerative diseases, particularly related to amyloid, tau and α -synuclein.

References

- 1 Miller DW, Cookson MR, Dickson DW. Glial cell inclusions and the pathogenesis of neurodegenerative diseases. *Neuron Glia Biol* 2004; 1(1): 13–21.
- 2 Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG. Multiple system atrophy: a primary oligodendroglialopathy. *Ann Neurol* 2008; 64(3): 239–246.
- 3 Komori T. Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick's disease. *Brain Pathol* 1999; 9(4): 663–679.
- 4 Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA. Neuroinflammation – an early event in both the history and pathogenesis of Alzheimer's disease. *Neurodegener Dis* 2010; 7(1-3): 38–41.
- 5 McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. *Mov Disord* 2008; 23(4): 474–483.
- 6 Hardy J. Alzheimer's disease: the amyloid cascade hypothesis: an update and reappraisal. *J Alzheimers Dis* 2006; 9(3 Suppl): 151–153.
- 7 Hutton M. Missense and splice site mutations in tau associated with FTDP-17: multiple pathogenic mechanisms. *Neurology* 2001; 56(11 Suppl 4): S21–25.
- 8 Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. *Annu Rev Neurosci* 2001; 24: 1121–1159.
- 9 Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. *Science* 1997; 276(5321): 2045–2047.
- 10 Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. *Nature* 1997; 388(6645): 839–840.
- 11 Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. *Cell* 1993; 72(6): 971–983.
- 12 Orr HT, Zoghbi HY. Trinucleotide repeat disorders. *Annu Rev Neurosci* 2007; 30: 575–621.
- 13 Lee SJ, Desplats P, Sigurdson C, Tsigleny I, Masliah E. Cell-to-cell transmission of non-prion protein aggregates. *Nat Rev Neurol* 2010; 6(12): 702–706.
- 14 Mead S, Poulter M, Uphill J et al. Genetic risk factors for variant Creutzfeldt–Jakob disease: a genome-wide association study. *Lancet Neurol* 2009; 8(1): 57–66.
- 15 Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Science* 2006; 314(5796): 130–133.
- 16 Mackenzie IR, Rademakers R. The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. *Neurogenetics* 2007; 8(4): 237–248.
- 17 Amador-Ortiz C, Lin WL, Ahmed Z et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. *Ann Neurol* 2007; 61(5): 435–445.
- 18 Lagier-Tourenne C, Cleveland DW. Rethinking ALS: the FUS about TDP-43. *Cell* 2009; 136(6): 1001–1004.
- 19 Mackenzie IR, Munoz DG, Kusaka H et al. Distinct pathological subtypes of FTLD-FUS. *Acta Neuropathol* 2010; Oct 30 (epub ahead of print).
- 20 Josephs KA, Holton JL, Rossor MN et al. Neurofilament inclusion body disease: a new proteinopathy? *Brain* 2003; 126(Pt 10): 2291–303.

2

Cell Death and Neurodegeneration

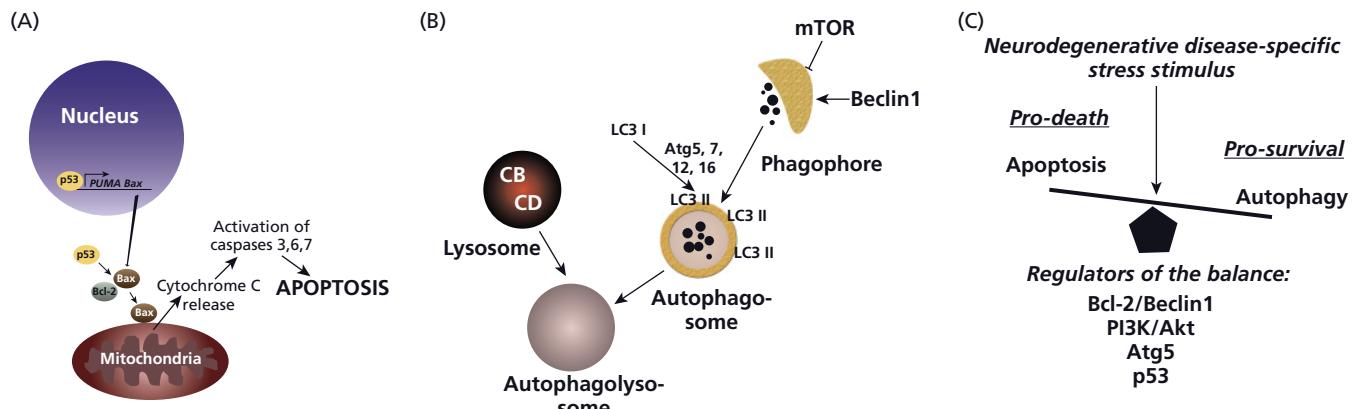
Violetta N. Pivtoraiko and Kevin A. Roth

Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA

Introduction

Neurodegenerative diseases (NDD) are characterized by progressive neurological dysfunction that is typically associated with neuron loss in selected areas of the nervous system. Given the limited neurogenic capacity of the adult nervous system, neuronal cell death marks an irreversible and catastrophic phase of the neurodegenerative process. Tremendous scientific effort has been focused on defining the cellular and molecular pathways regulating neuron death as this may lead to the discovery of novel therapeutic interventions that could halt or slow down NDD progression.

Definition


Three major morphological types of cell death have been described in NDD: apoptotic, necrotic and autophagic [1]. *Apoptosis* is characterized by chromatin condensation, nuclear fragmentation, and cytoplasmic blebbing [2]. Apoptosis has been implicated in many NDD and is the most extensively investigated form of cell death in the nervous system [1]. *Necrotic cell death* is characterized by cell and organelle swelling or rupture of cell membranes accompanied by spillage of intracellular contents [3]. Necrosis is usually considered to be an accidental (i.e. non-programmed) form of cell death and is commonly observed after trauma or infection [4]. However, necrosis has also been reported in Parkinson's (PD), Alzheimer's (AD), and Huntington's (HD) diseases, and in amyotrophic lateral sclerosis [5]. The molecular mechanisms that initiate necrotic cell death in NDD are not well understood, but may include excitotoxicity, intracellular Ca^{2+} increase, and ATP depletion [6]. *Autophagic cell death* is characterized by accumulation of autophagic vacuoles (AVs) concomi-

tant with markers of apoptosis or necrosis [7]. There is a growing awareness of a possible role for autophagic cell death in NDD. Most recently, research has focused on understanding the interplay between these death pathways, particularly between apoptosis and autophagy.

Apoptosis in neurodegenerative diseases

Apoptosis is a highly regulated process that can be activated by receptor-mediated (extrinsic) or mitochondria-mediated (intrinsic) pathways that converge at cleavage-dependent activation of aspartate-specific effector caspases (caspases-3, 6, and 7). Once activated, effector caspases cleave many cellular components, leading to degradation of DNA and cytoskeletal proteins and causing nuclear fragmentation, degradation of subcellular components, and collapse of the cytoskeleton (Fig. 2.1A). Apoptosis allows a cell to die without affecting the viability of neighboring cells and tissues [8].

Loss of selective neuronal cell populations is a feature of most NDD; therefore, the possibility of apoptosis-associated molecules and processes being responsible for NDD pathogenesis has received significant attention. Implication of apoptosis as a general cell death mechanism in NDD has largely been supported by evidence from animal models and tissue culture studies, while investigations on human postmortem brain have yielded conflicting results [9]. However, identifying apoptotic neuron death in autopsied human brain can be difficult since neurodegenerative processes represent chronic brain demise, while apoptotic cell death can be executed within a few hours [10]. Nevertheless, elevated levels of protein and mRNA of several caspases were found in postmortem AD brains [9]. Caspases-3 and -6 have also been implicated in the generation of cleavage-mediated toxic species of amyloid precursor protein and AD pathology [11,12], and elevated levels of activated caspases-3 and -6 have been detected in neurites of AD patients where they co-localize with

Figure 2.1 Balance between apoptosis and the autophagy-lysosomal pathway dictates the fate of neurons affected by neurodegenerative disease-specific stress stimuli. Proapoptotic proteins such as p53 can initiate apoptosis either by directly affecting mitochondrial membrane permeability and cytochrome C release or by inducing transcription of other proapoptotic proteins (A). The autophagy-lysosomal pathway (ALP) supplies neurons with energy and metabolic building blocks by recycling outlived or damaged organelles and protein aggregates (B). Therefore, the ALP is thought to serve a prosurvival function under stressful conditions. However, a number of proapoptotic regulators can jeopardize the integrity of the ALP and tip the balance towards cellular demise (C). CB, Cathepsin B; CD, Cathepsin D.

protein aggregates [13,14]. A proapoptotic member of the Bcl-2 family of proteins, Bax, has been implicated in apoptosis induction and disease progression in HD and PD [9]. However, it is still not known if neurological dysfunction observed in NDD such as AD, PD, and HD is a direct consequence of apoptotic neuron death or of neuronal dysfunction occurring prior to frank neuron loss.

Regulation of cell death and survival by the autophagy-lysosomal pathway

Many NDD are accompanied by accumulation of protein aggregates [15]. These diseases are collectively termed proteinopathies [16]. This group includes PD, HD, and AD in which protein aggregates are primarily cytosolic and/or extracellular. Protein aggregates are thought to be formed as a result of toxic gain of function mutations or modifications. It is debated whether soluble monomeric aggregation-prone proteins, their oligomers or larger aggregates are most toxic [17]. However, in general, the protein's capacity to aggregate correlates with its toxicity (although not necessarily with the aggregates themselves). Two main systems are responsible for clearance of proteins in cells: the ubiquitin-proteasome system (UPS) (see Chapter 5) and the autophagy-lysosomal pathway (ALP) [18].

The principal function of the ALP is to regulate intracellular energy balance by recycling outlived and/or damaged cellular components such as protein complexes and organelles. Three major types of autophagy have been defined: macro-autophagy (hereafter simply referred to as “autophagy”), micro-autophagy, and chaperone-mediated autophagy. Autophagy is initiated by generation of a double-membrane phagophore, which surrounds the cellular components targeted for degradation, forming an AV [19]. Autophagy initiation is regulated in part by the activation of mammalian target of rapamycin (mTOR) which

inhibits autophagy input by affecting interactions between autophagy-associated proteins (Atgs) regulating AV formation [20]. For autophagy to be completed, the cargo of AVs has to be degraded and this is achieved by fusion of AVs with lysosomes (Fig. 2.1B) [20].

Increasing evidence indicates that autophagy plays a critical role in protein aggregate clearance and regulation of neuron death in a number of NDD [21]. Although many proteins associated with proteinopathies (such as α -synuclein and huntingtin) are partially dependent on the UPS for their clearance, autophagy becomes the route of degradation for aggregate-prone proteins, their oligomers and aggregates that cannot be efficiently cleared by the proteasome. The dependence of proteins on autophagy for their clearance correlates with their propensity to aggregate [22,23]. For instance, inhibition of autophagy has a much smaller effect on the clearance of wild-type huntingtin exon 1 fragment or wild-type α -synuclein than on the clearance of the mutant aggregate-prone species [22,23].

The pivotal role of autophagy in clearance of aggregate-prone proteins and their aggregates is further supported by studies in mice lacking neuronal expression of *Atg5* or *Atg7*, genes responsible for AV formation and initiation of autophagy. These mice die as young adults and show striking neurodegenerative and neurological phenotypes, including accumulation of protein aggregates that increase in size and number with age, and neuron loss in cerebrum and cerebellum [24,25]. Chronic metabolic insufficiency, such as that induced by the mitochondrial inhibitor rotenone, has also been shown to cause a decline in ALP activity and its ability to degrade aggregated protein species [26]. Therefore, accumulation of aggregated proteins in NDD can also be explained by a decreased ability of neurons undergoing metabolic stress, as was reported in some PD models, to induce autophagy sufficient to clear these protein inclusions [9].

Inhibition of autophagy

Inhibition of autophagy completion resulting from altered lysosomal function has also been associated with neurodegeneration [27]. For instance, deficiency in cathepsin D, an aspartic lysosomal protease, leads to extensive neuron death and is accompanied by accumulation of autophagosome/autolysosome-like bodies containing ceroid lipofuscin [28]. Mice with combined deficiency of cathepsins B and L, lysosomal cysteine proteases, die during the first 4 weeks of life; these animals manifest massive cell death of selected neurons in the cerebral cortex and cerebellum. Neurodegeneration is accompanied by accumulation of lysosomal bodies and by axonal enlargements, indicators of impaired degradation capacity of the ALP in these mice [27].

Discovery of a mutation in the *ATP13A2* gene encoding a lysosome protein causing familial early-onset PD further highlights the importance of the ALP in NDD. *ATP13A2* encodes a lysosomal ATPase, a group of proteins involved in the maintenance of the acidic environment of the lysosomal lumen, which is crucial for proper functioning of lysosomal proteases [29]. Interestingly, elevated levels of *ATP13A2* expression have also been detected in the brains of sporadic PD patients, suggesting a potential role for this protein and proper lysosomal functioning in idiopathic PD [29]. Furthermore, lysosomal function has been shown to decline with age in the human brain and thus, diminished autophagy completion may contribute to age-related NDD [30].

A prosurvival or prodeath role for autophagy

Although accumulation of AVs has been observed in affected neurons in a number of NDD such as PD and AD and numerous models of these diseases, there is ongoing debate as to whether autophagy plays a prosurvival or prodeath role in NDD [21]. Indeed, autophagy is best known for its homeostatic role in mediating bulk degradation of cytoplasm and organelles and degradation of aggregate-prone proteins and damaged organelles, such as mitochondria. These findings are often used to support the argument that autophagy has a prosurvival function [9]. However, autophagy, as a cleansing and recycling mechanism, can only be effective if lysosomal degradation of AVs is accomplished [27]. Therefore, a combination of factors that impair AV formation and degradation or overactivate AV formation relative to the degradative reserve of the cell can lead to “cell death with autophagy” which some investigators argue may be a more precise term than autophagic cell death [31].

Co-ordination between apoptosis and autophagy

Based on our growing awareness of multiple prosurvival and prodeath pathways, it seems likely that a single death pathway may not be solely responsible for neuron loss in the context of NDD (Fig. 2.1C). Instead, multiple prosurvival and cell death mechanisms may interact to determine neuron fate [9]. Also, inhibition of one pathway of cell death may not prevent neuron loss but instead, may recruit alternative death mechanisms, e.g. inhibition of caspase activation may prevent apoptosis but stimu-

late autophagic or necrotic cell death [32]. Therefore, increased research interest is aimed at determining the interactions between apoptotic and autophagic death pathways.

There is a growing list of apoptosis regulators interacting with autophagic machinery. For instance, Beclin1/Atg6, a protein involved in regulation of AV formation and autophagy induction, has a Bcl-2 homology domain (BH-3-domain) and has been shown to interact with prosurvival members of the Bcl-2 family of proteins. Bcl-2 and Bcl-X_L can bind to Beclin1, preventing it from interacting with the complexes involved in AV formation, and in turn inhibit autophagy [33]. Therefore, the ratio of Bcl-2 to Beclin1 is an important determinant of whether a cell will activate the prosurvival autophagic pathway and/or a death-inducing program.

Pathways regulating induction of autophagy can also activate pathways that affect apoptosis. For instance, PI3K/Akt-mediated phosphorylation of Bad, a BH3-only member of the Bcl-2 family, leads to its dissociation from Bcl-2, thus allowing Bcl-2 to sequester proapoptotic Bcl-2 family proteins such as Bax and prevent them from inducing apoptosis. Akt also antagonizes the transcriptional activity of a number of proapoptotic transcription factors, such as p53, which results in inhibition of proapoptotic gene expression and promotion of cell survival [32]. Atg5, involved in AV formation and LC3I to LC3II conversion, can also influence apoptotic signaling pathways. Atg5 can be cleaved following various apoptotic stimuli, forming an N-terminal product that translocates to the mitochondrial membrane, interacts with Bcl-X_L, and promotes apoptosis. At the same time, Atg5 cleavage leads to autophagy inhibition, as a pool of available Atg5 necessary for AV formation is decreased [32,34].

Recently, p53, a well-studied regulator of neuron apoptosis, was reported to also modulate autophagy [35]. Interestingly, the effects of p53 on autophagy appear to be dependent on its intracellular localization. Nuclear p53 can stimulate autophagy by inducing transcription of damage-regulated autophagy modulator (DRAM), a novel protein believed to localize to the lysosomal membrane, or by inhibiting mTOR activity [35,36]. On the other hand, cytoplasmic p53 was shown to inhibit autophagy induction by activating mTOR [35]. A number of studies have reported elevated protein and mRNA levels of p53 in postmortem NDD brain tissue and in a number of PD and AD animal and cell culture models, suggesting that p53 may be involved in regulation of neuron loss in these pathologies [37,38].

Future directions

The tremendous scientific interest in apoptotic and autophagic cell death mechanisms and their involvement in NDD has produced significant advances in our understanding of the cellular and molecular processes controlling neuron life and death. Despite the fact that numerous questions remain about the precise role of these pathways in human NDD, there is no disputing that a dead neuron is a dysfunctional neuron. Future

investigations are necessary to devise strategies for restoring function to injured neurons before they become committed to death, regardless of the death pathway(s) being activated.

References

- 1 Gorman AM. Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. *J Cell Mol Med* 2008; 12(6A): 2263–2280.
- 2 Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. *Br J Cancer* 1972; 26(4): 239–257.
- 3 Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. *Nat Rev Mol Cell Biol* 2001; 2(8): 589–598.
- 4 Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. *Nature* 1999; 399(6738 Suppl): A7–14.
- 5 Martin LJ. Neuronal cell death in nervous system development, disease, and injury (review). *Int J Mol Med* 2001; 7(5): 455–478.
- 6 Ribe EM, Serrano-Saiz E, Akpan N, Troy CM. Mechanisms of neuronal death in disease: defining the models and the players. *Biochem J* 2008; 415(2): 165–182.
- 7 Zaidi AU, McDonough JS, Klocke BJ et al. Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent. *J Neuropathol Exp Neurol* 2001; 60(10): 937–945.
- 8 Wyllie AH. Apoptosis: an overview. *Br Med Bull* 1997; 53(3): 451–465.
- 9 Jellinger KA. Recent advances in our understanding of neurodegeneration. *J Neural Transm* 2009; 116(9): 1111–1162.
- 10 Roth KA. Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. *J Neuropathol Exp Neurol* 2001; 60(9): 829–838.
- 11 Zhao M, Su J, Head E, Cotman CW. Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer's disease. *Neurobiol Dis* 2003; 14(3): 391–403.
- 12 Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. *Nature* 2009; 457(7232): 981–989.
- 13 Louneva N, Cohen JW, Han LY et al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer's disease. *Am J Pathol* 2008; 173(5): 1488–1495.
- 14 Albrecht S, Bogdanovic N, Ghetti B, Winblad B, LeBlanc AC. Caspase-6 activation in familial Alzheimer disease brains carrying amyloid precursor protein or presenilin I or presenilin II mutations. *J Neuropathol Exp Neurol* 2009; 68(12): 1282–1293.
- 15 Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. *Science* 2002; 296(5575): 1991–1995.
- 16 Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. *Nat Med* 2004; 10(10): 1055–1063.
- 17 Ross CA, Poirier MA. Opinion: What is the role of protein aggregation in neurodegeneration? *Nat Rev Mol Cell Biol* 2005; 6(11): 891–898.
- 18 Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. *Nature* 2006; 443(7113): 780–786.
- 19 Klionsky DJ, Abeliovich H, Agostinis P et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. *Autophagy* 2008; 4(2): 151–175.
- 20 Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? *Oncogene* 2006; 25(48): 6347–6360.
- 21 Chu CT. Autophagic stress in neuronal injury and disease. *J Neuropathol Exp Neurol* 2006; 65(5): 423–432.
- 22 Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. *Hum Mol Genet* 2002; 11(9): 1107–1117.
- 23 Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-synuclein is degraded by both autophagy and the proteasome. *J Biol Chem* 2003; 278(27): 25009–25013.
- 24 Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. *Nature* 2006; 441(7095): 885–889.
- 25 Komatsu M, Waguri S, Chiba T et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. *Nature* 2006; 441(7095): 880–884.
- 26 Yu WH, Dorado B, Figueroa HY et al. Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein. *Am J Pathol* 2009; 175(2): 736–747.
- 27 Pivtorakko VN, Stone SL, Roth KA, Shoppa JJ. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. *Antioxid Redox Signal* 2009; 11(3): 481–496.
- 28 Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. *Oncogene* 2004; 23(16): 2881–2890.
- 29 Ramirez A, Heimbach A, Grundemann J et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. *Nat Genet* 2006; 38(10): 1184–1191.
- 30 Terman A, Gustafsson B, Brunk UT. Autophagy, organelles and ageing. *J Pathol* 2007; 211(2): 134–143.
- 31 Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. *Nat Rev Mol Cell Biol* 2008; 9(12): 1004–1010.
- 32 Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. *Cell Death Differ* 2009; 16(7): 966–975.
- 33 Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. *Autophagy* 2008; 4(5): 600–606.
- 34 Yousefi S, Perozzo R, Schmid I et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. *Nat Cell Biol* 2006; 8(10): 1124–1132.
- 35 Vousden KH, Ryan KM. p53 and metabolism. *Nat Rev Cancer* 2009; 9(10): 691–700.
- 36 Crighton D, Wilkinson S, O'Prey J et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. *Cell* 2006; 126(1): 121–134.
- 37 Trimmer PA, Smith TS, Jung AB, Bennett JP Jr. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. *Neurodegeneration* 1996; 5(3): 233–239.
- 38 LaFerla FM, Hall CK, Ngo L, Jay G. Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. *J Clin Invest* 1996; 98(7): 1626–1632.

3

Oxidative Stress and Balance in Neurodegenerative Diseases

**George Perry¹, Siddhartha Mondragón-Rodríguez², Akihiko Nunomura³,
Xiongwei Zhu⁴, Paula I. Moreira⁵ and Mark A. Smith⁴**

¹Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA

²Département de Physiologie, Université de Montréal, Quebec, Canada

³Department of Neuropsychiatry, University of Yamanashi, Yamanashi, Japan

⁴Department of Pathology, Case Western Reserve University, Cleveland, OH, USA

⁵Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal

Definition

Oxidative damage is a major feature of the cytopathology of a number of chronic neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease. The original concept of oxidative stress promoted by Denham Harmon has been used to indicate an excess of oxygen free radicals that breach oxidant defenses with consequent detriment. By this definition, detection of damage resulting from reactive oxygen species is indicative of oxidative stress [1,2]. Reactive oxygen species are a by-product of cellular oxidative metabolism and are generated in the mitochondria during oxidative phosphorylation with production of molecules with unpaired electrons such as superoxide (O_2^-).

Superoxide is a short-lived molecule that is reduced by the family of superoxide dismutases (SODs) to generate hydrogen peroxide (H_2O_2). Reduction of H_2O_2 , for example through the action of redox-active cations such as iron and copper, generates a hydroxyl radical ($\cdot OH$), which can oxidize proteins, lipids, and nucleic acids.

Nitric oxide is another short-lived species with limited toxicity that is produced by a family of nitric oxide synthases. After interaction with superoxide, nitric oxide forms peroxynitrite ($ONOO^-$), which is another powerful reactive species that can lead to damage of cellular macromolecules through nitration or generation of additional free radicals. Cells have evolved an elaborate array of antioxidant defenses, including SOD, glutathione reductase and catalase (Figure 3.1).

Detection of cellular oxidative damage

Cellular oxidative damage can be detected in a variety of ways. Widely used markers of oxidative damage to lipids include

4-hydroxynonenal and isoprostanes, to nucleic acids include 8-hydroxy-2'-deoxyguanosine, and to proteins include nitration and glycation [3]. Indirect evidence of cellular oxidative stress is increased expression of molecules involved in oxidant defense, such as heme oxygenases, SODs, glutathione transferases, catalase, and glucose-6-phosphate dehydrogenase. It is important to note that neurons displaying signs of oxidative stress are not necessarily succumbing to oxidative stress, but may be adapting by way of oxidant defenses. These findings suggest that neurodegenerative disorders where oxidative stress is postulated to play a role, such as Parkinson's disease and AD, are associated with mechanisms that maintain a balance between oxidative stress and adaptation to this stress, reflecting the ability of living systems to dynamically regulate their defense mechanisms in response to oxidants. Therefore, mere evidence of oxidative damage does not necessarily indicate cell death by way of oxidative stress, given that the cell may have successfully increased endogenous cellular defenses sufficiently to compensate for the increased flux of reactive oxygen responsible for the damage. It does, however, indicate that the normal balance between the production and defense reduction of oxidative stress has been challenged.

Consequences and mechanisms of cellular oxidative damage

Evidence suggests that cells that fail to compensate for oxidative stress enter apoptosis, which in turn leads to death within hours [4,5]. This is particularly germane to the discussion of degenerative diseases that have a course of years. Those cells experiencing increased oxidative damage, by their continued existence, testify to their increased compensatory response to reactive oxygen.