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Preface

One of the major roles of the International Society of
Neuropathology (ISN) is to promote world-wide education and
research in the pathology of neurological disease for the enhance-
ment of care and treatment of patients. As the interface between
neuropathology and other scientific and clinical disciplines
became increasingly blurred, a series of books on the “Pathology
and Genetics” of neurological disease was initiated by Dr Paul
Kleihues to promote mutual understanding and collaboration.

The first book in the series was on Brain Tumours (1997); that
is now in its fourth edition as the WHO Classification of Tumours
of the Central Nervous System, edited by David N. Louis, Hiroko
Ohgaki, Otmar D. Wiestler and Webster K. Cavenee and published
by WHO Press (2007). A further four books were published by
ISN between 2001 and 2005 with Yngve Olsson as Series Editor:
Structural and Molecular Basis of Skeletal Muscle Diseases, Volume
Editor George Karpati (2002); Neurodegeneration: The Molecular
Pathology of Dementia and Movement Disorders, Volume Editor
Dennis Dickson (2003); Developmental Neuropathology , Volume
Editors Jeffrey A. Golden and Brian Harding (2004); Pathology and
Genetics of Cerebrovascular Diseases, Volume Editor Hannu
Kalimo (2005). Each volume brought together expertise from
multiple international authors writing in a standard format that
allowed readers to navigate the different chapters with ease. These
features led to the considerable success of the series.

Publication of the “Pathology and Genetics” series has entered
a new phase with a new publisher and a new Series Editor. As
publisher of the very successful ISN Journal Brain Pathology,
Wiley-Blackwell has been appointed to publish the ISN book
series. Following wide international consultation, a second edition
of Neurodegeneration: The Molecular Pathology of Dementia and
Movement Disorders was selected as a priority for publication with
Dennis Dickson and Roy Weller as Volume Editors. This reflects

xii

the considerable and momentous advances that have occurred in
the field of neurodegeneration since the publication of the first
edition. Many of the authors from the first edition have been
retained and every chapter has been rewritten and thoroughly
updated. The format that is familiar to readers of the first edition
has also been retained but new sections have been added to reflect
advances in the field. In its multidisciplinary approach, the
volume concentrates on pathology, genetics, molecular biology
and biochemistry in relation to clinical aspects of neurodegenera-
tive disease, imaging and the new therapies that are on the
horizon. There is some overlap between volumes in the series,
such that vascular dementia is covered in the previous book on
cerebrovascular diseases.

I would like to thank Dennis Dickson as Volume Editor for
establishing the structure of the current book on neurodegenera-
tion and for inspiring the authors. Our thanks go to the 96
authors who put so much effort and expertise into ensuring the
high quality of the text and illustrations. Sadly, one author, Mark
Smith, died in a road accident at the end of 2010 but will be
remembered through his contribution to this book.

Finally, who will benefit from reading this book on neurode-
generation? Our aim was to provide succinct and well-ordered
chapters for instant access to the concepts and many of the details
of the pathology and genetics of neurodegenerative disease to
further the multidisciplinary interests of pathologists, clinicians
and neuroscientists involved in research and in the diagnosis and
care of patients with neurodegenerative disease. We trust that our
aspirations will be fulfilled.

Roy O. Weller
Series Editor
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Introduction

Neurodegenerative diseases share the common property of
neuronal loss of specific populations of neurons, encapsulating
the concept of selective vulnerability. Neuronal loss in many of
these conditions involves anatomically related functional systems,
such as the extrapyramidal and pyramidal motor systems or the
higher order association and limbic cortices. The particular
system affected determines the clinical presentation; in fact, the
distribution of the pathology is more predictive of the clinical
presentation than the molecular nature of the pathology, as illus-
trated in tauopathies and frontotemporal degenerations. It
remains one of the major unattained goals of modern research
on the degenerative diseases to determine the molecular basis for
selective vulnerability.

While much of the focus in research on neurodegeneration is
directed to neurons, the role of glia in neurodegenerative disor-
ders is also increasingly recognized [1]. Glia, especially astrocytes,
display reactive changes as a part of virtually every neurodegen-
erative disorder. More recently, oligodendroglia and astrocytes
have been implicated in fundamental abnormalities of multiple
system atrophy [2] and several of the tauopathies [3].

The other glial cells that play a role in virtually all neurodegen-
erative disorders are microglia. Microglia are cells of the mono-
nuclear phagocytic system that respond to virtually all forms of
cellular injury. They are also the cells linked to neuroinflamma-
tion, a term used to refer to innate immune responses in the brain
characterized by activated microglia, but sparse or no blood-
borne leukocytes. Neuroinflammation has been studied most
extensively in Alzheimer’s disease (AD) [4] and Parkinson’s
disease (PD) [5], but is common to virtually all neurodegenera-
tive disorders.

Molecular classification of neurodegenerative
disorders

Most textbooks on neurodegenerative disorders have used a clas-
sification scheme based upon either the clinical syndromes or the
anatomical distribution of pathology. In contrast, this book takes
a different approach by using a classification based upon molecu-
lar mechanisms, rather than clinical or anatomical boundaries.
Major advances in molecular genetics and the application of bio-
chemical and immunocytochemical techniques to neurodegen-
erative disorders have generated this new approach. Throughout
most of the current volume, diseases are clustered according to
the proteins that accumulate within cells or in the extracellular
compartments or according to a shared pathogenetic mechanism,
such as trinucleotide repeats that are a feature of specific genetic
disorders.

B-amyloid

The most common of the neurodegenerative disorders is AD, in
which mutations in the amyloid precursor protein (APP) gene or
genes related to APP metabolism strongly implicate amyloid in
the pathogenesis of AD [6]. In addition to B-amyloid deposits,
AD is also associated with neurofibrillary degeneration character-
ized by accumulation of aggregates of the microtubule-associated
protein tau within vulnerable neurons. Although there may be
some common factors in the pathogenesis of all amyloidoses,
neurodegenerative disorders associated with accumulation of
amyloids other than B-amyloid, such as familial British dementia
(FBD), are discussed separately. Similarly, the primacy of prion
protein in Creutzfeld—Jakob disease (CJD) warrants its considera-
tion in the context of other transmissible spongiform encepha-
lopathies rather than in association with the B-amyloidoses.
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Tau

In addition to AD, neurofibrillary pathology is present in a range
of disorders. While previously considered a relatively non-specific
response of neurons to diverse insults, this view has changed with
the discovery that mutations in the tau gene (MAPT) cause fron-
totemporal dementia and parkinsonism linked to chromosome
17 (FTDP-17T) [7]. Disorders in which abnormalities in tau are
considered to play a critical role in disease pathogenesis have been
referred to as tauopathies [8]. This group of disorders includes
both genetically determined and sporadic conditions, including
FTDP-17T, Pick’s disease, progressive supranuclear palsy, Guam
Parkinson dementia complex, argyrophilic grain disease and others.

o-Synuclein

The second most common neurodegenerative disorder is PD,
which has long been associated with Lewy bodies in vulnerable
neurons. The discovery of mutations in the gene for o.-synuclein
(SNCA) in familial PD [9] and the later recognition that
o-synuclein was the major structural component of Lewy bodies
[10] raised o-synuclein to the level of a major class of diseases.
Biochemical and structural alterations in o-synuclein have been
detected in several disorders in addition to PD, including demen-
tia with Lewy bodies, pure autonomic failure and multiple system
atrophy.

Trinucleotide repeats

Huntington’s disease (HD) is one of the most extensively studied
hereditary neurodegenerative diseases. The discovery that the
mutations in the gene encoding huntingtin (HTT) lead to expan-
sion of a trinucleotide repeat, specifically CAG, in the coding
region of HTT [11] revealed a common molecular mechanism
for a group of disorders that are grouped in this book as the
trinucleotide repeat diseases [12]. Not all trinucleotide repeat
diseases are associated with CAG repeats and not all of the repeats
are in the coding region of the gene. Moreover, the range of clini-
cal and pathological phenotypes in trinucleotide repeat disorders
is wide. Nevertheless, these disorders have a shared genetic signa-
ture that now warrants their current grouping. Future research
may eventually disclose pathomechanisms that will provide a
more rational basis for subclassification of these disorders.

Prions

A common theme for many of the degenerative disorders is the
formation of abnormal conformers of normal cellular proteins
that have an increased tendency to aggregate and to be transmis-
sible from cell to cell [13]; the prion disorders are the archetypal
example of conformational disorders. There are few differences
between the pathogenic and normal cellular form of PrP besides
conformation, yet this is sufficient to lead to a fulminant and
invariably fatal neurodegeneration. Prion diseases, like many of
the other neurodegenerative disorders, include sporadic and
familial forms. Even the sporadic forms may have a genetic pre-
disposition, specifically polymorphisms in the prion protein gene
(PRNP) [14].

TDP-43 and FUS

Since the first edition of this book, major advances have been
made in the discovery of common molecular mechanisms
between frontotemporal lobar degenerations (FTLD) and motor
neuron disease or amyotrophic lateral sclerosis (ALS) [15].
Specifically, the major protein that accumulates in the most
common forms of FTLD and ALS is the RNA/DNA binding
protein, TDP-43. Mutations in the gene for TDP-43 (TARDBP)
cause some forms of familial ALS, while other genes are impli-
cated in FTLD, such as the genes for progranulin (GRN) and
valosin containing protein/p97 (VCP) [16]. In addition to FTLD
and ALS, TDP-43 has also been detected in other disorders [17],
where it appears to be a secondary disease process, not dissimilar
to o-synuclein pathology (Lewy bodies) that can occur in the
setting of a range of other disorders, especially AD [5]. Evidence
that RNA/DNA binding proteins are fundamental to this group
of disorders is derived from the study of another member of the
protein family, i.e. FUS/TLS [18]. This protein is mutated in rare
forms of familial motor neuron disease, and FUS protein accu-
mulates in neuronal inclusions in rare forms of FTLD that are
negative for TDP-43 pathology [19]. Interestingly, most cases of
FTLD associated with inclusions enriched in intermediate fila-
ments (neuronal intermediate filament inclusions disease —
NIFID [20]) also have FUS pathology. These advances now
provide a rational basis for grouping these disorders.

Shared mechanisms in neurodegenerative
disorders

Despite their clinical and pathological diversity, many of the neu-
rodegenerative disorders share certain fundamental disease proc-
esses, including oxidative stress and programmed cell death, as
well as disorders of protein aggregation or protein degradation,
or both. These topics are the focus of chapters in the first part of
this book. Programmed cell death is an attractive mechanism to
explain selective vulnerability of neuronal populations since most
neurodegeneration is not associated with influx of blood-borne
inflammatory cells, as is the case with other types of tissue
damage, such as necrosis. The molecular pathways involved in
activation of apoptosis fall in two categories — intrinsic and
extrinsic. The extrinsic pathway is triggered by extracellular
ligands and their cell surface receptors, while intrinsic pathways
act through changes in mitochondrial permeability, thus linking
mitochondria to both oxidative stress and cell death mechanisms.
Mitochondria are one of the major sources of reactive oxygen
species generated as byproducts of oxidative phosphorylation.
Accumulation of reactive oxygen species and the cellular defenses
against oxidative stress are implicated in a number of neurode-
generative disorders.

One consequence of cellular oxidative stress is post-translational
modification (e.g. nitration) of proteins. These proteins take on
abnormal properties that may lead to changes in their solubility
and promote aggregation. Aggregation of abnormal conformers



of neuronal and glial proteins is increasingly recognized as a
common mechanism of a number of neurodegenerative disor-
ders, as noted for prion protein. The role of protein—protein
interaction, protein aggregation and changes in structural prop-
erties suggests that abnormal conformation of proteins is critical
to aggregation and inclusion formation. Accompanying protein
aggregation and accumulation are usually evidence of aberration
of the normal cellular mechanisms for protein degradation. In
addition to the actions of cellular and extracellular proteinases,
two major pathways exist for protein degradation that involves
cellular organelles adapted for this purpose — lysosomes and pro-
teasomes. Much current research in neurodegenerative disease is
focused on the role of ubiquitin proteasomal system in basic
cellular processes as well as in disease. Lysosomal pathways, par-
ticularly autophagy, may also be involved in a number of neuro-
degenerative disorders and interaction of the two processes is
increasingly recognized.

In addition to these major disease mechanisms, Part 1 also
includes an overview of recent advances in genetics, which under-
pins the molecular classification of disease that is the basis for
the organization of the book. Chapter 7 is a review of some
of the animal models most widely used to study human neuro-
degenerative diseases, particularly related to amyloid, tau and
o-synuclein.
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Introduction

Neurodegenerative diseases (NDD) are characterized by progres-
sive neurological dysfunction that is typically associated with
neuron loss in selected areas of the nervous system. Given the
limited neurogenic capacity of the adult nervous system, neuro-
nal cell death marks an irreversible and catastrophic phase of
the neurodegenerative process. Tremendous scientific effort has
been focused on defining the cellular and molecular pathways
regulating neuron death as this may lead to the discovery of novel
therapeutic interventions that could halt or slow down NDD
progression.

Definition

Three major morphological types of cell death have been
described in NDD: apoptotic, necrotic and autophagic [1].
Apoptosis is characterized by chromatin condensation, nuclear
fragmentation, and cytoplasmic blebbing [2]. Apoptosis has been
implicated in many NDD and is the most extensively investigated
form of cell death in the nervous system [1]. Necrotic cell death is
characterized by cell and organelle swelling or rupture of cell
membranes accompanied by spillage of intracellular contents [3].
Necrosis is usually considered to be an accidental (i.e. non-
programmed) form of cell death and is commonly observed after
trauma or infection [4]. However, necrosis has also been reported
in Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s (HD)
diseases, and in amyotrophic lateral sclerosis [5]. The molecular
mechanisms that initiate necrotic cell death in NDD are not well
understood, but may include excitotoxicity, intracellular Ca®
increase, and ATP depletion [6]. Autophagic cell death is charac-
terized by accumulation of autophagic vacuoles (AVs) concomi-

tant with markers of apoptosis or necrosis [7]. There is a growing
awareness of a possible role for autophagic cell death in NDD.
Most recently, research has focused on understanding the inter-
play between these death pathways, particularly between apopto-
sis and autophagy.

Apoptosis in neurodegenerative diseases

Apoptosis is a highly regulated process that can be activated by
receptor-mediated (extrinsic) or mitochondria-mediated (intrin-
sic) pathways that converge at cleavage-dependent activation of
aspartate-specific effector caspases (caspases-3, 6, and 7). Once
activated, effector caspases cleave many cellular components,
leading to degradation of DNA and cytoskeletal proteins and
causing nuclear fragmentation, degradation of subcellular com-
ponents, and collapse of the cytoskeleton (Fig. 2.1A). Apoptosis
allows a cell to die without affecting the viability of neighboring
cells and tissues [8].

Loss of selective neuronal cell populations is a feature of most
NDD; therefore, the possibility of apoptosis-associated molecules
and processes being responsible for NDD pathogenesis has
received significant attention. Implication of apoptosis as a
general cell death mechanism in NDD has largely been supported
by evidence from animal models and tissue culture studies, while
investigations on human postmortem brain have yielded conflict-
ing results [9]. However, identifying apoptotic neuron death in
autopsied human brain can be difficult since neurodegenerative
processes represent chronic brain demise, while apoptotic cell
death can be executed within a few hours [10]. Nevertheless,
elevated levels of protein and mRNA of several caspases were
found in postmortem AD brains [9]. Caspases-3 and -6 have also
been implicated in the generation of cleavage-mediated toxic
species of amyloid precursor protein and AD pathology [11,12],
and elevated levels of activated caspases-3 and -6 have been
detected in neurites of AD patients where they co-localize with
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Figure 2.1 Balance between apoptosis and the autophagy-lysosomal pathway dictates the fate of neurons affected by neurodegenerative disease-specific stress stimuli.
Proapoptotic proteins such as p53 can initiate apoptosis either by directly affecting mitochondrial membrane permeability and cytochrome C release or by inducing
transcription of other proapoptotic proteins (A). The autophagy-lysosomal pathway (ALP) supplies neurons with energy and metabolic building blocks by recycling outlived or
damaged organelles and protein aggregates (B). Therefore, the ALP is thought to serve a prosurvival function under stressful conditions. However, a number of proapoptotic
regulators can jeopardize the integrity of the ALP and tip the balance towards cellular demise (C). CB, Cathepsin B; CD, Cathepsin D.

protein aggregates [13,14]. A proapoptotic member of the Bcl-2
family of proteins, Bax, has been implicated in apoptosis induc-
tion and disease progression in HD and PD [9]. However, it is
still not known if neurological dysfunction observed in NDD
such as AD, PD, and HD is a direct consequence of apoptotic
neuron death or of neuronal dysfunction occurring prior to frank
neuron loss.

Regulation of cell death and survival by the
autophagy-lysosomal pathway

Many NDD are accompanied by accumulation of protein aggre-
gates [15]. These diseases are collectively termed proteinopathies
[16]. This group includes PD, HD, and AD in which protein
aggregates are primarily cytosolic and/or extracellular. Protein
aggregates are thought to be formed as a result of toxic gain of
function mutations or modifications. It is debated whether
soluble monomeric aggregation-prone proteins, their oligomers
or larger aggregates are most toxic [17]. However, in general, the
protein’s capacity to aggregate correlates with its toxicity (although
not necessarily with the aggregates themselves). Two main systems
are responsible for clearance of proteins in cells: the ubiquitin-
proteasome system (UPS) (see Chapter 5) and the autophagy-
lysosomal pathway (ALP) [18].

The principal function of the ALP is to regulate intracellular
energy balance by recycling outlived and/or damaged cellular
components such as protein complexes and organelles. Three
major types of autophagy have been defined: macro-autophagy
(hereafter simply referred to as “autophagy”), micro-autophagy,
and chaperone-mediated autophagy. Autophagy is initiated by
generation of a double-membrane phagophore, which surrounds
the cellular components targeted for degradation, forming an
AV [19]. Autophagy initiation is regulated in part by the
activation of mammalian target of rapamycin (mTOR) which

inhibits autophagy input by affecting interactions between
autophagy-associated proteins (Atgs) regulating AV formation
[20]. For autophagy to be completed, the cargo of AVs has to be
degraded and this is achieved by fusion of AVs with lysosomes
(Fig. 2.1B) [20].

Increasing evidence indicates that autophagy plays a critical
role in protein aggregate clearance and regulation of neuron
death in a number of NDD [21]. Although many proteins associ-
ated with proteinopathies (such as o-synuclein and huntingtin)
are partially dependent on the UPS for their clearance, autophagy
becomes the route of degradation for aggregate-prone proteins,
their oligomers and aggregates that cannot be efficiently cleared
by the proteasome. The dependence of proteins on autophagy for
their clearance correlates with their propensity to aggregate
[22,23]. For instance, inhibition of autophagy has a much smaller
effect on the clearance of wild-type huntingtin exon 1 fragment
or wild-type o-synuclein than on the clearance of the mutant
aggregate-prone species [22,23].

The pivotal role of autophagy in clearance of aggregate-prone
proteins and their aggregates is further supported by studies in
mice lacking neuronal expression of Arg5 or Atg7, genes respon-
sible for AV formation and initiation of autophagy. These mice
die as young adults and show striking neurodegenerative and
neurological phenotypes, including accumulation of protein
aggregates that increase in size and number with age, and neuron
loss in cerebrum and cerebellum [24,25]. Chronic metabolic
insufficiency, such as that induced by the mitochondrial inhibitor
rotenone, has also been shown to cause a decline in ALP activity
and its ability to degrade aggregated protein species [26].
Therefore, accumulation of aggregated proteins in NDD can also
be explained by a decreased ability of neurons undergoing meta-
bolic stress, as was reported in some PD models, to induce
autophagy sufficient to clear these protein inclusions [9].
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Inhibition of autophagy

Inhibition of autophagy completion resulting from altered lyso-
somal function has also been associated with neurodegeneration
[27]. For instance, deficiency in cathepsin D, an aspartic lyso-
somal protease, leads to extensive neuron death and is accompa-
nied by accumulation of autophagosome/autolysosome-like
bodies containing ceroid lipofuscin [28]. Mice with combined
deficiency of cathepsins B and L, lysosomal cysteine proteases, die
during the first 4 weeks of life; these animals manifest massive cell
death of selected neurons in the cerebral cortex and cerebellum.
Neurodegeneration is accompanied by accumulation of lyso-
somal bodies and by axonal enlargements, indicators of impaired
degradation capacity of the ALP in these mice [27].

Discovery of a mutation in the ATPI3A2 gene encoding a
lysosome protein causing familial early-onset PD further high-
lights the importance of the ALP in NDD. ATPI3A2 encodes a
lysosomal ATPase, a group of proteins involved in the mainte-
nance of the acidic environment of the lysosomal lumen, which
is crucial for proper functioning of lysosomal proteases [29].
Interestingly, elevated levels of ATPI3A2 expression have also
been detected in the brains of sporadic PD patients, suggesting a
potential role for this protein and proper lysosomal functioning
in idiopathic PD [29]. Furthermore, lysosomal function has
been shown to decline with age in the human brain and thus,
diminished autophagy completion may contribute to age-related
NDD [30].

A prosurvival or prodeath role for autophagy

Although accumulation of AVs has been observed in affected
neurons in a number of NDD such as PD and AD and numerous
models of these diseases, there is ongoing debate as to whether
autophagy plays a prosurvival or prodeath role in NDD [21].
Indeed, autophagy is best known for its homeostatic role in medi-
ating bulk degradation of cytoplasm and organelles and degrada-
tion of aggregate-prone proteins and damaged organelles, such as
mitochondria. These findings are often used to support the argu-
ment that autophagy has a prosurvival function [9]. However,
autophagy, as a cleansing and recycling mechanism, can only be
effective if lysosomal degradation of AVs is accomplished [27].
Therefore, a combination of factors that impair AV formation and
degradation or overactivate AV formation relative to the degrada-
tive reserve of the cell can lead to “cell death with autophagy”
which some investigators argue may be a more precise term than
autophagic cell death [31].

Co-ordination between apoptosis and autophagy

Based on our growing awareness of multiple prosurvival and
prodeath pathways, it seems likely that a single death pathway
may not be solely responsible for neuron loss in the context of
NDD (Fig. 2.1C). Instead, multiple prosurvival and cell death
mechanisms may interact to determine neuron fate [9]. Also,
inhibition of one pathway of cell death may not prevent neuron
loss but instead, may recruit alternative death mechanisms, e.g.
inhibition of caspase activation may prevent apoptosis but stimu-

late autophagic or necrotic cell death [32]. Therefore, increased
research interest is aimed at determining the interactions between
apoptotic and autophagic death pathways.

There is a growing list of apoptosis regulators interacting with
autophagic machinery. For instance, Beclinl/Atg6, a protein
involved in regulation of AV formation and autophagy induction,
has a Bcl-2 homology domain (BH-3-domain) and has been
shown to interact with prosurvival members of the Bcl-2 family
of proteins. Bcl-2 and Bcl-X; can bind to Beclinl, preventing it
from interacting with the complexes involved in AV formation,
and in turn inhibit autophagy [33]. Therefore, the ratio of Bcl-2
to Beclinl is an important determinant of whether a cell will
activate the prosurvival autophagic pathway and/or a death-
inducing apoptotic program.

Pathways regulating induction of autophagy can also activate
pathways that affect apoptosis. For instance, PI3K/Akt-mediated
phosphorylation of Bad, a BH3-only member of the Bcl-2 family,
leads to its dissociation from Bcl-2, thus allowing Bcl-2 to seques-
ter proapoptotic Bcl-2 family proteins such as Bax and prevent
them from inducing apoptosis. Akt also antagonizes the tran-
scriptional activity of a number of proapoptotic transcription
factors, such as p53, which results in inhibition of proapoptotic
gene expression and promotion of cell survival [32]. Atg5,
involved in AV formation and LC3I to LC3II conversion, can also
influence apoptotic signaling pathways. Atg5 can be cleaved fol-
lowing various apoptotic stimuli, forming an N-terminal product
that translocates to the mitochondrial membrane, interacts with
Bcl-X;, and promotes apoptosis. At the same time, Atg5 cleavage
leads to autophagy inhibition, as a pool of available Atg5 neces-
sary for AV formation is decreased [32,34].

Recently, p53, a well-studied regulator of neuron apoptosis, was
reported to also modulate autophagy [35]. Interestingly, the
effects of p53 on autophagy appear to be dependent on its intra-
cellular localization. Nuclear p53 can stimulate autophagy by
inducing transcription of damage-regulated autophagy modula-
tor (DRAM), a novel protein believed to localize to the lysosomal
membrane, or by inhibiting mTOR activity [35,36]. On the other
hand, cytoplasmic p53 was shown to inhibit autophagy induction
by activating mTOR [35]. A number of studies have reported
elevated protein and mRNA levels of p53 in postmortem NDD
brain tissue and in a number of PD and AD animal and cell
culture models, suggesting that p53 may be involved in regulation
of neuron loss in these pathologies [37,38].

Future directions

The tremendous scientific interest in apoptotic and autophagic
cell death mechanisms and their involvement in NDD has pro-
duced significant advances in our understanding of the cellular
and molecular processes controlling neuron life and death.
Despite the fact that numerous questions remain about the
precise role of these pathways in human NDD, there is no
disputing that a dead neuron is a dysfunctional neuron. Future



investigations are necessary to devise strategies for restoring func-

tion to injured neurons before they become committed to death,

regardless of the death pathway(s) being activated.
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Definition

Oxidative damage is a major feature of the cytopathology of a
number of chronic neurodegenerative diseases, such as Alzheimer’s
disease (AD) and Parkinson’s disease. The original concept of
oxidative stress promoted by Denham Harmon has been used to
indicate an excess of oxygen free radicals that breach oxidant
defenses with consequent detriment. By this definition, detection
of damage resulting from reactive oxygen species is indicative of
oxidative stress [1,2]. Reactive oxygen species are a by-product of
cellular oxidative metabolism and are generated in the mitochon-
dria during oxidative phosphorylation with production of mol-
ecules with unpaired electrons such as superoxide (O5).

Superoxide is a short-lived molecule that is reduced by the family
of superoxide dismutases (SODs) to generate hydrogen peroxide
(H,0,). Reduction of H,0,, for example through the action of
redox-active cations such as iron and copper, generates a hydroxyl
radical (*OH), which can oxidize proteins, lipids, and nucleic acids.

Nitric oxide is another short-lived species with limited toxicity
that is produced by a family of nitric oxide synthases. After inter-
action with superoxide, nitric oxide forms peroxynitrite (ONOO-),
which is another powerful reactive species that can lead to damage
of cellular macromolecules through nitration or generation of
additional free radicals. Cells have evolved an elaborate array of
antioxidant defenses, including SOD, glutathione reductase and
catalase (Figure 3.1).

Detection of cellular oxidative damage

Cellular oxidative damage can be detected in a variety of ways.
Widely used markers of oxidative damage to lipids include

4-hydroxynonenal and isoprostanes, to nucleic acids include
8-hydroxy-2’-deoxyguanosine, and to proteins include nitration
and glycation [3]. Indirect evidence of cellular oxidative stress is
increased expression of molecules involved in oxidant defense,
such as heme oxygenases, SODs, glutathione transferases, cata-
lase, and glucose-6-phosphate dehydrogenase. It is important to
note that neurons displaying signs of oxidative stress are not
necessarily succumbing to oxidative stress, but may be adapting
by way of oxidant defenses. These findings suggest that neurode-
generative disorders where oxidative stress is postulated to play a
role, such as Parkinson’s disease and AD, are associated with
mechanisms that maintain a balance between oxidative stress and
adaptation to this stress, reflecting the ability of living systems
to dynamically regulate their defense mechanisms in response to
oxidants. Therefore, mere evidence of oxidative damage does not
necessarily indicate cell death by way of oxidative stress, given that
the cell may have successfully increased endogenous cellular
defenses sufficiently to compensate for the increased flux of reac-
tive oxygen responsible for the damage. It does, however, indicate
that the normal balance between the production and defense
reduction of oxidative stress has been challenged.

Consequences and mechanisms of cellular
oxidative damage

Evidence suggests that cells that fail to compensate for oxidative
stress enter apoptosis, which in turn leads to death within
hours [4,5]. This is particularly germane to the discussion of
degenerative diseases that have a course of years. Those cells expe-
riencing increased oxidative damage, by their continued exist-
ence, testify to their increased compensatory response to reactive

oxygen.

Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders, Second Edition. Edited by Dennis W. Dickson, Roy O. Weller.
© 2011 International Society of Neuropathology. Published 2011 by Blackwell Publishing Ltd.

10



