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The evidence that greenhouse gas emissions, primarily from fossil fuel combustion, 
is and will increasingly be a principal cause of climate change has been compelling 
for some time. Although uncertainties remain, the threat is sufficiently real for 
research now to focus not only on the climate system itself but also on how 
changes in the climate system in future might affect the functioning of natural 
ecosystems.

In this book, we are concerned with how climate change might affect fresh-
water ecosystems. The ideas and examples presented in the book stem largely 
from the ‘Euro-limpacs’ project, a major EU-funded project on ‘the impact of 
global change on European freshwater ecosystems’. Euro-limpacs brought 
together lake, river and wetland scientists from across Europe to assess not 
only the direct impacts of climate change on freshwaters but also its potential 
indirect impact through interactions with other stresses such as changes in 
hydromorphology, nutrient loading, acid deposition and toxic substance 
exposure.

A wide variety of approaches was used in the project ranging from the analysis 
of lake sediment and long-term instrumental records to identify past impacts of 
climate change, to the use of experiments, space-for-time substitution and modelling 
to assess what might happen in future under different climate scenarios.

The project also considered the implications of future climate change for the 
management of freshwater ecosystems in Europe, especially the extent to which 
current policies and practices designed to improve the ecological status of 
freshwater ecosystems need to be modified in light of projected future climate 
change.

This book brings together the key results from the project. Its structure follows 
the design of the Euro-limpacs project, first assessing the probable effects of 
climate change and then considering management issues.

Richard W. Battarbee

Preface
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1
Introduction

Brian Moss, Richard W. Battarbee and Martin Kernan

Changing climate and a changing planet

In June 2008, one of us chanced upon a shepherd repairing his five-ft high (he 
didn’t deal in metres) dry limestone walls on the uplands near Asby Scar in 
Cumbria, north-west England. We exchanged pleasantries that inevitably, this 
was Britain after all, embraced the weather. It was a bright warm day. But ‘Bleak 
in winter up here’ I said. ‘Not so much in the past fifteen years’ he replied, 
‘Before that the snow lay in drifts hiding the walls, but not any more’. It was yet 
another anecdotal sliver of evidence to complement the mass of information 
assembled by the Intergovernmental Panel on Climate Change (IPCC 2007) on 
the reality of global warming.

That Fourth Report of the IPCC summarized changes to date (Fig. 1.1) that 
included an almost 1°C increase in the northern hemisphere mean air temperature, 
over the years since the industrial revolution accelerated the yet unabated burning 
of fossil fuels. It presented evidence that these processes were related and that we 
could have high confidence that the temperature rise was largely human-induced. 
Linked with it have been changes in the distribution of rainfall, with generally 
more falling in winter or wet seasons and less in the summer and dry seasons. 
There has been an increase in sea level of about 20 cm, largely due to thermal 
expansion of the huge mass of oceanic water, to which the melting of the mountain 
and polar glaciers is now making a contribution. And there has been an increase 
in the frequency of extreme weather events, such as cyclones, droughts and 
floods. In turn, there have been numerous records of changes in the phenology 
of species (Sparks & Carey 1995; Roy & Sparks 2000; Parmesan & Yohe 2003; 
Hays et al. 2005; Adrian et al. 2006) and a steady migration polewards of a 
variety of the more mobile species (Walther et al. 2002; Root et al. 2003).

Climate Change Impacts on Freshwater Ecosystems. First edition. Edited by M. Kernan, R. Battarbee 
and B. Moss. © 2010 Blackwell Publishing Ltd.
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2 Brian Moss et al.

Climate is a master variable, and all activity on this planet eventually depends 
upon it. It determines the overall structure of natural biomes, be they deserts, 
grasslands or deciduous or evergreen forests. It has driven the evolution of life 
histories, the dynamics of food webs and the development of homeostases. It 
fixes the circulation of the oceans, the availability of nutrients to the plankton 
community, the onset of rain and ripening for crops and the reflectance of 
radiation from the Poles. It manifests itself in the day-to-day weather, a 
preoccupation of everyone, not just the British. It is the greatest determinant of 
leisure travel, and, in its extremes, a source of extreme misery to match its delights 
of balmy summer days, exciting ski runs and the fresh spring rain. A major change 
in climate is a very considerable issue.

Changes in temperature, sea level and
northern hemisphere snow cover
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Figure 1.1 Summary of climate and sea-level change to date. (a) Global average 
temperature. (b) Global average sea level. (c) Northern hemisphere snow cover. (From 
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to 
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 
(eds S. Solomon, M. Manning, Z. Chen, et al.). Cambridge University Press, Cambridge 
and New York.)

9781405179133_4_001.indd   29781405179133_4_001.indd   2 7/9/2010   2:41:43 PM7/9/2010   2:41:43 PM



 Introduction 3

Changing ideas on planetary function

Ecologists have long sought to explain the huge variation of natural systems: the 
tapestry of weather and soil-related detail on land and physical and chemical 
detail in water that fits into a grand pattern of climate zones. G.E. Hutchinson 
(1965) (Fig. 1.2) linked the ways that organisms evolve, as both grand and local 
patterns change, in his metaphor of the ecological (or environmental) theatre and 
the evolutionary play. His concept, in the 1960s, was very much one of the 
players adjusting to the nature of the theatre and then to each other. The generally 
accepted paradigm was that the physicochemical setting, the geology and climate, 
determined the biology and ecology of living organisms. Twenty years later, 
James Lovelock (1988) (Fig. 1.2) began an overturning of this by a spectroscopic 
examination of the chemistry of the atmospheres of Earth and its sister planets 
and a study of Earth’s oceans. He calculated that the chemical state of Earth was 
very far from that expected by a simple chemical equilibrium of the available 
elements, and inferred that it was determined, and maintained, by the activities 
of living organisms rather than physicochemically imposed upon them for their 
response. Moreover, the state was regulated within the limits between which our 
particular biochemical system could persist. There is still controversy about the 
underlying mechanism of the regulation, but not about its existence. Such a 
change in paradigm is key to our understanding of the mutual interactions of 
climate and living organisms that this book is about. By altering our atmosphere, 
we challenge the entire biosphere system, and although we can predict some 
immediate physical effects, we have little idea about what the ultimate biological 
consequences might be.

The IPCC has made a range of predictions about how climate will change 
over the regions of the Earth, based on a range of assumptions about how human 

Figure 1.2 (a) G.E. Hutchinson and (b) James Lovelock.
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4 Brian Moss et al.

 societies will react as the first of the changes are experienced. There is a problem, 
however, in these predictions. They all hold to the former model of living systems 
responding to imposed conditions. They are models of simple physicochemical 
control. They do not allow for the likelihood of positive ecological feedbacks. 
Temperature influences many biological processes, but not in a linear way. More 
usual is some sort of exponential relationship in which the process accelerates or 
decelerates to a point of death as temperature changes linearly. A key process in 
regulating the carbon dioxide content of the atmosphere is the storage of carbon 
as organic matter in soils and peat deposits or as calcite in the ocean sediments, 
derived from the scales of planktonic coccolithophorids or the matrices of corals 
(Lovelock 1988). If the temperature change induces more carbon dioxide or 
methane release, through increases of respiration using organic matter stored in 
soils and sediments, for example, or through inhibition of calcite formation in 
the walls of marine organisms, a positive feedback on further temperature increase 
may be induced and the greenhouse effect may be reinforced. Temperature 
changes predicted for the future may thus have been underestimated, and climate 
modellers are now attempting to rectify this.

The system that maintains the non-equilibrium, equable state of the planet is the 
biosphere. The biosphere has, for convenience, been divided up into atmosphere, 
hydrosphere and lithosphere: air, ocean and land. And the lithosphere is thought of 
in terms of biomes: tundra, coniferous forest, deciduous forest, tropical forest, scrub 
savannah, grassland and desert. In turn, these may be divided into constituent 
ecosystems, which Arthur Tansley (1935) defined as more or less self-contained 
systems of living organisms, and their biologically produced debris, in their 
physicochemical setting. In truth, this idea was an artefact of working in the greatly 
subdivided landscape of the British Isles, where several thousand years of human 
activity have entirely compartmented the landscape. Our upland shepherd, with his 
walls, in a sense influences our ecological as well as climatic thinking. For convenience 
we nonetheless talk of woodland, heath, saltmarsh, river and lake ecosystems. But the 
pristine biosphere was ultimately a continuum that adjusted mutually, gradually and 
in many dimensions to changing climatic and geological conditions, and in considering 
freshwaters in particular, the greatest understanding comes from seeing them as 
intimately linked with the land and atmosphere. It is sometimes convenient, however, 
for the process of accounting for change to see the parts rather than the whole.

A report as authoritative as that of the IPCC, the Millennium Ecosystem 
Assessment, appeared in 2005. It received much less publicity, for though weather 
is immediately noticeable to people everywhere, the fate of distant oceans, 
tundras and savannahs is not, unless you are a deep sea mariner, Inuit hunter or 
Masai herder. But major changes (Fig. 1.3) have happened to most natural 
ecosystems, and are continuing to happen to most of them, as a result of climate 
change and also because of many other, independent drivers that depend on the 
workings of global economics and the needs of a rising population. It is expected 
that we will have lost over half of the world’s land ecosystems to agriculture or 
development by 2050. The urbanites may not be noticing this but the consequences 
will nonetheless be huge, for it is these natural ecosystems that regulate the 
nature of the biosphere. We have absolutely no idea how much of them can be 
damaged without serious consequences for human survival. All we know is 
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Figure 1.3 Projected losses of major ecosystems and biomesa. (From Millennium 
Ecosystem Assessment 2005.)
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that such systems, honed by the utterly ruthless mechanisms of natural selection 
to be as near fit for purpose as possible, are just as crucial to us, indeed much 
more fundamentally so, than the local grocer, filling station or hospital. The 
chemistry of the biosphere is the ultimate sine qua non of our existence. Damaged 
ecosystems, including all agricultural ones, do not store as much carbon as intact 
ones. James Lovelock’s contribution was to point this out.

We have responded rather oddly to the increasing damage we have caused by 
attempting to value in classical economic terms the goods and services we draw 
from ecosystems, to demonstrate their importance (Costanza et al. 1997; Balmford 
et al. 2002). This has been influential in drawing attention to their very great 
apparent value and in helping communicate with economists and politicians. But 
perhaps we have completely missed the point. They are not items that can be used, 
misused, repaired, ignored or traded at will. They are outside the current economic 
system. What they do in maintaining the equable state of the planet for all living 
organisms, including us, is so fundamental as to be priceless. It would be 
inconceivable, as William Shakespeare (1623) well knew 400 years ago, through 
the wonderful speech of Portia in The Merchant of Venice, to value the blood as a 
separate component of the body. What is sine qua non supersedes evaluation. Yet 
we damage the biosphere as casually as we throw away our rubbish, and in 
contemplating the hitherto effects of climate change, we fail to realize that the loss 
of ecosystems and the changing climate are mutually linked. Indeed, we blithely 
cost the damage of climate change (Stern 2006) as we cost the goods and services 
we are losing through application of the same approach of classical economics. We 
have failed to see the interaction of climate, ecology and equability. Our attempts 
to mitigate climate change, in a desperate bid to avoid disruption of our societies, 
may inevitably be doomed to failure unless we begin to see the whole picture and 
not just the components we find most convenient to our cash economy.

Water and the freshwater biota

Though the ultimate driver of climate change effects will be temperature, the 
immediate executive will be the availability of freshwater. Freshwater systems 
stitch together the biosphere through the hydrological cycle. The stitching, 
however, can become undone, and the surface freshwater component is perhaps 
the most vulnerable part of the hydrosphere. Living organisms absolutely need 
liquid water. The ability of liquid water to persist is a fundamental characteristic 
of a planet capable of supporting life based on carbon compounds. The creation 
of conditions allowing its existence is the ultimate triumph of the biosphere. The 
Earth in chemical equilibrium would be so hot as to bear only water vapour. 
Moreover, human history is, at bottom, an account of the availability of water for 
drinking, crop growing and sanitation. It follows from the effects of climate 
change through floods and droughts that the next century, even the next few 
decades, will likely see more disruption of human activities than has been 
experienced in the evolution of our species.

For the freshwater systems and organisms with which this book is concerned, 
the detailed effects of moderate climate change could vary from being disastrous 
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to locally positive. In the absolute scale of temperature, water has its boiling and 
freezing points very close to the mean surface temperature of the Earth. In its 
evaporation and condensation, water is the operative liquid of the earth’s 
refrigerator. It follows that the denizens of freshwaters have had an evolutionary 
history in which their habitats have rather frequently frozen solid or evaporated 
to mud flats or rocky beds. Freshwater animals and plants are comparatively 
young in evolutionary terms for they have had repeatedly to recolonize newly 
constituted freshwaters from the land and the ocean following prolonged 
glaciation, volcanic disruption or periods of great aridity. They are creatures of 
continual disturbance (Milner 1996).

Some manifestations of this are that many aquatic insects and vascular plants 
retain land characteristics as adults or where they flower, respectively; the 
diversity of freshwaters is much lower, for example, lacking whole phyla, than 
that of the oceans; freshwater organisms may have particularly high rates of 
evolutionary change; resting spores and eggs to tide over inimical conditions are 
common (Pennak 1985). Marine organisms, in contrast, almost universally lack 
resting stages, for their medium, though changing in shape and depth, has 
persisted as a body of water for nearly 4 billion years. The longevity of freshwaters 
may sometimes be only weeks. The retention of adult flight allows movement for 
insects that cannot persist as resting eggs, and apart from fish, almost all the 
vertebrates associated with freshwaters are highly motile over land. Fish are 
vulnerable for few can survive drought, though they are adept at migration 
through river systems, using even the ocean as part of their life history in some 
cases. Some crustaceans, however, may respond genetically and very rapidly to 
thermal stress (van Doorslaer et al. 2007).

As climate changes, marine communities will have a continuity of habitat that 
will accommodate major changes in distribution, though for sedentary organisms 
like corals, the speed of change may cause severe difficulties. In contrast, land 
communities, subjected to more frequent drought and without the buffering 
medium of water, with its high specific heat, will be more vulnerable to extreme 
temperatures. But the freshwater biota might adjust most readily to climate 
change because of its preadaptation to disturbance. For them, however, there is a 
further complication. Freshwaters most immediately and most graphically reflect 
the many abuses an increasing human population, with its increasing demands 
for resources, increasing production of waste and rapidly accelerating ability to 
make changes through its technology, can impose. Freshwaters reflect all the 
activities that go on in their catchments, which means the entire land surface. 
Chemical and agricultural wastes, both dissolved and suspended, run into them 
or rain onto them. Rivers have been repeatedly used as cheap pipes to remove 
urban wastes. Floodplain wetlands have been embanked and drained so that their 
fertile soils might be cultivated. Fish communities, the main source of animal 
protein for many peoples, have been severely overfished. And the very ability of 
freshwater communities to accommodate change has led to the persistence of 
many introduced species that have sometimes become dominant and simplified 
the communities that they have invaded. Not surprisingly, the Millennium 
Ecosystem Assessment listed freshwaters as one of the most vulnerable of the 
ecosystems it considered (Fig. 1.4). Exactly how freshwater habitats will change, 
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how the adjustments of their communities will occur and what will be the detailed 
consequences of the changes for particular places and individual species are thus 
much more difficult to predict than if climate change were the only threat to 
them. Current attempts rest largely on expert opinion (Mooij et al. 2005). It is 
one role of this book to add to the factual basis for predictions.

Euro-limpacs, European freshwater systems 
and approaches to investigation

Europe provides a huge range of inland waters, from the Greenland, Icelandic 
and mountain glaciers to the streams and lakes of the arider parts of Spain, from 
the small crater lakes of the Azores to the expanses of Lakes Ladoga, Mälaren 
and Maggiore and from the tiny headwater streams of the hills to the large, if not 
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Figure 1.4 Summary of effects of major drivers on major biomes. (From Millennium 
Ecosystem Assessment 2005.)
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Amazonic, rivers of the Rhine and Danube. Of course, other continents contain 
an equal or greater variety, but Europe also offers the complication of major 
biological barriers to animal and plant movements in the Mediterranean, the 
Alps, the Baltic and the North Sea, the benefits of a long and sophisticated 
tradition of research in freshwater ecology, and a large concentration of freshwater 
scientists. Euro-limpacs, on which this book is based, has been a European- Union-
funded, continent-wide research programme to further our understanding of the 
potential effects of climate change on freshwaters. It has contributed to our 
understanding of the direct physical and hydrological effects of warming in the 
past (Chapter 2) and present day (Chapters 3 and 4) and on the interactions with 
climate of nutrients (Chapter 6), acidity (Chapter 7) and toxic pollution 
(Chapter 7). It has looked at the implications for monitoring and restoration 
(Chapters 5 and 9) and the definition of reference conditions under the Water 
Framework Directive. Moreover, it has sought to use the results of these studies 
in modelling the future (Chapter 10) and in helping political organizations to 
make decisions on management (Chapter 11).

Euro-limpacs has been far from the last word, but it has contributed important 
advances, and its strength has been the wide range of approaches it has used. 
There is a nexus of stages in investigating any general phenomenon and climate 
change effects on freshwater systems are no exception. The first stage is simply 
in establishing their existence. There can be no doubt now that climate change is 
occurring and virtually no doubt that it has largely been caused by human activity. 
There is then a plethora of studies showing consequent effects (e.g. Carvalho & 
Kirika 2003; Berger et al. 2007), though, strictly speaking, it is rare for the 
consequence to be rigorously demonstrated. We are dealing with an unreplicated 
grand experiment with no control.

However, where changes occur in many different glaciers, rivers and lakes 
and where these correlate closely with changing temperatures or precipitation 
(Gerten & Adrian 2000; Straile 2002; Winder & Schindler 2004), there can be 
some confidence in the link. Such correlation, however, is made difficult because 
many other changes have occurred in freshwater systems over the same period 
as climate change, and most changes are ultimately caused by the increasing size, 
aspirations and technological development of human societies in the past 200 
years or so.

The correlations of recent history can be placed in context by the reconstructions 
of the more distant past through analysis of lake and wetland sediments. The 
record is patchy and selective, and interpretations usually lack experimental 
validation, but where sediment and direct records have been compared over the 
past few decades, there is often a close relationship (Haworth 1980), and 
sophisticated statistical approaches (Birks 1998; Battarbee 2000) have been used 
to quantify the palaeoecological record.

For periods before the last few decades, or occasionally the last two centuries, 
where diary and documentary evidence exists, the sediment record is the only 
record and we must use it as efficiently as we can. The range of chemical and 
biological remains that can now be counted and calibrated against contemporary 
observations and sediments is very wide. It can be increasingly elaborated by the 
techniques of resurrection ecology where resting stages of invertebrates can be 
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hatched and their changing characteristics and genome traced through a period 
of environmental change (Mergeay et al. 2004).

A parallel approach to palaeoecological studies is to use space-for-time 
investigation, where existing climate gradients provide different systems for 
examination. The gradient from Greenland to Greece in Europe provides a wide 
range of systems in which processes and food webs can be compared to predict 
how they might change as temperatures increase (Moss et al. 2004; Meerhof 
et al. 2007). There are, as with every approach, problems with this otherwise 
attractive endeavour. Not only does climate change along the gradient, but so do 
relief, geology and the intensity of human activity. Good design of observational 
schemes can correct for these by stratified random sampling, but one major 
source of variation, accidents of history, cannot. Glaciation and the nuances 
of biogeography impose differences that can only be judged. A formerly 
glaciated lake in Finland, with an Ice-Age-depleted, still recolonizing biota, may 
not respond to temperature increase in the same way as a long-established 
Mediterranean lake that may have been affected but not obliterated by the ice of 
the glacial period, 20,000 years ago, even if the Finnish lake eventually becomes 
as warm as the Mediterranean one now.

The next stage of investigation is to attempt to reproduce alleged effects 
through experimentation. Experiments can reveal mechanisms because the 
drivers of change can be controlled, and experimental designs and adequate 
replication allow the study of several simultaneous drivers. Experiments are thus 
potentially more powerful than comparative observations. They also compel the 
creation of mechanistic hypotheses that force the experimenter to think through 
the processes that are going on. But the scale of the experiment is important in 
ecology. Whole-system experiments (Carpenter et al. 2001) (clear-felled versus 
undisturbed sub-catchments of a forested river system, lakes subdivided by 
curtains and parallel-engineered river channels) are ideal but liable to 
pseudoreplication because the experiments are so expensive, and the subjects so 
individual, that generally only one system can be handled at a time. In contrast, 
experimental laboratory microcosms (Petchey et al. 1999) can be replicated 
extensively but lack reality. The fashion of using micro-organism communities to 
mimic large-scale systems (Benton et al. 2007) is attractive but perhaps mostly to 
theoreticians.

The compromise is to use subsystems of real communities: mesocosms in lakes, 
artificial river channels or plots in wetlands, or mesocosm tanks big enough to 
contain all or almost all of the structures and food-web levels of a system (McKee 
et al. 2000, 2002, 2003; Liboriussen et al. 2005). Usually ‘almost all’ is apposite, 
for the top predators of a fish community need much more space than is possible 
in replicable mesocosms, and the complete complexity of a natural system, which, 
in rivers, for example, might involve interactions with large land mammals 
(Terborgh 1988; Ripple & Beschta 2004) and tonnages of dead timber, is beyond 
contemplation.

Another compromise is to do the experiments on simulated systems or models 
using computer technology. This is, of course, the approach taken by the IPCC in 
modelling future climate change. Per se it is relatively inexpensive, but the models 
are reflections of the data input to them. If there are unsuspected factors involved, 
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these cannot be included and the output of the model is a reflection of the perceptions 
of its perpetrators. The same is true of observational techniques and practical 
experiments. Through choice of variables or of initial experimental conditions, the 
conclusions are partly predetermined. Nonetheless, the failures of both models and 
experiments to replicate reality are valuable indicators of what might be missing 
from their designs. Such gaps are inexpensive to plug in modelling, if not in repeated 
large-scale experiments, and the behaviour of whole river systems, regions or the 
biosphere can ultimately be only the province of modelling.

The organization of Euro-limpacs reflected these advantages and uncertainties 
by using a range of approaches. It had to build on existing experience and facilities 
for the most part and could not achieve the ideal of using all the approaches on 
a single habitat and a single aspect of climate change, even if such singularity 
exists. Understanding increases nonetheless, even if tidy systems of operating are 
inevitably confounded by the realities of funding and personal preferences. In the 
end, opinion will depend on expert judgement based on all lines of evidence, for 
precise prediction is only possible for simple systems, and nothing in earth system 
science, with its underpinning of living organisms, not least the human ones, is 
remotely simple.

Applications and the Water Framework Directive

Euro-limpacs included substantial components concerning the application of the 
emerging scientific understanding. In Europe at present, water management is 
very much focussed on the Water Framework Directive (EC/2000/60). The 
Directive changes the previous approach to monitoring waters in Europe by 
emphasising a whole-basin approach and by requiring determination and 
restoration of ecological quality, as opposed simply to chemical water quality. 
This must be done with respect to reference systems, which are defined in the 
Directive as those unaltered or only negligibly altered by human activity. There 
are few, if any, such systems left in Europe, so great has been the impact of large 
population densities over several centuries, so determination of the schemes to 
determine ecological quality is problematic. Nonetheless, tools for determining 
the status of phytoplankton, aquatic plants, macroinvertebrates and fish are being 
developed (UKTAG 2007), often using particular indicator species or families. 
Climate change will inevitably upset these schemes as species become eliminated 
or new ones move into previous cooler habitats.

There is also the underlying issue that since climate is now strongly influenced by 
people, the establishment of reference pristine standards has become conceptually 
impossible (Moss 2007, 2008). These issues are discussed in Chapter 9. The 
Directive also requires restoration of aquatic systems to good ecological status, 
defined as only slightly different from the high ecological status of the reference 
standards. At this stage, the uncertainties become so great that schemes are 
needed to help the appraisal of the available scientific information by agencies 
and governments, and this issue is considered in Chapter 11.

Several reports have pointed out the economic consequences of climate change. 
The Stern Report (2006) concluded that climate change could be mitigated at the 
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cost of a substantial but affordable sum, if there were reaction now, but much 
greater sums if there were delays. Governments have attempted to put in place 
mechanisms to generate energy by means other than burning fossil fuels, devices 
to encourage energy conservation and schemes to offset carbon usage by paying 
for trees to be planted. By and large none of these schemes has yet reduced 
fossil fuel consumption (Monbiot 2007) and it seems very likely that temperatures 
will rise later this century by several degrees. A 2°C rise may be held at a 
concentration of greenhouse gases equivalent to about 480 ppm carbon dioxide 
compared with the current value of 380 ppm carbon dioxide. It seems, however, 
more likely that concentrations will rise to at least 550 ppm, denoting a 
temperature rise of 3°C–4°C, which will bring many problems (Fig. 1.5). The 
possibilities of biological feedback mechanisms have not, of course, been factored 
into any of these targets.

A glance through any daily newspaper will reveal several pages of business and 
sports news that change in detail but not overall content. Pages of other news will 
change in scope more than business and sport and increasingly a consistent though 
still very small element of these will concern environmental issues. We might 
anticipate a time, however, when this formula will change. Sport will undoubtedly 
retain its hegemony, but the unfolding impacts of resource depletion, waste 
accumulation, ecosystem destruction, population increase and climate change must 
eventually displace the multi-page minutiae of stocks, shares, executive salaries and 
the fate of companies. A new economics will need to be in place or we may be 
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Figure 1.5 Projected effects of increasing temperatures on natural and human 
 systems. (From Stern 2006.)
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in our final human throes. But for the moment, this book essentially takes the 
emerging evidence from the physical to the sociological and applies expert 
judgement to it to assess the interplay between freshwaters and human societies as 
the climate drama, now just past the Prologue, enfolds. It brings together the major 
concepts of Hutchinson, Lovelock and Tansley in a crucial act of the evolutionary 
play as the theatre itself begins to change somewhat ominously.
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