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Preface

Plant phenolics are secondary metabolites that constitute one of the most common and 
widespread group of substances in plants and that have been considered for a long time 
waste products of primary metabolism. Nowadays, plant phenols and polyphenols are con-
sidered to have a large and diverse array of benefi cial effects on both plants and humans. 
The ability to synthesize secondary compounds has been selected throughout the course 
of evolution in different plant lineages when such compounds addressed specifi c needs. 
Secondary metabolites apparently act as defence (against herbivores, microbes, viruses, 
or competing plants) and signal compounds (to attract pollinating or seed-dispersing ani-
mals), as well as protect the plant from ultraviolet radiation and oxidants. Therefore, they 
represent adaptive characters that have been subjected to natural selection during evolu-
tion. In addition, biomedical research has revealed that dietary phenolics, because of their 
antioxidant and free radical scavenging properties, play important roles in the prevention 
of many of the major contemporary chronic diseases.

The diversity of structure and activity of phenolic compounds resulted in the multi-
plicity of research areas such as chemistry, biotechnology, ecology, physiology, nutrition, 
medicine, and cosmetics. The International Conference on Polyphenols, organized under 
the auspices of Groupe Polyphénols, is a unique opportunity for scientists in these and 
other fi elds to get together every other year and exchange their ideas and new fi ndings.

The last edition of the conference (the 24th edition) was hosted by the University of 
Salamanca, Spain, from July 8 to 11, 2008, and covered fi ve topics:

1. Chemistry: Structure, reactivity, physicochemical properties, analytical methods, 
synthesis ….

2. Biosynthesis and metabolic engineering: Molecular biology, omics, enzymology, gene 
expression and regulation, biotechnology ….

3. Roles in Plant Ecophysiology and Environment: Plant growth and development, biotic 
and abiotic stress, resistance, sustainable development, by-products valorization ….

4. Food and Beverages: Composition, organoleptic properties, impact of processing and 
storage, functional foods, nutraceuticals ….

5. Health and Disease: Medicinal properties, mode of action, bioavailability and metab-
olism, cosmetics ….

Some 450 participants from 41 countries attended Salamanca’s Conference, where over 
370 presentations were made, including 330 posters, 31 selected oral communications, 



and 12 invited lectures made by acknowledged experts. The present second volume in the 
series includes chapters from the guest speakers and some invited contributors.

The 24th International Conference on Polyphenols would not have been possible without 
the generous support of public and private donors such as the Spanish Ministerio de Ciencia 
e Innovación, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria 
(INIA), Junta de Castilla y León, and Caja Duero. Furthermore, we are also indebted 
to the Natraceutical Group, Indena, “Viñas del Jaro” wine cellars, and Phytolab that also 
sponsored the conference. Our sincere thanks to all of them.

Celestino Santos-Buelga,
Maria Teresa Escribano-Bailon,

Vincenzo Lattanzio
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Chapter 1

The Visible Flavonoids or Anthocyanins: 
From Research to Applications

Raymond Brouillard, Stefan Chassaing, Géraldine Isorez, 
Marie Kueny-Stotz, and Paulo Figueiredo

1.1  Introduction

Anthocyanins are polyphenolic pigments responsible for most of the color diversity found 
in plants. Here the in vivo color expression and the stability of anthocyanins are interpreted by 
extrapolation of the results acquired in vitro with model solutions of pigments obtained through 
plant extraction or laboratorial synthesis. Behavior of anthocyanins is explained in terms of 
molecular interactions of the chromophore units with parts of the pigments themselves and/or 
with some constituents of the plant cell. These include, among others, diverse polyphe-
nols, metal cations, and inorganic salts. Attention is also given to the biophysicochemical 
environment found in plant vacuoles that plays a fundamental role on the intermolecular 
and intramolecular associations displayed by anthocyanins. For example, anthocyanin 
Z-chalcones (retrochalcones) provide an unexpected open cavity for the ferric cation. 
Medicinal, nutritional, and industrial applications of anthocyanins are proposed.

Colors are conferred to plants by chlorophylls, carotenoids, and fl avonoids (Britton, 
1983). Chlorophylls are responsible for the green colors displayed by the leaves, whereas 
carotenoids provide some of the red-orange hues often found in fruits, fl owers, and other 
plant constituents. Flavonoids belong to a larger family, the polyphenols, and can be found 
in most fl owers and fruits (Brouillard & Dangles, 1993; Andersen & Jordheim, 2006). They 
include the principal elements responsible for the color diversity found in the plant world, 
the anthocyanins (Fig. 1.1). In fact, these pigments are the only polyphenols that possess the 
ability to absorb light both in the ultra-violet and in all the visible range (from yellow-orange 
to bluish-green) (Goto & Kondo, 1991). It is well known that anthocyanins are at the origin 
of plants’ most brilliant colors, a phenomenon particularly visible from fl owers. Nevertheless, 
there exists only one chromophore – the fl avylium nucleus – whose subtle interactions with 
vacuole biochemicals, including water, are capable of providing all kind of colors.

Anthocyanins are stored in an organized aqueous medium in the cell vacuoles. A slightly 
acidic environment (pH 3–5; Stewart et al., 1975) rich in inorganic ions and other polyphenols 
is essential for the transformations in these pigments that enable the formation of molecular 
complexes and subsequent color changes and stabilization (Brouillard & Dangles, 1993). 
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The basic structure common to almost all anthocyanins is a 2-phenylbenzopyrylium 
(fl avylium) heterocyclic skeleton bearing at least one sugar residue. Aliphatic or aromatic 
organic acids may esterify the sugar hydroxyls. Furthermore, OH and OCH3 groups that 
bestow the characteristic names of the six basic anthocyanic structures (Table 1.1) typi-
cally substitute the B-ring of the aglycone moiety of these pigments. The existence of at 
least one free OH group is needed to produce the structural changes, described later, con-
ducing to color variation. The structure presented in Fig. 1.2 depicts the positively charged 
fl avylium cation, which is the dominant equilibrium form in strongly acidic aqueous 
solutions. The positive charge is delocalized through all the pyrylium moieties, although 
carbons 2 and 4 are the more positively charged atoms (Amić et al., 1990). The relative 
ease of deprotonation of the two OH groups at positions 4� and 7 contributes to the color 
changes of the anthocyanin. One of these hydroxyls loses a proton at pH ∼ 4, produc-
ing the quinonoid bases AH (Fig. 1.3) that exhibit a chromatic deviation toward longer 

Table 1.1  Anthocyanins are glycosylated polyphenols with a basic C-15 skele-
ton hydroxylated at positions 4� and 7 that can be divided in six basic structures 
according to the pattern of the substituents at positions 3� and 5�.

Anthocyanidin common name 3� and 5� substituents

Pelargonidin H/H
Cyanidin OH/H
Peonidin OCH3/H
Delphinidin OH/OH
Petunidin OH/OCH3

Malvidin OCH3/OCH3

Fig. 1.1  Structure of one of the numerous anthocyanins isolated from violet petals of Petunia hybrida cv. 
Festival (Gonzalez et al., 2001).
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wavelengths relative to the fl avylium cation (AH2
�). At pH close to neutrality, a second 

deprotonation occurs leading to the formation of the anionic quinonoid bases (A�), with 
another blue shift in the absorption spectrum. Moreover, the fl avylium cation is susceptible 
to nucleophilic attack at the charge-defective positions 2 and/or 4, as evident from the strong 
electronic density calculated for the frontier lowest unoccupied molecular orbital (LUMO). 
When in an aqueous environment, the water molecules, available in large quantity, add to the 
fl avylium form at pH values above 1.5–2.0, resulting in a loss of color owing to the formation 
of the colorless hemiketal adduct (BH2) through a slow pseudo acid-base equilibrium. This 
may eventually be followed by a ring opening that leads to the formation of the retrochal-
cones (CE and CZ), which are also almost colorless. This loss of color can be reversed by a 
simple reacidifi cation with complete recovery of the colored fl avylium cation.

In the laboratory, aqueous solutions of anthocyanins, even kept under physicochemi-
cal conditions (temperature, pH, light, oxygen) similar to the ones found in plant vacu-
oles, tend to lose their bright colors either by formation of the colorless species or by 
degradation leading to the irreversible cleavage of the molecule (Furtado et al., 1993; 
Figueiredo, 1994). However, in planta, the colorless forms BH2, CE, and CZ are rarely 
found and the colors last for several days or even weeks, indicating the existence of vacu-
olar mechanisms that stabilize the colored species. Moreover, the same anthocyanin can 
be found in fl owers of different tints, a fact that indicates the existence of diverse interac-
tions of the pigment with the cellular environment. Among the stabilizing mechanisms 
found in the plant world, the most widespread are copigmentation and metal complex-
ation or even combinations of the two (Goto & Kondo, 1991). The fi rst one was found to 
be present in some fl owers and its behavior in model solutions was thoroughly investi-
gated (Robinson & Robinson, 1931; Brouillard, 1981, 1983; Brouillard et al., 1989, 1991; 
Dangles & Brouillard, 1992a,b; Wigand et al., 1992; Dangles et al., 1993a,b; Dangles & 
Elhajji, 1994; Figueiredo et al., 1996b), whereas the second is expected to occur between 
all anthocyanins possessing a catechol group in their B-ring and small divalent and triva-
lent metal cations (Dangles et al., 1994a; Elhabiri et al., 1997). In this chapter, we give 
more insight to these phenomena by means of an investigation on the interactions between 
several metals and a series of natural and synthetic anthocyanic pigments bearing differ-
ent substitution patterns. New views on anthocyanin iron complexation, as well as some 
thoughts on possible applications, are also developed.

Fig. 1.2  The anthocyanin fl avylium chromophore, a carboxonium cation stable in aqueous media. R is usually 
sugar or acylated sugar.

HO

6
5

7
8

4

3

R3�

4�

5�

R5�
6�

3�

2�

2

OH

B

OR

OR

O

A �



4  Recent Advances in Polyphenol Research

CZ: E-chalcone
pale yellow

CE: E-chalcone
pale yellow

OR5 OR5

OR5OR5

OR5

OR5

OR5

OR5

OR3

OR3

OR3
OR3

OR3

OR3 OR3

OR3

R3�

R3�

R3�R3�

R3�

R3�

R3�

R3�

R5�

R5�

R5�

R5�

R5�

R5�

R5�R5�

O

O

OO�

OH OHOH

OH

OH

OH

OH

O

O O

O�

O

�O O

O O

HO HO

OH
HO

HO

HO

R3, R5 � H, GI (glycosyl)
R3�, R5� � H, OH, OCH3

AH2
�: colored flavylium cation
     the only stable form 

BH2: hemicetal
colorless form

�H�

�H�

�H�/�H2O

�H� �H� �H� �H�

�H� �H�

AH: colored quinoidal bases
unstable forms

A�: colored anionic quinoidal bases
unstable forms

O

Fig. 1.3  Anthocyanin equilibria in aqueous solution and the corresponding structural transformations. AH2
� 

represents the fl avylium cation that predominates at acidic pH values; AH represents the two tautomeric quinonoid 
bases; A� depicts the anionic quinonoid bases that appears in alkaline solutions; BH2 is the colorless hemiketal 
adduct; and CE and CZ are isomeric retrochalcones.
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1.2  Copigmentation of anthocyanins

Copigmentation or anthocyanin color exaltation results from the presence of special molecules 
or copigments in an aqueous environment. This phenomenon is known for long, but even 
today, nothing comparable has been uncovered from the rest of the huge polyphenol family 
or any other class of organic molecules.

Copigmentation can be defi ned as a hydrophobic π–π molecular interaction, through 
a vertical stacking, between a planar anthocyanin structure (fl avylium cation or quino-
noid base) and another planar molecule possessing no color by itself, which results in 
an enhancement, and generally a modifi cation, in the original color of the pigment-containing 
solution. Most polyphenols can act as copigments, their effi ciency depending on their 
chemical structures. However, other families of molecules were also found to include 
good copigments, for example, purines and alkaloids (Elhabiri et al., 1997), and several 
more will probably be uncovered as further investigations are on the way.

This loose association between the copigment and one of the colored forms of the 
anthocyanin, generally the fl avylium cation, produces, in electronic absorption terms, 
both hyperchromic and bathochromic shifts (Asen et al., 1972). Such spectral changes 
can be explained by (1) a partial desolvation of pigment and copigment molecules when 
the water molecules rearrange around the newly formed complex, allowing a closer con-
tact between both structures (copigmentation generally originates 1:1 complexes) with the 
consequent formation of more chromophores owing to a more diffi cult access of the sol-
vent molecules to the electrophilic site C-2 (hyperchromism) and (2) the change in polarity 
in the immediate vicinity of the anthocyanin brought about by the displacement of some 
water molecules by the less polar organic copigment (bathochromism).

The color enhancement effect is more spectacular in mildly acidic solutions than in 
very acidic solutions owing to the existence, at pH 3–4, of a large amount of colorless 
hemiketal and chalcone forms that may be turned into fl avylium cations or quinonoid 
bases through the formation of copigmentation complexes, resulting in the striking color 
changes. By contrast, in strong acidic solutions all the anthocyanins are already in the 
colored fl avylium form, therefore the copigmentation becomes an ordinary molecular 
association accompanied by a small hypochromic shift together with the always-present 
bathochromic shift (Dangles & Brouillard, 1992b).

In addition to UV-visible absorption spectroscopy, copigmentation can also be followed 
by1 H NMR techniques, which provide further evidence of the formation of a 1:1 vertical 
stacking complex between the pigment and copigment molecules (Wigand et al., 1992).

What is described earlier concerns a particular aspect of copigmentation – intermolecular 
copigmentation – that is, the interaction between two separate identities; however, a second 
type of association can also occur: intramolecular copigmentation. This type of molecular 
interaction can take place with only those anthocyanins that possess at least one copig-
ment residue covalently bound to the pigment. Such residues are generally cinnamic ester 
derivatives attached to the chromophore through one or more sugar units that may act as 
“linkers” or “spacers” (see Fig. 1.1 for an example of such a molecule), allowing the inter-
action of its π-orbitals with the benzopyrylium nucleus (Goto & Kondo, 1991; Yoshida 
et al., 1992; Dangles et al., 1993a,b; Figueiredo et al., 1996a).
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Intramolecular copigmentation acts in a way similar to the one described for inter-
molecular copigmentation, with the entropic advantage of the copigment being directly 
attached to the chromophore and consequently the nonrequirement of bringing together 
two molecules initially separated in solution. Those particular structures give rise, not so 
infrequently as one might imagine, to pigments that are continuously colored through a 
very wide range of pH values (Brouillard, 1981; Dangles et al., 1993a,b; Figueiredo et al., 
1996a). Given the required number and fl exibility of the linkers, some of these “internal” 
copigments can even adopt a sandwich-type conformation around the chromophore, pro-
viding a very effective protection against hydration and subsequent loss of color (Dangles 
et al., 1993b). In fact, while investigating the Orchidacea family, a group of anthocyanins 
that present no hydration at all, in vitro, was found. A natural pigment extracted from the 
blue-purple fl owers of Eichhornia crassipes was found to covalently link a 7-glucosylapigenin 
(a fl avone) to a 3-gentiobiosyldelphinidin (an anthocyanin) through a dimalonyl ester 
spacer (Toki et al., 1994a; Figueiredo et al., 1996a). Owing to the matching confi guration 
of the two polyphenolic moieties, this molecule gives rise to a highly effective stacking 
complex, with a very low-value hydration constant, leading us to forecast the existence of 
a wider distribution of similar examples in nature.

Copigmentation is an exothermic process with unfavorable entropy changes. In aqueous 
solution, copigmentation increases with temperature diminution and decreases with tem-
perature rise, becoming completely negligible when the temperature reaches close to the 
boiling point of water (Brouillard et al., 1989; Dangles & Brouillard, 1992a). Formation 
constants not larger than 100–300 M�1 (25°C, in water) were found for this type of asso-
ciation, indicating the existence of weak molecular interactions that permit the existence 
of a chemical equilibrium between the complexed and noncomplexed forms. Interaction of 
anthocyanins with proteins is of a different essence (Haslam, 2001), but it poses the inter-
esting problem to know which of the numerous anthocyanin secondary structures is the 
reactive species.

1.3  Formation of inclusion complexes

A phenomenon until now observed only in the laboratory and that can still be included 
in the fi eld of molecular interaction is the formation of inclusion complexes of anthocya-
nins with the natural cyclodextrin macrocycles (Dangles & Brouillard, 1992c; Dangles 
et al., 1992a,b). However, instead of leading to color stabilization, these complexes 
seem to decrease the anthocyanin visible absorption band. This is always the case with 
the small natural and synthetic anthocyanins studied up to the present, as the common 
α-, β-, and γ-cyclodextrins cannot accommodate bigger, highly substituted pigments. 
β-Cyclodextrin is the one that produces a more pronounced diminution of color inten-
sity, a phenomenon that is known as anti-copigmentation (Dangles et al., 1992a,b). This 
phenomenon is caused by selective inclusion and stabilization of the extremely fl exible 
Z-chalcone into the macrocyclic cavity, with the consequence of shifting the pigment 
equilibria toward the formation of more colorless chalcone forms. Howbeit these results, 
it is not impossible to imagine that greater macrocycles will be able to preferentially 
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accommodate the colored fl avylium or quinonoid forms, thus favoring their persistence 
in model solutions.

1.4  Ion-pair formation

Another aspect of molecular interactions that was verifi ed in the laboratory and can also 
take place in vivo is the color enhancement of anthocyanin-containing solutions when 
molar quantities of ionic salts are added (Goto et al., 1976; Figueiredo & Pina, 1994). 
This phenomenon is interpreted in terms of an ion-pair association between the mineral 
anion and the cationic fl avylium form of the pigment that increases the production of 
this colored form, via the displacement of the equilibria depicted in Fig. 1.3. At the same 
time, through the proximity of the anion to the electrophilic C-2 atom of the chromo-
phore (evidenced through 1 H NMR experiments; Figueiredo & Pina, 1994), it hinders the 
approach and attack of nucleophilic molecules. Very recently, a series of fl avylium salts 
with the unusual hexafl uorophosphate counterion have been prepared (Chassaing, 2006; 
Chassaing et al., 2007; Kueny-Stotz et al., 2007). The role of the anion, within the synthetic 
route, was also taken into consideration probably for the fi rst time.

1.5  Metalloanthocyanins

All anthocyanins possessing a catechol structure in their B-ring, that is, all derivatives of 
cyanidin, delphinidin, and petunidin (cf. Table 1.1), are known to have the capacity of com-
plex formation with several small divalent and trivalent metal cations. This type of associa-
tion has been demonstrated to be at the origin of the blue color in some fl owers (Goto & 
Kondo, 1991; Brouillard & Dangles, 1993; Kondo et al., 1994a,b). Metals most commonly 
found in the formation of such metalloanthocyanins are iron (III), magnesium (II), and 
aluminum (III). Metal complexation was also observed between Al3� or Ga3� and antho-
cyanins possessing OH substituents at positions 7 and 8, whereas those with a catechol at 
positions 6 and 7 were shown not to form such complexes. The complexation results from 
an interaction between the metal center and the anionic quinonoid base that results from the 
deprotonation at positions 4� and 7. Anionic bases resulting from deprotonation at position 3� 
have higher energies than those that result from deprotonation at positions 4� and 7 (Table 1.2). 
The introduction of a 6-oxygen diminishes the probability of hydration, and thus the formation 
of colorless forms, which favors the formation of the quinone at position 4�.

The color changes (bathochromic and hyperchromic shifts) observed when Al3� is 
added to anthocyanin-containing solutions are known for a long time and used as a quali-
tative test for the presence of anthocyanins possessing the B-ring catechol group in plant 
extracts (Bayer et al., 1966). A quantitative interpretation of this type of association, from 
the thermodynamic and kinetic points of view, was achieved by Dangles et al. (1994a). 
These authors demonstrated that the metal cation binds to the colored forms of the pigment 
and that there is a pH domain where the hyperchromic effect owing to the complexation is at 
a maximum. In the present work, we extended these experiments to a series of anthocyanic 
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pigments ranging from simpler synthetic ones to the more complex natural acylated pig-
ments, including the following: 3�,4�,7-trihydroxyfl avylium chloride (S1); 3�,4�-dihydroxy-
7-methoxyfl avylium chloride (S2); 3�,4�,7-trihydroxy-3-methoxyfl avylium chloride (S3); 
3�,4�-dihydroxy-3,7-dimethoxyfl avylium chloride (S4); 2-((3�,4�-dihydroxy)-benzo)-3-O-
methyl-naphto[2,1-b]pyrylium chloride (S5); 3-O-β-D-glucopyranosyl delphinidin (N1); 
3-O-(6-O-(6-deoxy)-α-L-mannosyl)-β-D-glucopyranosyl cyanidin (N2); 3,5-di-O-β-D-
glucopyranosyl cyanidin (N3); 3-O-(6-O-(trans-p-coumaryl)-2-O-(2-O-(trans-synapyl)-
β-D-xylopyranosyl-β-D-glucopyranosyl)-5-O-(6-O-(malonyl)-β-D-glucopyranosyl cyanidin 
(N4); 3-O-(6-O-(trans-caffeyl)-2-O-(2-O-(trans-synapyl)-β-D-xylopyranosyl-β-D-gluco-
pyranosyl)-5-O-(6-O-(malonyl)-β-D-glucopyranosyl cyanidin (N5); 3-O-(6-O-(trans-couma-
ryl)-β-D-glucopyranosyl)-5-O-((6-O-malonyl)-β-D-glucopyranoside) delphinidin (N6); and 
3-O-(6-O-(trans-4-O-(6-O-(trans-3-O-(β-glucopyranosyl)-caffeyl)-β-D-glucopyrano-
syl)-caffeyl)-β-D-glucopyranoside)-5-O-((6-O-malonyl)-β-D-glucopyranoside) delph-
inidin (N7). S pigments were synthesized, whereas the seven N pigments were extracted 
from plant materials. Aluminum (III), gallium (III), and magnesium (II), as chloride salts, 
were the metals used to investigate the complexation abilities of these pigments. Pigments 
N1–N7 were isolated according to published procedures (Lu et al., 1992; Saito et al., 1993; 
Toki et al., 1994b). The synthetic pigments S1–S5 were prepared according to procedures 
described elsewhere (Dangles & Elhajji, 1994; Elhabiri et al., 1995a,b, 1996, 1997).

The strong affi nity for the fl avylium cation, in a pH range 2.0–4.0, shown by metal 
cations such as Al3� and Ga3�, comes from the exceptionally high acidity of the 4�-OH 
(or 7-OH). As a matter of fact, the conjugated base of AH2

� is not a simple phenolate ion 
but a quinonic structure, stabilized by its π electrons delocalization. This yields a pKa of 
3.5–5.0 for the pair AH2

�/AH, which is lower than the one typically found for a catechol/
catecholate pair (9.0). Thus, the complexation of AH2

� requires the substitution of only a 
slightly acidic proton (3�-OH) as opposed to the substitution of two slightly acidic protons 
on the colorless forms, a thermodynamically less favored process. In this way, metal com-
plexation and hydration are two competitive processes, that is, the addition of a metal cation 
to a slightly acidic anthocyanin solution results in a bathochromic shift of the absorption 
spectrum, which refl ects a displacement of the hydration equilibrium toward the fl avylium 
cation. The anthocyanin adopts a quinonic structure when the complex is formed and it is 
this structure (analogous to that of form AH) that explains the strong bathochromic shift.

The following set of reactions expresses the equilibria involved when one of these 
metal cations (M3�) is put into contact with a moderately acidic, anthocyanin-containing, 
aqueous solution. B�H2 is a simplifi ed representation of the ensemble of colorless forms.

AH AH H2
� ��� Ka

Table 1.2  Relative energies (kcal mol�1) of quinonoid (AH) and anionic quinonoid (A�) bases of S3.

AH(7) AH(4�) A�(7/4)/A�(4�,7) A�(7,3�) A�(4�,3�)

0 1.4 0 12.7 9.1

The values were obtained through AM1 calculations.


