Evidence-based Emergency Medicine # This book is dedicated to: Our patients, who have generated the clinical questions proposed in this book and who deserve our best efforts to identify, synthesize, update and disseminate evidence-based care; The many practitioners from within and outside emergency medicine who have helped advance the field of evidence-based emergency medicine over the past two decades; And finally to our families, especially our spouses/partners, for their support and encouragement throughout our careers and during the production of this book. # Evidence-based Emergency Medicine EDITED BY # BRIAN H. ROWE MD, MSc, CCFP(EM), FCCP Professor and Research Director, Department of Emergency Medicine University of Alberta, Edmonton, Alberta, Canada #### SECTION EDITORS # EDDY S. LANG MDCM, CCFP(EM), CSPQ Assistant Professor of Emergency Medicine Department of Family Medicine, McGill University, Montreal and Attending Physician, Emergency Medicine SMBD Jewish General Hospital, Montreal, Quebec, Canada # MICHAEL BROWN MD, MSc Professor of Epidemiology and Emergency Medicine College of Human Medicine, Michigan State University Spectrum Health – Butterworth Hospitals Grand Rapids, Michigan, USA ### DEBRA HOURY MD, MPH Director, Center for Injury Control Vice Chair for Research Department of Emergency Medicine, Emory University Atlanta, Georgia, USA # DAVID H. NEWMAN MD Assistant Professor Department of Medicine Columbia University College of Physicians and Surgeons New York, USA # PETER C. WYER MD Associate Clinical Professor, Department of Medicine Columbia University College of Physicians and Surgeons New York, USA This edition first published 2009, © 2009 by Blackwell Publishing Ltd BMJ Books is an imprint of BMJ Publishing Group Limited, used under licence by Blackwell Publishing which was acquired by John Wiley & Sons in February 2007. Blackwell's publishing programme has been merged with Wiley's global Scientific, Technical and Medical business to form Wiley-Blackwell. Registered office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, LTK Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom. $Library\ of\ Congress\ Cataloguing-in-Publication\ Data$ Evidence-based emergency medicine / edited by Brian H. Rowe. p.; cm. Includes bibliographical references. ISBN 978-1-4051-6143-5 1. Emergency medicine. 2. Evidence-based medicine. I. Rowe, Brian H. [DNLM: 1. Emergency Medicine—methods. 2. Evidence-Based Medicine—methods. WB 105 E935 2008] RC86.7.E95 2008 616.02′5–dc22 2008010823 ISBN: 9781405161435 A catalogue record for this book is available from the British Library. Set in 9.25/12 Palatino by Aptara Inc., New Delhi, India Printed & bound in Singapore by Fabulous Printers Pte Ltd # Contents List of Contributors, viii Foreword, xiii Acknowledgments, xv List of Abbreviations, xvi # Part 1 General Issues, 1 - 1 Introduction, 3 Brian H. Rowe & Peter C. Wyer - 2 Knowledge Translation: A Primer for Emergency Physicians, 13 Eddy S. Lang, Peter C. Wyer & Marc Afilalo - 3 Critical Appraisal: General Issues in Emergency Medicine, 22 Suneel Upadhye - 4 Continuing Education, 34 *Joel Lexchin* - 5 Quality Improvement, 43 Andrew Worster & Ann McKibbon - 6 Medication Adherence, 49 Ursula Whalen & Sunil Kripalani - 7 Emergency Department Triage, 58 Sandy L. Dong & Michael Bullard - 8 Emergency Department Overcrowding, 66 Michael Schull & Matthew Cooke # Part 2 Respiratory, 77 9 Emergency Management of Asthma Exacerbations, 79 Brian H. Rowe & Carlos A. Camargo, Jr. - 10 Chronic Obstructive Pulmonary Disease Exacerbations, 89 Brian H. Rowe & Rita K. Cydulka - 11 Diagnosis and Treatment of Community-Acquired Pneumonia, 100 Sam G. Campbell & Tom Marrie - 12 Deep Vein Thrombosis, 113 Eddy S. Lang & Phil Wells - 13 Pulmonary Embolism, 123 Phil Wells & Michael Brown - 14 Prevention and Treatment of Influenza, 133 Stephen R. Pitts - 15 Anaphylaxis, 143 *Theodore Gaeta* # Part 3 Cardiology, 151 - 16 Chest Pain, 153 Alain Vadeboncoeur, Jerrald Dankoff & Eddy S. Lang - 17 Acute Coronary Syndromes, 165 *Kirk Magee* - 18 Acute Myocardial Infarction, 177 Bjug Borgundvaag - 19 Acute Decompensated Heart Failure, 190 Brett Jones & Sean P. Collins - 20 Atrial Fibrillation, 200 Barry Diner - 21 Ventricular and Supraventricular Arrhythmias, 214 Eddy S. Lang & Eli Segal - 22 Cardiac Arrest, 225 Riyad B. Abu-Laban & Michael Shuster # Part 4 General Medical Conditions, 235 - 23 Severe Sepsis and Septic Shock, 237 Peter W. Greenwald, Scott Weingart & H. Bryant Nguyen - 24 Delirium, 251 Denise Nassisi & Andy Jagoda - 25 Caring for the Elderly, 260 Christopher R. Carpenter, Michael Stern & Arthur B. Sanders - 26 Syncope, 271 Richard Lappin & James Quinn - 27 General Toxicology, 282 Luke Yip, Nicole Bouchard & Marco L.A. Sivilotti - 28 Toxicology: Acetaminophen and Salicylate Poisoning, 296 Mark Yarema & Richard Dart # Part 5 Injury, 305 - 29 Mild Traumatic Brain Injury, 307 Jeffrey J. Bazarian & Will Townend - 30 Neck Injuries, 316 Marcia L. Edmonds & Robert Brison - 31 Ankle Injuries, 325 *Jerome Fan* - 32 Knee Injuries, 335 Anita Pozgay & Elisabeth Hobden - 33 Wrist injuries, 344 Sandy L. Dong & Brian H. Rowe - 34 Shoulder Injuries, 350 Jenn Carpenter, Marcel Emond & Robert Brison - 35 Chest Trauma, 363 Shahriar Zehtabchi & Richard Sinert - 36 Hemorrhagic Shock, 373 Dennis Djogovic, Jonathan Davidow & Peter Brindley # Part 6 Genitourinary and Abdominal, 381 - 37 Acute Appendicitis, 383 James A. Nelson & Stephen R. Hayden - 38 Ectopic Pregnancy, 391 Heather Murray & Elisha David Targonsky - 39 Acute Ureteric Colic, 404 Andrew Worster - 40 Urinary Tract Infection, 412 Rawle A. Seupaul, Chris McDowell & Robert Bassett - 41 Pelvic Inflammatory Disease, 420 Linda Papa & Kurt Weber - 42 Pregnancy, 435 *Ashley Shreves* - 43 Gastrointestinal Bleeding, 445 Michael Bullard & Justin Cheung # Part 7 Neurosciences, 455 - 44 Transient Ischemic Attack, 457 *Ted Glynn* - 45 Stroke, 466 William J. Meurer & Robert Silbergleit - 46 Subarachnoid Hemorrhage, 475 *Jeffrey J. Perry* - 47 Bacterial Meningitis, 485 Cheryl K. Chang & Peter C. Wyer - 48 Migraine and Other Primary Headache Disorders, 493 Benjamin W. Friedman - 49 Seizures, 503 Elizabeth B. Jones - 50 The Agitated Patient, 512 Michael S. Radeos & Edwin D. Boudreaux # Part 8 ENT, 521 - 51 Sore Throat, 523 Benson Yeh & Barnet Eskin - 52 Rhinosinusitis, 534 Errol Stern - 53 Conjunctivitis, 543 Nicola E. Schiebel # Part 9 Minor Procedures, 551 - 54 Procedural Sedation and Analgesia, 553 David W. Messenger & Marco L. A. Sivilotti - 55 Wound Repair, 561 Helen Ouyang & James Quinn - 56 Soft Tissue Abscess, 571 Heather Murray - 57
Ultrasound Use: Three Select Applications, 578 Srikar Adhikari & Michael Blaivas # Part 10 Public Health, 587 - 58 Injury Prevention, 589 Mary Patricia McKay & Liesl A. Curtis - 59 Intimate Partner Violence, 600 Debra Houry - 60 Smoking Cessation, 606 Lisa Cabral & Steven L. Bernstein - 61 Immunization, 614 Jeremy Hess & Katherine L. Heilpern - 62 Alcohol and Other Drugs, 624 Barbara M. Kirrane, Linda C. Degutis & Gail D'Onofrio - 63 Elder Abuse, 635 *Ralph J. Riviello* Index, 645 A companion website with additional resources is available at www.blackwellpublishing.com/medicine/bmj/emergencymedicine/ # List of contributors # Riyad B. Abu-Laban MD, MHSc, FRCPC Assistant Professor Division of Emergency Medicine University of British Columbia Vancouver, British Columbia, Canada and Attending Physician and Research Director Department of Emergency Medicine Vancouver General Hospital Vancouver, British Columbia, Canada # Srikar Adhikari MD, RDMS Assistant Professor Department of Emergency Medicine University of Nebraska Omaha, Nebraska, USA # **Marc Afilalo** Associate Professor Department of Family Medicine McGill University Montreal, Quebec and Chief of Emergency Medicine Department of Emergency Medicine SMBD Jewish General Hospital Montreal, Quebec, Canada #### Robert Bassett DO Department of Emergency Medicine Indiana University School of Medicine Indianapolis, Indiana, USA # Jeffrey J. Bazarian MD, MPH Associate Professor Departments of Emergency Medicine and Neurology University of Rochester School of Medicine and Dentistry Rochester, New York, USA #### Steven L. Bernstein MD Vice Chair for Research Associate Professor of Clinical Emergency Medicine Family/Social Medicine, Epidemiology/ Population Health Albert Einstein College of Medicine Montefiore Medical Center Department of Emergency Medicine Bronx, New York, USA ### Michael Blaivas MD, RDMS Assistant Professor of Internal Medicine Department of Internal Medicine Northside Hospital Forsyth Cumming, Georgia, USA # Bjug Borgundvaag MD, PhD Assistant Professor Schwartz/Reisman Emergency Centre Mount Sinai Hospital Toronto, Ontario, Canada # Nicole Bouchard MD Assistant Clinical Professor Emergency Medicine Department New York–Presbyterian Hospital Columbia University Medical Center New York and Director of Medical Toxicology New York City Poison Control Center New York, USA # Edwin D. Boudreaux PhD Research Director Department of Emergency Medicine Cooper University Hospital Camden, New Jersey, USA ### Peter Brindley MD Staff Physician Division of Critical Care Medicine University of Alberta Hospital Edmonton, Alberta, Canada # Robert Brison, MD, MPH, MSc, FRCPC Professor Departments of Emergency Medicine and Community Health and Epidemiology Queen's University Kingston, Ontario, Canada # Michael Brown MD, MSc Professor of Epidemiology and Emergency Medicine College of Human Medicine Michigan State University Spectrum Health-Butterworth Hospitals Grand Rapids, Michigan, USA # Michael Bullard MD, CCFP(EM), ABEM, # FRCPC Professor Department of Emergency Medicine University of Alberta Edmonton, Alberta, Canada # Lisa Cabral MD Assistant Professor of Clinical Emergency Medicine Albert Einstein College of Medicine Montefiore Medical Center Department of Emergency Medicine Bronx, New York, USA #### Carlos A. Camargo, Jr., MD, DrPH Director, EMNet Coordinating Center Department of Emergency Medicine Massachusetts General Hospital Boston, Massachusetts, USA # Sam G. Campbell MB BCh, CCFP(EM), CHE, Dip PEC(SA) Associate Professor Department of Emergency Medicine Dalhousie University Halifax, Nova Scotia, Canada # Christopher R. Carpenter MD, MSc Assistant Professor Division of Emergency Medicine St. Louis School of Medicine Washington University St. Louis, Missouri, USA # Jenn Carpenter MD, FRCPC Assistant Professor Departments of Emergency Medicine and Community Health and Epidemiology Queen's University Kingston, Ontario, Canada # Cheryl K. Chang MD, MPH Assistant Clinical Professor Department of Medicine Columbia University College of Physicians and Surgeons New York, USA # Justin Cheung MD, FRCP Staff Physician Division of Gastroenterology Department of Medicine University of Alberta Edmonton, Alberta, Canada # Sean P. Collins MD, MSc Assistant Professor Department of Emergency Medicine University of Cincinnati Cincinnati, Ohio, USA # Matthew Cooke PhD, FCEM, FRCS(Ed) Professor of Emergency Medicine Warwick Medical School University of Warwick, Coventry and Heart of England NHS Foundation Trust Birmingham, UK #### Liesl A. Curtis MD Emergency Medicine Physician Department of Emergency Medicine Georgetown University Washington, District of Columbia, USA # Rita K. Cydulka MD, MS Associate Professor and Vice Chair Department of Emergency Medicine MetroHealth Medical Center Case Western Reserve University School of Medicine Cleveland, Ohio, USA ### Jerrald Dankoff Assistant Professor Department of Emergency Medicine McGill University Montreal, Quebec and Attending Staff Department of Emergency Medicine SMBD Jewish General Hospital Montreal, Quebec, Canada # Richard Dart MD, PhD Director Rocky Mountain Poison and Drug Center Denver. Colorado. USA ### Jonathan Davidow MD Staff Physician Department of Emergency Medicine University of Alberta Edmonton, Alberta and Division of Critical Care Medicine University of Alberta Hospital Edmonton, Alberta, Canada # Linda C. Degutis, DrPH Associate Professor Section of Emergency Medicine Yale University New Haven, Connecticut, USA # Barry Diner MD, MPH, FACEP Assistant Professor Department of Emergency Medicine Emory University School of Medicine Emory University Atlanta, Georgia, USA # Dennis Djogovic MD, FRCPC Assistant Clinical Professor Department of Emergency Medicine University of Alberta Edmonton, Alberta and Division of Critical Care Medicine University of Alberta Hospital Edmonton, Alberta, Canada # Sandy L. Dong MD, MSc, FRCPC, DABEM Assistant Clinical Professor and RCPS Assistant Program Director Department of Emergency Medicine University of Alberta Edmonton, Alberta, Canada # Gail D'Onofrio MD, MS Professor and Chair Section of Emergency Medicine Yale University New Haven, Connecticut, USA # Marcia L. Edmonds MD, MSc Staff Physician Division of Emergency Medicine University of Western Ontario London, Ontario, Canada # Marcel Emond MD, MSc, FRCPC Professor Departments of Emergency Medicine and Family Medicine Laval University Quebec, Canada ### Barnet Eskin MD PhD Assistant Research Director Department of Emergency Medicine Morristown Memorial Hospital Morristown, New Jersey, USA ### Jerome Fan MD, FRCP Staff Physician Department of Emergency Medicine McMaster University Hamilton, Ontario, Canada # Benjamin W. Friedman MD, MS Assistant Professor Department of Emergency Medicine Albert Einstein College of Medicine Montefiore Medical Center Bronx, New York, USA # Theodore Gaeta DO, MPH Vice-Chairman & Residency Director Department of Emergency Medicine New York Methodist Hospital Brooklyn, New York, USA and Associate Professor of Emergency in Clinical Medicine Weill Medical College of Cornell University New York, USA # Ted Glynn MD, FACEP Program Director Michigan State University, Emergency Medicine Residency, Lansing and Assistant Clinical Professor of Emergency Medicine Colleges of Human and Osteopathic Medicine Michigan State University East Lansing and Attending Physician Ingham Regional Medical Center Lansing, Michigan, USA ### Peter W. Greenwald MD Visiting Assistant Professor of Medicine Division of Emergency Medicine New York–Presbyterian Hospital Weill Medical College of Cornell University New York, USA # Stephen R. Hayden MD Residency Director Department of Emergency Medicine University of California at San Diego San Diego, California, USA # Katherine L. Heilpern мр Residency Director Ada Lee and Pete Correll Professor and Chair Department of Emergency Medicine Emory University School of Medicine Emory University Atlanta, Georgia, USA # Jeremy Hess MD, MPH Assistant Professor Departments of Emergency Medicine and Environmental and Occupational Health Emory University Schools of Medicine and Public Health Emory University # Elisabeth Hobden MD, FRCPC, Dip #### Sport Med Atlanta, Georgia, USA Department of Emergency Medicine The Ottawa Hospital Ottawa, Ontario, Canada # Debra Houry мд, мрн Director, Center for Injury Control Vice Chair for Research Department of Emergency Medicine, Emory University Atlanta, Georgia, USA # Andy Jagoda MD Professor Department of Emergency Medicine Mount Sinai School of Medicine New York, USA ### Brett Jones MD. PhD Staff Physician Ya vapai Medical Center Prescott, AZ, USA # Elizabeth B. Jones MD, FACEP Assistant Professor Department of Emergency Medicine University of Texas Health Science Center Houston, Texas, USA # Barbara M. Kirrane мо Assistant Professor Section of Emergency Medicine Yale University New Haven, Connecticut, USA # Sunil Kripalani MD, MSc Assistant Professor Division of General Internal Medicine and Public Health Vanderbilt University Nashville, Tennessee, USA # Eddy S. Lang MDCM, CCFP(EM), CSPQ Assistant Professor of Emergency Medicine Department of Family Medicine McGill University Montreal, Quebec and Attending Physician Department of Emergency Medicine SMBD Jewish General Hospital Montreal, Quebec, Canada # Richard Lappin MD, PhD Assistant Professor of Clinical Medicine and Assistant Attending Physician Department of Emergency Medicine New York–Presbyterian Hospital Weill Cornell Medical Center New York, USA # Joel Lexchin MD Professor, School of Health Policy and Management York University Toronto, Ontario and Associate Professor Department of Family and Community Medicine University of Toronto, Toronto and Attending Staff Emergency Department University Health Network Toronto, Canada # Kirk Magee MD, MSc, FRCP(C) Associate Professor and RCPS Program Director Department of Emergency Medicine Dalhousie University Halifax, Nova Scotia and QEII Health
Sciences Centre Halifax Infirmary Halifax, Nova Scotia, Canada # Tom Marrie MD, FRCPC Professor and Dean Faculty of Medicine and Dentistry University of Alberta Edmonton, Alberta, Canada #### Chris McDowell MD Department of Emergency Medicine Indiana University School of Medicine Indianapolis, Indiana, USA # Mary Patricia McKay, MD, MPH Associate Professor Department of Emergency Medicine George Washington University Washington, District of Columbia, USA ### Ann McKibbon PhD Associate Professor Department of Clinical Epidemiology and Biostatistics McMaster University Hamilton, Ontario, Canada # David W. Messenger MD Assistant Professor Department of Emergency Medicine Queen's University Kingston, Ontario, Canada # William J. Meurer MD Lecturer in Emergency Medicine and Neurology Department of Emergency Medicine University of Michigan Ann Arbor, Michigan, USA # Heather Murray MD, MSc, FRCP(C) Assistant Professor Departments of Emergency Medicine and Community Health and Epidemiology Queen's University Kingston, Ontario, Canada #### Denise Nassisi MD Assistant Professor Department of Emergency Medicine Mount Sinai School of Medicine New York, USA #### James A. Nelson MD Assistant Clinical Professor Department of Emergency Medicine University of California at San Diego San Diego, California, USA ### David H. Newman, MD Assistant Professor Department of Medicine Columbia University College of Physicians and Surgeons, New York and Director of Clinical Research Department of Emergency Medicine St. Luke's/Roosevelt Hospital Center New York, USA # H. Bryant Nguyen MD, MS Associate Professor Departments of Emergency Medicine and Medicine Division of Pulmonary and Critical Care Medicine Loma Linda University Loma Linda, California, USA # Helen Ouyang MD, MPH Resident Physician in Emergency Medicine Department of Emergency Medicine Brigham and Women's Hospital *and* Massachusetts General Hospital Boston, Massachusetts, USA # Linda Papa MD, MSc, CCFP, FRCP(C), Director of Academic Clinical Research Department of Emergency Medicine Orlando Regional Medical Center Orlando, Florida and Adjunct Professor Department of Emergency Medicine College of Medicine, University of Florida Gainsville, Florida and Clinical Associate Professor Florida State University College of Medicine Tallahassee, Florida, USA # Jeffrey J. Perry MD, MSc, CCFP-EM Assistant Professor Department of Emergency Medicine University of Ottawa Ottawa, Ontario, Canada # **Stephen R. Pitts** Associate Professor Department of Emergency Medicine Emory University School of Medicine Emory Crawford Long Hospital Atlanta, Georgia, USA # Anita Pozgay MD, FRCPC, Dip Sports Med Assistant Professor Department of Emergency Medicine The Ottawa Hospital Ottawa. Ontario. Canada #### James Ouinn MD. MS Associate Professor of Surgery/Emergency Medicine Division of Emergency Medicine Stanford University Stanford, California, USA # Michael S. Radeos MD Research Director Department of Emergency Medicine New York Hospital Queens Flushing, New York, USA # Ralph J. Riviello MD, MS, FACEP, FAAEM Associate Professor Director of Clinical Research and Associate Program Director Department of Emergency Medicine Thomas Jefferson University Philadelphia, Pennsylvania, USA # Brian H. Rowe MD, MSc, CCFP(EM), FCCP Professor and Research Director Department of Emergency Medicine University of Alberta Edmonton, Alberta, Canada ## Arthur B. Sanders MD Professor Department of Emergency Medicine University of Arizona College of Medicine Tucson, Arizona, USA ### Nicola E. Schiebel MD, FRCPC Assistant Professor Department of Emergency Medicine Mayo Clinic Rochester, Minnesota, USA # Michael Schull MD, MSc, FRCPC Senior Scientist Institute for Clinical Evaluative Sciences Toronto and Director Division of Emergency Medicine Department of Medicine University of Toronto Toronto, Canada # Eli Segal Staff Physician Department of Family Medicine McGill University Montreal, Quebec and Department of Emergency Medicine SMBD Jewish General Hospital Montreal, Quebec, Canada # Rawle A. Seupaul MD Associate Professor of Clinical Emergency Medicine Department of Emergency Medicine Indiana University School of Medicine Indianapolis, Indiana, USA # Ashley Shreves MD Attending Physician Department of Emergency Medicine St. Luke's–Roosevelt Hospital New York, USA # Michael Shuster MD, FRCPC Staff Physician Department of Emergency Medicine Mineral Springs Hospital Banff, Alberta, Canada # Robert Silbergleit MD Associate Professor Department of Emergency Medicine University of Michigan Ann Arbor, Michigan, USA ### Richard Sinert DO Associate Professor and Research Director Department of Emergency Medicine Downstate Medical Center State University of New York Brooklyn, New York, USA # Marco L. A. Sivilotti MD, MSc, FRCPC, FACEP, FACMT Associate Professor Departments of Emergency Medicine and Pharmacology and Toxicology Queen's University Kingston, Ontario and Consultant Ontario Poison Centre Toronto, Ontario, Canada # Errol Stern MDCM, FRCPC, FACEP, CSPQ Assistant Professor Department of Family Medicine McGill University Montreal, Quebec and Attending Staff Emergency Medicine SMBD Jewish General Hospital Montreal, Quebec, Canada #### Michael Stern MD Assistant Professor of Medicine Department of Medicine Division of Emergency Medicine Weill Cornell Medical Center New York, USA # Elisha David Targonsky BSc, MSc Departmental Assistant Department of Emergency Medicine and Community Health and Epidemiology Queen's University Kingston, Ontario, Canada # Will Townend MD, FCEM Department of Emergency Medicine Hull Royal Infirmary Hull, UK # Suneel Upadhye MD, MSc, FRCPC, ABEM Assistant Clinical Professor Division of Emergency Medicine McMaster University Hamilton, Ontario, Canada # Alain Vadeboncoeur MD, CCFP, CSPQ (EM) Assistant Professor Department of Family Medicine University of Montreal Montreal, Quebec and Chief of Emergency Medicine Montreal Heart Institute Montreal, Quebec, Canada # Kurt Weber MD Attending Physician Department of Emergency Medicine Orlando Regional Medical Center Orlando, Florida and Clinical Assistant Professor Florida State University College of Medicine Tallahassee, Florida, USA # Scott Weingart MD Director Division of Emergency Critical Care Department of Emergency Medicine Mount Sinai School of Medicine New York, USA # Phil Wells MD. MSc. FRCPC Professor and Chief Division of Hematology Department of Medicine University of Ottawa Ottawa, Ontario and Director of Clinical Research The Ottawa Hospital Ottawa, Ontario, Canada # Ursula Whalen MD Division of General Internal Medicine and Public Health Vanderbilt University Nashville, Tennessee, USA # Andrew Worster MD, CCPF (EM), MSc, FCFP Associate Professor Emergency Medicine Clinical Epidemiology & Biostatistics McMaster University Hamilton, Ontario, Canada # Peter C. Wyer MD Associate Clinical Professor Department of Medicine Columbia University College of Physicians and Surgeons New York, USA ### Mark Yarema MD, FRCPC Division Chief, Research Department of Emergency Medicine Calgary Health Region Calgary, Alberta, Canada # Benson Yeh MD Residency Director Department of Emergency Medicine Brooklyn Hospital Center Brooklyn, New York, USA # Luke Yip MD, FACMT, FACEM, FACEP Consultant Department of Emergency The Prince Charles Hospital Chermside, Queensland, Australia and Attending Faculty Rocky Mountain Poison and Drug Center Denver, Colorado and Attending Staff Physician Department of Medicine Division of Medical Toxicology Denver Health Medical Center Denver, Colorado and Clinical Assistant Professor School of Pharmacy University of Colorado Health Sciences Center #### Shahriar Zehtabchi MD Denver, Colorado, USA Associate Professor Department of Emergency Medicine Downstate Medical Center State University of New York Brooklyn, New York, USA # Foreword Although the specialty of emergency medicine is only 40 years old, it has quickly matured into one of the most important arenas of practice in health care. In the United States, half of all hospital admissions and 11% of all outpatient health care encounters take place through emergency departments [1]. In Canada, which has placed a stronger emphasis on primary care, the percentages are smaller, but they are nonetheless substantial. Today, the term "ER" applies to more than a single room in the hospital, or even a popular television show. It is a comprehensive, multifaceted department that provides an astonishing array of advanced medical services, including rapid assessment and stabilization of patients with urgent or life-threatening conditions; medical direction of prehospital emergency medical services (EMS), cost-effective urgent care in specially designated "fast-track" areas, and detailed management of selected patients in emergency-department-based clinical decision units. Practicing emergency medicine has always been challenging: patients arrive at all hours of the day and night; the range of problems emergency physicians encounter is incredibly broad; and the consequences of error are high. Undaunted, the doctors who established the specialty moved quickly to define its core competencies and teach them to a rapidly expanding circle of colleagues. They also worked diligently to secure recognition for their efforts in the House of Medicine. Almost as quickly, some of their number started figuring out how to make emergency care better. Forty years later, the tens of millions of patients who annually seek care in hospital emergency departments and the tens of thousands of emergency physicians who treat them owe a debt of gratitude to the specialty's founders. Today, thousands of well-trained emergency physicians annually graduate from over 100 emergency medicine residency training programs in the United States and many more programs internationally. Across the developed world, modern emergency departments conduct comprehensive diagnostic evaluations and provide treatments that used to require a
multiday stay in the hospital. In fact, emergency medicine has become such an integral component of modern health care that it is difficult to imagine how the system could function without it. Concurrent with the growth and maturation of the specialty, emergency physicians have expanded their focus from providing life-saving care to whoever rolls through the door to medical direction of EMS and disaster medicine, education of medical students, residents and other health care professionals, performance of cutting-edge research, administrative leadership of emergency departments, hospitals and health systems, public health surveillance, *and* knowledge translation. But all is not rosy. In some respects, emergency medicine has become a victim of its own success [2]. Over the past 15 years, society's growing reliance on emergency care has outstripped emergency medicine's capacity to meet this expanding need. In 2006, the Institute of Medicine (IOM) of the National Academies, a highly influential nongovernmental organization in the United States, issued three reports on the future of emergency care in the U.S. health system [3–5]. The picture it painted was troubling—despite dramatic improvements in emergency care, and the unquestioned dedication of those who provide it, the gap between public's need and system's capacity to meet it has grown so wide that hospital-based emergency care is (in the words of the IOM) at the "breaking point." The IOM emergency care reports explicitly focused on the United States; however, many of its observations were equally germane to the emergency care systems of Canada, Australasia, Europe, and other parts of the developed world. Chief among these is the need to advance the quality, safety, and efficiency of emergency care through research, coupled with rapid translation of new knowledge to bedside care. The arguments for accelerating knowledge translation are compelling. The quickening pace of biomedical research and new developments in biomedical technology have dramatically expanded the diagnostic and treatment options available to emergency physicians. For example, advances in the detection of acute coronary syndrome and the discovery of thrombolytic therapy have given emergency physicians the ability to identify and abort many episodes of acute myocardial infarction before the condition causes death or irreversible harm. Moreover, other diseases that previously required many days of hospitalization (such as deep vein thrombosis, or DVT) can now be diagnosed by emergency physicians and managed in the outpatient setting. As history has taught us, not every newly developed treatment is a resounding success. Many turn out to be less beneficial than originally claimed. Some tests and treatments are so skillfully marketed that they work their way into standard practice despite inadequate evidence of their effectiveness or an imperfect understanding of their risks. Historic examples include incidents of torsade de pointes following more widespread use of ibutalide for atrial fibrillation and the development of renal failure in some patients receiving nesiritide for heart failure. To add to the modern clinician's dilemma, sometimes a long-established mainstay of emergency care is overturned by new evidence. No one can predict which test or treatment in routine use today will join Ewald tubes, corticosteroids for head trauma, intravenous aminophylline, and military antishock trousers in the dustbin of emergency medicine history. If old (and time-tested) is not necessarily good, and new (and more expensive) is not necessarily better, where can a busy practitioner turn for guidance? The traditional strategy—asking a senior colleague for advice—does not work anymore. Management by anecdote/experience is unreliable (see "old and time-tested," above). Expert consensus, also known as the BOGGSAT* approach, is little better. It often recycles conventional wisdom or falls for the latest fad. Industry claims should always be viewed with skepticism, especially when accompanied by food or gifts. And the latest peer-reviewed study, even one published in a prestigious journal, may be overturned by subsequent research. Evidence-based medicine (EBM) was created to meet the clinician's need for objective guidance in patient care. A simple term for a very complex task, EBM is a rigorous approach to finding and analyzing the best available evidence on any clinical question. Because EBM respects the principle of patient autonomy, it does not limit its recommendations to "the best" test or treatment; it presents acceptable alternatives. Moreover, a clinician's experience is also valued in EBM as part of the decision-making process. Championed by international groups such as The Cochrane Collaboration [6], the EBM movement has tackled a growing list of questions. Many of them are relevant to emergency medicine [7]. This book was conceived to place the power and intellectual integrity of the EBM approach into the hands of busy emergency care providers. The brainchild of a group of Canadian and U.S. academic emergency physicians, *Evidence-based Emergency Medicine* (EBEM) takes a different tack than that of traditional textbooks. Rather than providing a detailed review of the pathophysiology of every condition, *EBEM* is designed to answer the direct, give-methe-bottom-line questions emergency physicians ask in the middle of their shifts—questions like "How useful is D-dimer for detecting DVT, a problem I can't afford to miss?" (answer in Chapter 12) and "What is the best intervention for treating acute migraine headache among the many available to me?" (answer in Chapter 48). To assemble this compilation, EBEM's chief editor Brian Rowe and his fellow section editors Eddy Lang, Debra Houry, Michael Brown, Dave Newman, and Peter Wyer tapped many of emergency medicine's leading experts in EBM and the book's topics. The result is a practical guide to thoughtful practice, based on the highest level of evidence available. Does this book represent the "final word" on these conditions? Absolutely not. The editors will be the first to acknowledge this. It does represent, however, the best evidence currently available from the world's literature on these topics. As more research is published, some of the recommendations may change in future editions. Medicine is not static; it grows and evolves over time. The editors expect that their EBEM textbook will do the same. Will you find answers to every important question in this book? Not yet. This is, after all, a first edition. As the IOM pointed out in its *Future of Emergency Care* series, there is a pressing need for more research in emergency care. If you scour the pages of this book and cannot find an answer for *your* question, do not feel frustrated or give up. Rather, I suggest you contact the editors and volunteer to submit an evidence synthesis for the second edition of *Evidence-Based Emergency Medicine*. Arthur L. Kellermann, MD, MPH Professor and Associate Dean for Health Policy Emory School of Medicine Atlanta, Georgia, USA ### References - 1 Pitts SR, Niska RW, Xu J, Burt C. National Hospital Ambulatory Medical Care Survey: 2006 Emergency Department Summary. National Health Statistics Reports No. 7. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Rockville, MD (accessed August 6, 2008). http:// www.cdc.gov/nchs/data/nhsr/nhsr007.pdf. - 2 Kellermann AL. Crisis in the emergency department. N Engl J Med 2006;355(13):1300–3. - 3 Institute of Medicine Committee on the Future of Emergency Care in the U.S. Health System. Hospital Based Emergency Care: At the Breaking Point. The National Academies Press, Washington, DC, 2006. - 4 Institute of Medicine Committee on the Future of Emergency Care in the U.S. Health System. *Emergency Medical Services: At the Crossroads*. The National Academies Press, Washington, DC, 2006. - 5 Institute of Medicine Committee on the Future of Emergency Care in the U.S. Health System. *Pediatric Emergency Care: Growing Pains*. The National Academies Press, Washington, DC, 2006. - 6 The Cochrane Collaboration. Available at http://www.cochrane.org/ (accessed August 5, 2008). - 7 Emond SD, Wyer PC, Brown MD, Cordell WH, Spooner CH, Rowe BH. How relevant are the systematic reviews in the Cochrane Library to emergency medical practice? *Ann Emerg Med* 2002;39:153–8. ^{*} BOGGSAT = "Bunch of guys and gals sitting around a table." # Acknowledgments The editors would like to acknowledge the publishers Wiley-Blackwell, and especially Ms. Mary Banks, for assisting in the early development of the *Evidence-based Emergency Medicine* idea. We would also like to express our sincerest appreciation to our development editor at Wiley-Blackwell, Ms. Laura Beaumont, for her guidance, patience and friendship during the production of this book. We wish her continued success in her future work. We would also like to thank the *Evidence-based Emergency Medicine* authors for their often Herculean efforts to produce the chapters that have contributed to the success of this book. We are indebted to Mirjana Misina for her careful guidance through production editing. Finally, as the editor, I would like to personally thank the section editors for their time, interest and dedication to the completion of this book. Brian H. Rowe # List of Abbreviations | ABC | airway, breathing and circulation | ES | effect size | |---------------------|--|----------|--| | ACE | angiotension-converting enzyme | FAST | focused assessment with sonography for trauma | | ACEP | American College of Emergency Physicians | FDA | US Food and Drug Administration | | AHRQ | Agency for Healthcare Research and Quality | FEV_1 | forced expiratory volume in one second | | AP | anteroposterior | GCS | Glasgow Coma Score | |
ARR | absolute risk reduction | HA | Headache | | ASA | acetyl-salicylic acid | HIV | human immunodeficiency virus | | BET | best evidence topic | HR | hazard ratio | | β_2 -agonists | beta-2-receptor agonist agents | ICC | intraclass correlation coefficient | | BMJ | British Medical Journal | ICD | International Classification of Disease | | CADTH | Canadian Agency for Drugs and Technologies in | ICU | intensive care unit | | | Health | IM | intramuscular | | CATS | critically appraised topics | INR | international normalized ratio | | CDC | Centers for Disease Control and Prevention | IQR | inter-quartile range | | CDSR | Cochrane Database of Systematic Reviews | IV | intravenous | | CENTRAL | Cochrane Central Register of Controlled Trials | JAMA | Journal of the American Medical Association | | CI | confidence interval | KT | knowledge translation | | CINAHL | Compedium of International Nursing and Allied | L | liters | | | Health Literature | LMW | low molecular weight | | CME | continuing medical education | LOS | length of stay | | COPD | chronic obstructive pulmonary disease | LR | likelihood ratio | | CPD | continuing professional development | LWBS | left without being seen | | CPG | clinical practice guidelines | MDI | metered dose inhaler | | CPR | clinical prediction rule | MEDLINE | National Library of Medicine electronic database | | CT | computerized tomography | MeSH | medical subject heading | | CXR | chest X-ray | mg | milligram | | DARE | Database of Abstracts of Reviews of Effects | $MgSO_4$ | magnesium sulfate | | DSM | Diagnostic and Statistical Manual of Mental | MI | myocardial infarction | | | Disorders, 4th edn | ml | milliliters | | DVT | deep vein thrombosis | MMSE | Mini Mental Status Examination | | EBEM | evidence-based emergency medicine | MRI | magnetic resonance imaging | | EBM | evidence-based medicine | MRSA | methicillin-resistant Staphylococcus aureus | | ECG | electrocardiogram | NHS | UK National Health Service | | ED | emergency department | NICE | National Institute for Health and Clinical | | ELISA | enzyme-linked immunoadsorbent assay | | Excellence | | EMBASE | European-based electronic database maintained | NNH | number needed to harm | | | by Elsevier | NNT | number needed to treat | | EMS | emergency medical services | NSAID | non-steroidal anti-inflammatory drug | | O_2 | oxygen | RRR | relative risk reduction | |--------|--|---------|--| | OR | odds ratio/s | SaO_2 | oxygen saturation | | PBL | problem-based learning | SARS | severe acute respiratory syndrome | | PDSA | plan, do, study and act | SC | subcutaneous | | PE | pulmonary embolism | SD | standard deviation | | PEF | peak expiratory flow | SMD | standardized mean difference | | PICO | population, intervention, control and outcome | SR | systematic review | | PICO-D | population, intervention, control, outcome and | STEMI | ST segment elevation myocardial infarction | | | design | SVC | superior vena cava | | PO | per oral | TBI | Traumatic brain injury | | QI | quality improvement | TIA | transient ischemic attack | | RCA | root cause analysis | t-PA | tissue plasminogen activator | | RCE | Rational Clinical Examination Series of JAMA | VTE | venous thromboembolism | | RCT | randomized controlled trial | WBC | white blood cell | | ROC | receiver operating curve | WHO | World Health Organization | | RR | relative risk/s | WMD | weighted mean difference | # **Evidence-Based Emergency Medicine: Companion Website** Additional resources to accompany this book are available at: www.blackwell publishing.com/medicine/bmj/emergency medicine This site provides: - Useful evidence-based online calculator, free to download - Useful links to our other evidence-based resources and to external websites and information - An opportunity to send us your feedback on this book and on the Evidence Based series - Post-publication updates added by the authors # 1 General Issues # Introduction # Brian H. Rowe¹ & Peter C. Wyer² ¹Department of Emergency Medicine, University of Alberta, Edmonton, Canada # **Case scenario** A 25-year-old woman presented to an emergency department (ED) with an exacerbation of her migraine headaches. Her migraine headaches had previously been well controlled; however, stressful conflicts had recently occurred at work, she had not been able to sleep properly for two nights and she admitted unusually low fluid intake for the previous 2 days. She reported that her headache developed gradually, was associated with nausea and vomiting, and she rated the headache as 9 on a 10-point headache pain scale. She denied fever, syncope or other signs of pathological headaches, and assessed the episode as being "similar to my last migraine headache that brought me to the emergency department 2 years ago". She improved quickly with intravenous saline and metoclopramide and was ready for discharge home after 90 minutes. Her headache at reassessment was 1 out of 10 and her nausea had resolved. The patient informed you that she was late for an important work meeting that would consume her time for the next 2 days and wondered what she could do to minimize the risk of suffering a recurrence. # Introduction What is evidence-based emergency medicine (EBEM) and why is there such a controversy over the concept and contempt for the phrase? The term evidence-based medicine (EBM) was first coined in the early 1990s by Gordon Guyatt [1] and has now become a stable in the medical lexicon. In addition to EBM's long history, controversy exists regarding its components and value in decision making [2,3]. In most cases, however, it can be described as the combined use of experience, best evidence and patient's preference and values to develop an approach to a clinical problem, often referred to as *evidence-based medical care*. The migraine headache example may help readers better understand the concept. The patient's question related to prevention of headache and this topic is well covered in the chapter on migraine headaches in this book (See chapter 48). From an evidence perspective, the well-informed clinician knows that there is evidence that a dose of dexamethasone in the emergency department (ED) (best evidence based on a systematic review (SR) of randomized controlled trials (RCTs)) is helpful [4]. Moreover, experience reminds the clinician that patients with moderate to severe migraine headaches also can deteriorate, re-present to the ED, and/or lose valuable time from work and other activities (clinical experience). The clinician is concerned and wishes to protect the patient from any and all of these events (and so does her employer). Unfortunately, the patient protests this decision because corticosteroids cause her to develop acne, retain water and have insomnia. She also has a major weekend function and feels these medications may create havoc with her social life. Despite the clinician's reassurances, she refuses the intravenous corticosteroid treatment (patient preference and values). Readers in clinical practice will be very familiar with this type of scenario. What is the evidence-based decision in this case? Some traditionalists may suggest that their decision is final and the patient should accept the corticosteroid treatment. The EBM clinician might further use the available evidence to explain the benefits and risks of treatment options, in conjunction with the patient's preference and his/her experience. In the event that agreement cannot be reached between the clinician and the patient, the EBEM approach would propose an alternative "next-best evidence" and similarly reasonable approach. For example, the clinician may recognize that reduction of pain to less than two out of ten reduces headache relapse [5]. Moreover, the addition of education about triggers and very close follow-up may improve outcomes in such patients. It is this combination of evidence, patient preference and clinical experience that coalesces to form the EBEM decision. ²Department of Medicine, Columbia University College of Physicians and Surgeons, New York, USA # Why EBEM? The EBM approach may seem intuitive to many emergency practitioners. However, when originally proposed, debate ensued, and in some cases continues [6,7]. This forces the question: why is this being proposed in emergency medicine? In a therapy issue, clinicians must ultimately decide whether the benefits of treatment are worth the costs, inconvenience, and harms associated with the care. This is often a difficult task; however, it is made more difficult by the exponentially increasing volume of literature and the lack of time to search and distill this evidence [8]. Although clinicians of the early 21st century have an urgent need for just-in-time, on-demand clinical information, their time to access such information has likely never been as compressed. Increases in patient volume and complexity, patient care demands, and the lack of access to resources have exacerbated the work frustrations for many clinicians. These concerns often take precedence over seeking the most relevant, up-to-date and comprehensive evidence for patient problems. Despite the fact that the most common problems posed by patients presenting to emergency rooms are encountered daily around the world, appropriate treatment approaches are often not fully employed and practice variation is impressive. For a variety of reasons, the results from high level evidence such as RCTs are not readily available to busy clinicians and keeping up to date is becoming increasingly difficult. Moreover, a valid, reliable and upto-date clinical bottom line to guide treatment decisions has been elusive [8]. However, availability of high quality published trials and systematic reviews relevant to an area of practice are not the only components necessary to practicing "best evidence medicine". Clinicians also need
rigorously produced, synthesized best evidence information to assist them at the point of care. In emergency care, time is increasingly more precious and the need for this digestible information has never been greater. ### Levels of evidence A wide variety of tools to describe levels of evidence have been developed and employed in clinical medicine to reflect the degree of confidence to which results from research may be accepted as valid. From levels of evidence, strengths of recommendations are generated which are graded according to the strength of the scientific evidence supporting them. These levels of evidence can be criticized for being different with each set of guidelines or report, being overly complex, and being almost universally focused on therapeutic interventions. Recently, a group of experts in the field of guidelines introduced a grading system as part of an effort to develop a single approach supported by international consensus. The Grades of Recommendation, Assessment, Development and Evaluation (GRADE) Working Group have published their recommendations, which have been adopted by increasing numbers of specialty and health policy organizations [9]. The GRADE system classifies quality of evidence into one of four levels (high, moderate, low and very low) and quality of recommendations in one of two levels (strong and weak). Once again, an example may be illustrative. In the case scenario described above dealing with therapy, the highest level of evidence (HIGH) is based on RCTs. A single RCT can retain HIGH grading if there are no study limitations, the threats to validity are low, the association is strong and adjustments for all potential confounders have been performed. Although HIGH status is awarded to RCTs, many trials in emergency medicine are not large enough to maintain this evidence status. The evidence would similarly retain its HIGH ranking if meta-analysis of two or more similar trials show consistency of effect and statistically significant relative risk (RR) results (> 2.0 or < 0.5 for reduction) [10]. Fortunately, in this case, the systematic review does support the single clinical trial identified (see Chapter 48). While considerable debate exists regarding the relative merits of evidence derived from large individual trials versus systematic reviews [11], due to the costs associated with large, multi-centered trials, they remain uncommon across emergency medicine and remain restricted to certain topic areas (e.g., cardiology, rheumatology, stroke, and so forth). While examples of large databases and observational studies do exist in emergency medicine [12], smaller studies are much more common. Consequently, it is likely that systematic reviews will play an increasingly important role in the future decisions made by patients, clinicians, administrators and society in all areas of health care. MODERATE evidence is based on RCTs that contain flaws that preclude a HIGH evidence rating or observational studies. The RCTs may show either positive trends that are not statistically significant or no trends and are associated with a high risk of false-negative results. The observational studies may be elevated to HIGH evidence (from LOW) in certain cases, such as when a statistically significant relative risk of > 5 (< 0.2) is identified based on direct evidence with no major threats to validity. Finally, a LOW level of evidence is based on observational studies of any kind (e.g., cohorts, case series, case–control studies or cross-sectional studies). VERY LOW grading can be achieved when evidence is based on observational studies of low quality or the opinion of respected authorities or expert committees as indicated in published consensus conferences or guidelines. In diagnostic studies, the same rules apply; however, most of the studies in this setting are not RCTs. Given the relatively recent development of the GRADE system, the editors of this text have not required authors to apply this in each chapter; although, given the summary of evidence provided in each chapter, readers should be able to rate the evidence presented using the general guide. Moreover, future editions of the book will focus on GRADE or similar systems of evidence assessment. # Levels of evidence and systematic reviews As discussed above, one possible solution to the information dilemma for clinicians is to focus on evidence from systematic reviews (SRs) [13]. SRs address a focused clinical question, utilize comprehensive search strategies to avoid publication and selection biases, assess the quality of the evidence and, if appropriate, employ meta-analytic summary statistics to synthesize the results from research on a particular topic with a defined protocol. They represent an important and rapidly expanding body of literature for the clinician dealing with patients presenting to the emergency setting and they are an integral component of EBM. Although there has been a recent increase in the production of diagnostic testing SRs, the most common application of SRs is in therapeutic interventions in clinical practice. One important exception is the Rational Clinical Examination (RCE) series published in the *Journal of the American Medical Association* (*JAMA*). This series presents SRs in the field of diagnostic testing (especially clinical examination and laboratory/imaging testing). Finally, the Cochrane Collaboration has developed a Diagnostic Methods Working Group and is planning to introduce diagnostic test systematic reviews to their collection of products in the near future. Unfortunately, the methodology of diagnostic SRs lags behind that of the therapeutic SRs; however, there are strong indications that this is changing. Despite publications illustrating the importance of methodological quality in conducting and reporting both RCTs [14] and SRs [15], not all SRs are created using the same rigorous methods described above. Like most other research, variable methodological quality has been identified in systematic reviews. High-quality SRs of therapies attempt to identify the literature on a specific therapeutic intervention using a structured, *a priori* and well-defined methodology contained in a protocol. Rigorously conducted SRs are recognizable by their avoidance of publication and selection bias. For example, they include foreign language, both published and unpublished literature, and employ well-described comprehensive search strategies to avoid publication bias. Their trial selection includes studies with similar populations, interventions/controls, outcomes and methodologies and use of more than one "reviewer" to select included studies. Systematic reviews regarding therapy would most commonly combine evidence from RCTs. In the event that statistical pooling is possible and clinically appropriate, the resultant pooled estimate represents the best "summary estimate" of the treatment effect. A systematic review with summary pooled statis- tics is referred to as a *meta-analysis*, while one is without summary data is referred to as a *qualitative systematic review*. Both of these options represent valid approaches to reporting SRs and both are now increasingly commonly published in the medical literature In the field of emergency medicine, SRs have been evaluated and found to contain serious flaws that potentially introduce bias into their conclusions [16]. This is an alarming picture for the profession, and one that needs to be addressed by members as well as authors and journal editors. Most of this research was completed prior to the establishment of the QUOROM (Quality of Reporting of Meta-analyses) statement; however, recent evidence suggests that this situation has not resulted in dramatic improvements in the quality of published SRs [17]. Consequently, ED physicians must be vigilant in their search for and evaluation of SRs as they pertain to this field. # The Cochrane Collaboration The Cochrane Collaboration, a multinational, volunteer, collaborative effort on the part of researchers, clinicians from all medical disciplines, and consumers, represents one source of high-quality systematic review information available to most clinicians with very little effort [18]. The Cochrane Library is a compendium of databases and related instructional tools. As such, it is the principal product of the large international volunteer effort in the Cochrane Collaboration. Within the Collaboration, specific review groups are responsible for developing, completing and updating SRs in specific topic areas. For example, the Cochrane Airway Group (CAG: www.cochrane-airways.ac.uk) is responsible for "airway" topics (e.g., asthma, chronic obstructive pulmonary disease, pulmonary embolism). Reviewers within the Cochrane review groups represent consumers, researchers, physicians, nurses, physiotherapists, educators and others interested in the topic areas. Not all review groups have produced acute care reviews; however, ED topics are particularly well covered by some (e.g., CAG) [19]. Recently the relevance of the Cochrane Collaboration effort to emergency medicine has been enhanced through the advent of the Cochrane Prehospital and Emergency Health Field (CPEHF: www.cochranepehf.org), which is expected to substantially increase the number of reviews with direct relevance to this specialty [20]. Systematic reviews produced by members of the Cochrane Collaboration are the products of *a priori* research protocols, meet rigorous methodological standards, and are peer reviewed for content and methods prior to dissemination. Specifically, this process of review production is designed to reduce bias and ensure validity, using criteria discussed in the *JAMA* User's Guide series [21]. As much as possible, this text book will focus on evidence derived from SRs, and as often as possible, those contained within the Cochrane Library. # The Cochrane Library and emergency medicine The Cochrane Library is comprised of
several databases, three of which deserve some description and discussion here as they relate to this EBEM textbook. The Cochrane Central Register of Controlled Trials (CENTRAL) is an extensive bibliographic database of controlled trials that has been identified through structured searches of electronic databases, and hand-searching by Cochrane review groups. Currently, it contains over 300,000 references (Cochrane Library, 2007, Issue 4) and can function as a primary literature searching approach with therapeutic topics. The Database of Abstracts of Reviews of Effects (DARE) consists of critically appraised structured abstracts of non-Cochrane published reviews that meet standards set by the Centre for Reviews and Dissemination at the University of York, England. Currently, DARE contains over 3500 reviews (Cochrane Library, 2007, Issue 4). The last, and possibly most important, resource is the Cochrane Database of Systematic Reviews (CDSR), a compilation of regularly updated SRs with meta-analytic summary statistics. Currently, the CDSR contains over 1200 protocols and 3500 completed reviews (Cochrane Library, 2007, Issue 4). Contents of the CDSR are contributed by Cochrane review groups, representing various medical topic areas (e.g., airways, stroke, heart, epilepsy, etc.). Within the CDSR, "protocols" describe the objectives of SRs that are in the process of being completed; "completed reviews" include the full text, and usually present summary statistics. Both protocols and reviews are produced using a priori criteria, adhere to rigorous methodological standards and undergo peer review prior to publication. Regular "updates" are required to capture new evidence and address criticisms and/or identified errors. The quality of systematic reviews contained within the Cochrane Library has been shown to be consistently high for individual topic areas as well as throughout the Cochrane Collaboration [22,23]. Recent evidence evaluated the quality of a random selection of SRs published in 2004 and, long after the production of the QUOROM guidelines, found some intriguing results [24]. First and foremost, the volume of SRs identified suggested a rapid proliferation of SRs in health care. Second, 71% of the reviews involved a therapeutic area, recapitulating our previous comment about SRs being less common in diagnostic areas. Finally, there were large differences identified between Cochrane and non-Cochrane reviews in the quality of reporting several important characteristics; Cochrane reviews were rated as higher quality. Overall, the reviewers reiterated the variable quality of some reviews in the literature and the need to be cautious when using these reviews in health care decisions. Prehospital and emergency medicine involvement has been limited across the Cochrane Collaboration and in many review groups, consequently topics of interest to emergency physicians have perhaps not been a priority. The development of the CPEHF in 2004 was an important milestone for evidence-based prehos- pital and emergency medicine [25]. CPHEF was registered as an official entity of the Cochrane Collaboration and now has more than 3000 registered members (F. Archer, personal communication). The focus of CPEHF is prehospital (management up to the delivery in the emergency department), emergency (up to hospitalization) and disaster medicine. One of the functions of the field is to develop and maintain a register of studies relevant to the areas of prehospital and emergency health care. CPEHF has developed a validated search strategy to identify SRs and reports of trials in the Cochrane Library that are based on research that was conducted in the prehospital environment [26]. # Evidence-based Emergency Medicine format We are excited about highlighting the approaches to the diagnosis and treatment of common emergency conditions that will be detailed in this book. The editors of *Evidence-based Emergency Medicine* have attempted to select experts in both emergency medicine (content) as well as evidence-based medicine (methodology) to author this text. Following this introductory section, the remainder of the chapters will focus on individual topic areas. The chapters in this book have all been organized in a similar fashion using the following format: - 1 Case scenario/vignette: Each chapter author has been asked to describe a patient scenario upon which the remainder of the chapter will be based. Authors have been instructed to provide a real-world clinical problem. - 2 Questions that arise from the case: Using the PICO methodology described below, questions will be developed from each clinical case. These clinical scenarios will be used to identify important questions relevant to the diagnosis, therapy, adverse effects, and so forth of conditions commonly encountered in emergency practice. While these questions are not all inclusive, they do represent key questions following discussion among the authors and the section editors. - 3 Literature search: A brief description of the search strategies employed to identify the relevant research used to answer the clinical question will be provided. In general, the evidence from systematic reviews, especially those available in the Cochrane Library, the JAMA RCE series and large health technology assessment (HTA) resources (e.g., Agency for Healthcare Research and Quality (AHRQ: www.ahrq.com), Canadian Agency for Drugs and Technologies in Health (CADTH: www.cadth.ca), National Institute for Health and Clinical Excellence (NICE: www.nice.uk)), will be highlighted. - 4 *Summary critical appraisal*: A summary of the available evidence will be provided by the authors, focusing on the key results and their implications. Some authors have elected to produce summary of evidence tables. - 5 *Answers/conclusions*: A summary approach to the patient will be presented at the end of each chapter. # **Question development** Although we have not rigorously followed the methodology of SRs in this book, there is one aspect of that methodology that we have strictly followed. Each chapter is developed around specific clinical questions. Although most chapters include some background discussion of the topic areas, readers will find that these are much more condensed than they would expect from other emergency medicine textbooks and are limited to materials directly relevant to the specific questions. Patients presenting with many of the signs and symptoms presented in this book represent typical cases commonly encountered in clinical emergency practice. Many potentially important questions arise from these encounters; all of these questions vary based on the perspective or the person asking the question (e.g., clinician, patient, administrators, primary care providers, public health officers and government policy makers). For example, using the example above, what is the etiology of this patient's acute migraine headache? What diagnostic tests should be performed (if any) and which can the health care system afford? What therapy could be prescribed in the ED to treat the headache? What additional therapy can be prescribed in order to reduce the chances of continued headache? What is her prognosis over the next 3 weeks with respect to her migraine status? Would instituting a prophylactic therapy improve the long-term prognosis for this woman? Finally, would educational interventions prevent further exacerbations or reduce their severity? The success of any search for answers to such clinical questions is spelling them out in a detailed and systematic way [27]. While this skill is important for the policy maker in the office, the patient searching for options, and the researcher performing a systematic review, it is perhaps most important for the busy clinician at the bedside. Some have referred to this process as developing an "answerable question". This is because such an approach, among other things, provides an immediate basis for formulating and executing an effective search strategy for locating relevant and high-quality clinical evidence. In this book we report both general and specific search strategies in connection with the specific questions addressed in each chapter. # Components of a good question Designing an appropriate clinical question includes consideration of the components of a good question (described below), compartmentalizing the topic area and describing the design of studies to be included. All questions should include focused details on the **p**opulation, **in**tervention, assessment or exposure (and **c**omparison when relevant), and **o**utcomes associated with the question. This approach is often abbreviated as PICO, but these are only part of the components necessary for developing the question. Each component is examined in further detail below and examples illustrated in Table 1.1. - 1 *Population*: A clearly defined population under consideration is the first step in developing a successful question; however, this can be a difficult task at times. The selection should be based on the interests and needs of the clinician and the patient's problem. - 2 Intervention, assessment or exposure: Well-defined interventions must be articulated prior to searching for answers. For example, corticosteroids may be particularly problematic in searches for migraine headaches. Since corticosteroids can be administered via many routes (e.g., intravenous (IV), oral and intramuscular (IM)) in migraine headache treatment, using varying doses and over different duration, these must all be considered when searching for evidence. Moreover, the use of different agents is common (e.g., dexamethasone, prednisone, methylprednisolone, and so forth) and is clearly an important consideration in question development. Diagnostic assessments are also interventions and when the results are compared to a criterion standard for the disease or condition being sought, performance measures such as sensitivity,
specificity and likelihood ratios can be derived. Harmful exposures are not quite the same as "interventions" in that we avoid knowingly recommending them to our patients. - 3 Comparisons: Most therapeutic interventions are compared to a control treatment. In some cases, the comparison is to a placebo; however, in emergency medicine the comparison is often to standard practice at the time or known effective therapies. For example, in the chapter on migraine headaches, the effectiveness of corticosteroids in preventing recurrent headaches is compared to placebo; however, both groups received standard abortive care in the ED. In the chapter on acute asthma, the effectiveness of inhaled corticosteroids to reduce relapse after discharge is compared to placebo; once again, both groups received standard care (7 days of oral prednisone and shortacting β -agonists) at discharge. It is important for researchers to use the correct dose, route of delivery and timing of treatment in order to determine the true benefit (or harm) of the intervention compared to standard care/placebo in drug trials. This is equally important when the intervention is a non-drug treatment (e.g., education, procedure, technology, etc.), since this will ensure valid comparisons of the intervention and the control. - 4 Outcome: There are a variety of outcomes reported in any emergency or acute care research study. For example, in acute cardiac studies disposition (e.g., death, admission/discharge, relapse, etc.), clinical outcomes (e.g., recurrent angina, myocardial infarction, pericarditis, etc.), interventions (e.g., angioplasty, coronary artery bypass grafting, etc.), physiological parameters (e.g., vital signs, oxygen saturation, etc.), medication use (e.g., β-blocker use, aspirin use, etc.), adverse effects (e.g., tremor, nausea, tachycardia, etc.), complications (e.g., arrhythmia, pneumonia, etc.), and symptoms (e.g., quality of life, specific symptoms, etc.) may all be reported. In other diseases, some of these events would be rare (e.g., intubation in asthma or discharge in myocardial infarction), and seeking evidence for the influence of interventions on these outcomes would be fruitless. The clinician must select appropriate primary and secondary outcomes prior to beginning their evidence search. The primary outcome should reflect the outcome that is most important to the clinicians, patients, policy makers and/or consumers. **Table 1.1** Example of the PICO methodology for developing clinically appropriate questions in emergency medicine (see text for further details). | Population | Intervention/control | Outcome | Design | Торіс | |--|--|--|--------------------|-------------------| | Adults with migraine headache in the ED | Metoclopramide vs systemic DHE | Pain relief and relapses after discharge | RCT | Therapy | | Adults with new onset COPD | Exposure to work-related or environmental irritants | Development of COPD | Prospective cohort | Etiology | | Adults in the ED with acute swollen leg and chest pain | Use of Well's criteria vs unstructured clinical exam | Diagnosis of DVT/PE | Prospective cohort | Diagnosis | | ED adult migraine headache patients discharged home | Corticosteroids vs control | Relapse to additional care | RCT | Therapy/prognosis | | Adult contacts of a documented case of meningitis | Ciprofloxacin vs hygiene practices | Prevention of meningitis | RCT | Prevention | COPD, chronic obstructive pulmonary disease; DHE, dihydroergotamine; DVT, deep vein thrombosis; ED, emergency department; RCT, randomized controlled trial; PE, pulmonary embolism. Often the clinician may also be interested in secondary outcomes, side-effects and patient preference. While patient preference is not often reported in clinical trials and therefore SRs, side-effects and secondary outcomes are commonly encountered. The importance of secondary outcomes is that if their pooled results are concordant with that of the primary outcome, this adds corroborating evidence to the conclusion. In addition, side-effect profiles provide the patients, clinician and others with the opportunity to evaluate the risks associated with the treatment. Unfortunately, the lack of uniform reporting of side-effects often precludes these outcomes from being evaluated with any rigor. ### Improving efficiency in question development Two additional components to be considered in the development of an answerable question for a clinical case are the topic area and the study methodology or design [27]. - 1 Topic areas: While selecting between topic areas may initially appear straightforward, there can be confusion. For example, is chest computerized tomography (CT) testing in pulmonary embolism a diagnostic or a prognostic topic? Clearly, the use of chest CT has been examined as a diagnostic tool compared to clinical signs and symptoms, and a review in this area would encompass a diagnostic domain. When CT testing is used to predict outcome (e.g., death, length of stay, etc.) and complications (e.g., pulmonary hypertension) then the topic would be considered a prognostic question. Since there are other domains of systematic reviews (including therapy, prevention and etiology), by selecting the topic of the clinical question, this further clarifies the approach for the clinician. - 2 *Design*: The design of the studies to be selected should also be carefully considered in the initial question formulation. For example, if one is interested in a therapeutic topic, the best level of evidence (HIGH) includes results from large RCTs or SRs [28,29]. The next level of evidence might be small RCTs, which are insufficiently powered. Finally, observational studies (e.g., cohort, case–control, case series) would be considered lower levels of evidence for treatment. It is therefore appropriate and efficient for initial searches for therapy answers to be limited to systematic reviews and randomized controlled trials. # Locating the evidence: literature searching Clearly, we cannot do justice to literature searching in an introductory chapter on evidence-based emergency medicine. Searching for evidence is a complex and time-consuming task, especially with the rapid growth of journals and publications which has increased the body of evidence available in the peer-reviewed published literature. For example, to ensure that one has identified all relevant possible citations pertaining to a clinical problem, simple searching is often ineffective [30]. Search of MEDLINE, the bibliographic database of the National Library of Medicine, for RCTs using a non-comprehensive search strategy will miss nearly half of the relevant publications, depending on the specialty and topic area [31]. In addition, by not adding other electronic searches (e.g., EMBASE, the European-based electronic database maintained by Elsevier), clinicians run the risk of missing considerable evidence [32]. Hand-searching has been shown to increase the yield of RCT searches; however, this is an unreasonable task for busy clinicians and many researchers [32]. Finally, unpublished and foreign language literature may contain important information relevant to your patient's problem and should not be excluded. Given the volume of literature, the search strategies required and the need for multi-lingual translation, it is hardly surprising that clinicians find it difficult to obtain all of the relevant articles on a particular question in a timely fashion. Several strategies can be used to address this issue. One strategy is to target searches, using designated filters (Table 1.2) [8]. Another, and the choice of this text, is to search for high-quality systematic reviews, especially in therapy, to answer important clinical questions [33]. Finally, seeking the advice of a librarian knowledgeable in the various electronic resources, search terms and search strategies is always worthwhile. **Table 1.2** Common search strategies for identifying evidence from electronic databases using search filters. | Topic | Highest level design | Search terms | |------------|----------------------|---| | Therapy | RCT | Publication type: RCT; controlled clinical trial; clinical trial
MeSH headings: RCTs; random allocation; double blind;
single blind; placebo(s) | | Therapy | SR | Publication type: review; SR; meta-analysis
MeSH headings: MEDLINE | | Diagnosis | Prospective cohort | Publication type: diagnosis
MeSH headings: sensitivity and specificity
Text word: sensitivity | | Prevention | RCT, SR | See above for RCT and SR | | Etiology | Prospective cohort | Text word: risk | MeSH, medical subject heading; RCT, randomized controlled trial; SR, systematic review. # **Clinical epidemiology terminology** There is a unique lexicon used in clinical epidemiology in general and in systematic reviews in particular. It may be helpful to readers for the editors to describe several of the important terms here (also see the list of abbreviations in the prelims) since they are used frequently in the forthcoming chapters. Publication bias and selection bias are two important terms. Publication bias refers to the publication of positive results faster, in higher impact journals, and to the exclusion of negative results in the medical literature [34]. Publication bias can be reduced when authors search widely and comprehensively for all published and unpublished literature, irrespective of the publication status, journals or language of publication. Bias can occur in the selection of evidence to cite and can be reduced when multiple authors independently decide which articles to select for evidence synthesis. While this is a problem in many areas of
medicine, it seems less of an issue in emergency medicine [34]. The reporting of statistical issues in EBM and especially SRs is particularly important to understand. For dichotomous variables (e.g., admit/discharge, relapse/no relapse, event/no event), individual statistics are usually calculated as odds ratios (OR) or relative risks (RR) with 95% confidence intervals (CIs). Pooling of individual trials is accomplished using sophisticated statistical techniques that employ either a fixed or random effects model. The "weight" of each trial's contribution to the overall pooled result is inversely related to the trial's variance. In practical terms, for dichotomous outcomes, this is largely a function of sample size: the larger the trial, the greater contribution it makes to the pooled estimate. The results of most efforts to quantitatively pool data are represented as Forrest plots and these figures will be used extensively by authors in this textbook. In such displays, the convention is that the effects favoring the treatment in question are located to the left of the line of unity (1.0), while those favoring the control or comparison arm are located to the right of the line of unity. When the 95% CI of the pooled estimate crosses the line of unity, the result is considered non-significant (Fig. 1.1). In addition, tests of statistical significance are also provided. For continuous outcomes, weighted mean differences (WMDs) or standardized mean differences (SMDs) and 95% CIs are usually reported. The use of the WMD is common in many systematic reviews and is the difference between the experimental and control group outcomes, when similar units of measure are used [35]. The SMD is used when different units of measure are used for the same outcome. For continuous variables with similar units (e.g., airflow measurements), a WMD or effect size (ES) is calculated. The "weight" of each trial's contribution to the overall pooled result is based on the inverse of the trial's variance. In practical terms, for continuous outcomes, this is largely a function of the standard deviation (SD) and sample size: the lower the SD and the larger the sample size, the greater contribution the study makes to the pooled estimate. For continuous measures with variable units (such as quality of life or other functional scales), the use of an SMD is often used. For example, if quality of life were measured using the same instrument in all studies, a WMD would be performed; however, if the quality of life was measured using multiple methods all producing a "score", an SMD would be calculated. For both the SMD and WMD, the convention is the opposite of that for dichotomous variables, that is, effects favoring the treatment in question are located to the right of the line of unity (0) while those favoring the control or comparison arm are plotted to the left. Once again, when the 95% CI crosses the line of no effect, the result is considered non-significant. Number needed to treat (NNT) is another method of expressing a measure of effect [36]. In the reviews contained in the Cochrane Library, the absolute risk reduction (ARR) is represented by the risk reduction statistic, and the inverse of this (and its 95% CI) provides the NNT estimation. Another convenient method to calculate the NNT is to use on-line calculators (www.nntonline.net). Finally, less exact methods are available to estimate the NNT; however, caution is advised, since these approaches often result in gross approximations of NNT. Heterogeneity among pooled estimates is usually tested and reported [37]. There are a number of ways of describing | Study or sub-category | Corticosteroids n/N | Control n/N | RR (ra
95% | , | Weight % | RR (random)
95% CI | |----------------------------------|--|-------------|---------------|------------|----------|-----------------------| | Study 1, 2001 | 11/157 | 21/144 | | | 44.69 | 0.48 [0.24, 0.96] | | Study 2, 2000 | 3/31 | 5/29 | | | 11.99 | 0.56 [0.15, 2.14] | | Study 3, 1999 | 2/18 | 4/16 | | | 8.85 | 0.44 [0.09, 2.11] | | Study 4, 2000 | 5/68 | 18/79 | | | 24.52 | 0.32 [0.13, 0.82] | | Study 5, 2003 | 2/25 | 7/25 | | _ | 9.94 | 0.29 [0.07, 1.24] | | Total (95% CI) | 299 | 293 | • | | 100.00 | 0.42 [0.26, 0.67] | | Total events: 23 (corticoste | eroids), 55 (control) | | | | | | | Test for heterogeneity: chi2 | $l^2 = 0.90$, df = 4 ($P = 0.92$), $l^2 = 0.92$ |)% | | | | | | Test for overall effect: $Z = 3$ | 3.68 (P = 0.0002) | | | | | | | | | 0.01 | 0.1 | 10 | 100 | | | | | Fav | ors treatment | Favors con | trol | | **Figure 1.1** Typical systematic review summary figure (referred to as a Forrest plot) used in therapy trials. Note: that in this Forrest plot, five trials have been conducted that compared corticosteroids to placebo to prevent a relapse event. Each study is represented by the point estimate for the outcome in question and by confidence intervals on either side of that value. The vertical line corresponds to a relative risk (RR) of 1.0; studies where the confidence interval crosses the 1.0 line (studies 2, 3 and 5) demonstrate no statistically significant difference between the groups (i.e., those receiving any corticosteroids versus those receiving placebo). Values to the left and **not** crossing the vertical line (studies 1 and 4) indicate a heterogeneity statistically; the Cochrane reviews often report the I-squared (I^2) statistic [38]. Pooled statistics assessed for heterogeneity using the I^2 statistic are provided with a percentage measurement of heterogeneity; heterogeneity can broadly be classified as limited ($I^2 < 30\%$), moderate ($30\% < I^2 < 75\%$) or severe ($I^2 > 75\%$). Sensitivity and subgroup analyses are often performed to identify sources of heterogeneity, when indicated. Caution has been advised when interpreting subgroup analyses and practical approaches to them have been published [39]. clear benefit of corticosteroids. Values to the right and *not* crossing the vertical line (Study 1 and 4 in this example), indicate that patients receiving placebo had better outcomes than those receiving corticosteroids. The large horizontal black diamond at the bottom of the figure corresponds to the pooled results of the individual studies. The "weight" column represents the percentage contribution of each study to the pooled result. The individual and pooled RR and 95% CIs are displayed to the right of the diagram. Finally, the test for heterogeneity of the pooled result and the overall effect are depicted in the left lower corner as both I^2 and chi-squared statistics (see text for further details). # Collecting and interpreting the evidence for clinical practice Evidence-based medicine relies on the synthesis and reporting of evidence using a format that may be unfamiliar to clinicians (see lexicon above). With multiple publications on a specific topic often identified, some evidence can be summarized statistically as pooled likelihood ratio (LR) for diagnostic test questions or | Organization | Website address | | | |--|---|--|--| | Cochrane Collaboration | http://www.cochrane.org | | | | Cochrane Prehospital and Emergency Health Field (CPEHF) | http://www.cochranepehf.org | | | | Bandolier (various EBM topics) | http://www.jr2.ox.ac.uk/bandolier/ | | | | Annals of Emergency Medicine EBEM Section | http://www.annemergmed.com | | | | BestBets | http://www.bestbets.org | | | | ACP Journal EBM Journal | http://ebm.bmjjournals.com/ | | | | Agency for Health Care Policy and Research (AHRQ) | http://www.ahrq.gov | | | | Centre for Evidence-Based Medicine (Oxford, UK) | http://www.cebm.net | | | | Canadian Agency for Drugs and Technologies in Health (CADTH) | http://www.cadth.ca | | | | National Institute for Health and Clinical EXcellence (NICE) | http://www.nice.org.uk | | | | Centre for Reviews and Dissemination (CRD) | http://www.york.ac.uk/inst/crd/ | | | | VirtualRx (NNT calculations) | http://www.nntonline.com/ebm/visualrx/nnt.asp | | | **Table 1.3** Selected evidence-based emergency medicine (EBEM) websites. This list is neither comprehensive nor complete; it represents some of the EBEM resources of use to the authors. pooled outcome measures (e.g., OR, RR, NNT) in therapy questions. These efforts are made possible when the population, intervention/exposure, control, outcome measure and the designs of the identified studies demonstrate similarities. At other times, these PICO features preclude pooling of evidence and the best possible summary of evidence is descriptive or qualitative. Wherever possible, these approaches will be applied in this text in an effort to distill the evidence for the practicing emergency clinician. There are many text resources as well as internet-based resources available to the reader that can provide additional information, calculations and interpretations of these pooled effect measures (Table 1.3). # **Conclusions** Much progress has been made in emergency medicine over the past quarter-century in the areas of diagnosis, therapy, prevention and prognosis. The synthesis of this evidence has been undertaken by many researchers and there is now increasingly valid and reliable evidence for the management of many common conditions presenting to the emergency department. This book attempts to summarize this evidence using a system that values best evidence using relevant examples from clinical practice. We recognize it is not yet comprehensive in all clinical areas; however, as the first evidence-based emergency text, we hope that it is both illustrative and iterative. We anticipate both refinements and substantial expansions of this pilot text in the future. Our goal is to improve the translation of knowledge from the evidence to the bedside in emergency medicine and we hope you will find this approach
helpful in improving the clinical care provided at the bedside. # **Acknowledgments** The authors would like to thank Mrs. Diane Milette for her secretarial support. # **Conflicts of interest** Dr. Rowe is a member of the Cochrane Collaboration, a co-editor of the Cochrane Airways Group, and on the Steering Committee of the Prehospital and Emergency Health Field of the Cochrane Collaboration. Dr. Rowe is supported by a 21st Century Canada Research Chair in Emergency Airway Diseases from the Government of Canada (Ottawa, Canada). # References - 1 Guyatt GH. Evidence-based medicine. ACP J Club 1991;114:A16. - 2 Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB. Evidence based medicine: what it is and what it isn't. *BMJ* 1996;312:71–2. - 3 Haynes RB, Devereaux PJ, Guyatt GH. Physicians' and patients' choices in evidence based practice: evidence does not make decisions, people do. BMJ 2002;324:1350. - 4 Innes GD, Macphail I, Dillon EC, Metcalfe C, Gao M. Dexamethasone prevents relapse after emergency department treatment of acute migraine: a randomized clinical trial. Can J Emerg Med 1999;1:26–33. - 5 Rowe BH, Blitz S, Colman I, Edmonds M. Dexamethasone in migraine relapses: a randomized, placebo-controlled clinical trial. *Acad Emerg Med* 2006;13:S16–17. - 6 Waeckerle JP, Cordell WH, Wyer PC, Osborn HH. Evidence-based emergency medicine integrating research into emergency medical practice. Ann Emerg Med 1997;30:626–8. - 7 Edlow JA, Wyer PC. Feedback: computed tomography for subarachnoid hemorrhage: don't throw the baby out with the bath water. *Ann Emerg Med* 2001;37:680–85. - 8 Haynes RB, Haines A. Barriers and bridges to evidence based clinical practice. BMJ 1998;317:273–6. - 9 Schunemann HJ, Jaeschke R, Cook DJ, et al. An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Care Med 2006;174:605– 14 - 10 Guyatt G, Vist G, Falck-Ytter Y, Kunz R, Magrini N, Schunemann H. An emerging consensus on grading recommendations? (Editorial) ACP J Club 2006;144:A8–9. - 11 LeLorier J, Gregoire G, Benhaddad A, Lapierre J, Derderian F. Discrepancies between meta-analyses and subsequent large randomized, controlled trials. N Engl J Med 1997;337:536–42. - 12 Stiell IG, Clement CM, McKnight RD, et al. The Canadian C-Spine Rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med 2003;349:2510–18. - 13 Rowe BH, Alderson P. The Cochrane Library: a resource for clinical problem solving in emergency medicine. Ann Emerg Med 1999;34:86– 90. - 14 Moher D, Schulz KF, Altman DG, for the Consort Group. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. *JAMA* 2001;285:1987–91. - 15 Moher D, Cook DJ, Eastwood S, et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. *Lancet* 1999;354:1896–900. - 16 Kelly KD, Travers AH, Dorgan M, Slater L, Rowe BH. Evaluating the quality of systematic reviews in the emergency medicine literature. *Ann Emerg Med* 2001;38:518–26. - 17 Ospina MB, Kelly K, Klassen TP, Rowe BH. Assessing the quality of reports of systematic reviews in emergency medicine: are they improving? *Can J Emerg Med* 2005;7:179. - 18 Chalmers I, Haynes RB. Reporting, updating, and correcting systematic reviews of the effects of health care. *BMJ* 1994;**309**:862–5. - 19 Jadad AR, Moher M, Browman GP, et al. Systematic reviews and metaanalyses on treatment of asthma: critical evaluation. BMJ 2000;320:537– 40. - 20 Rowe BH, Brown MD. A primer on the Cochrane Collaboration, its new priorities in out-of-hospital and emergency health, and the role of *Annals* of Emergency Medicine. Ann Emerg Med 2007;49:351–4. - 21 Oxman AD, Cook DJ, Guyatt GH, for the Evidence-Based Medicine Working Group. Users' guides to the medical literature. VI. How to use an overview. *JAMA* 1994;272:1367–71. - 22 Olsen O, Middleton P, Ezzo J, et al. Quality of Cochrane reviews: assessment of sample from 1998. BMJ 2001;323:829–32. - 23 Jadad AR, Cook DJ, Jones A, et al. Methodology and reports of systematic reviews and meta-analyses. *JAMA* 1998;**280**:278–80. - 24 Moher D, Tetzlaff J, Tricco AC, Sampson M, Altman DG. Epidemiology and reporting characteristics of systematic reviews. *PLoS Med* 2007:e78 (doi:10.1371/journal.pmed.0040078). - 25 Rowe BH, Brown MD. A primer on the Cochrane Collaboration, its new priorities in out-of-hospital and emergency health, and the role of *Annals* of *Emergency Medicine*. Ann Emerg Med 2007;49:351–4. - 26 Smith E, Jennings P, McDonald S, MacPherson C, O'Brien T, Archer F. The Cochrane Library as a resource for evidence on out-of-hospital health care interventions. *Ann Emerg Med* 2007;49:344–50. - 27 Wyer P, Allen TY, Corrall CJ. How to find evidence when you need it. Part 4: Matching clinical questions to appropriate databases. *Ann Emerg Med* 2003;42:136–49. - 28 Guyatt GH, Sackett DL, Sinclair JC, et al. Users' guides to the medical literature. IX. A method of grading health care recommendations. *JAMA* 1995;274:1800–804. - 29 Sackett DL, Richardson WS, Rosenberg W, Haynes RB. Evidence-based Medicine. How to practice and teach EBM. Churchill Livingstone, New York, 1992. - 30 Dickersin K, Chan S, Chalmers TC, Sacks SH, Smith H. Publication bias and clinical trials. *Control Clin Trials* 1987;8:343–53. - 31 Dickersin K, Scherer R, Lefebvre C. Identifying relevant studies for systematic reviews. BMJ 1994;309:1286–91. - 32 Suarez-Almazor ME, Belseck E, Homik J, Dorgan M, Ramos-Remus C. Identifying clinical trials in the medical literature with electronic databases: MEDLINE alone is not enough. *Control Clin Trials* 2000;**21**(5):476–87. - 33 Hunt DL, McKibbon KA. Locating and appraising systemic reviews. Ann Intern Med 1997;126:532–8. - 34 Ospina MB, Kelly KD, Klassen TP, Rowe BH. Publication bias of randomized controlled trials in emergency medicine. Acad Emerg Med 2006;13:102–8. - 35 Olkin L. Statistical and theoretical considerations in meta-analysis. J Clin Epidemiol 1995;38:133–46. - 36 Laupacis A, Sackett DL, Roberts RS. An assessment of clinically useful measured of the consequences of treatment. N Engl J Med 1988;318:1728– 33. - 37 DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88. - 38 Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003;**327**:557–60. - 39 Oxman AD, Guyatt GH. A consumer's guide to subgroup analyses. Ann Intern Med 1992;116:78–84.