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Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a nonempty
subset S of N that is closed under addition, contains the zero element, and whose
complement in N is finite.

If n1, . . . ,ne are positive integers with gcd{n1, . . . ,ne} = 1, then the set 〈n1, . . . ,
ne〉= {λ1n1 + · · ·+λene | λ1, . . . ,λe ∈ N} is a numerical semigroup. Every numer-
ical semigroup is of this form.

The simplicity of this concept makes it possible to state problems that are easy to
understand but whose resolution is far from being trivial. This fact attracted several
mathematicians like Frobenius and Sylvester at the end of the 19th century. This
is how for instance the Frobenius problem arose, concerned with finding a formula
depending on n1, . . . ,ne for the largest integer not belonging to 〈n1, . . . ,ne〉 (see [52]
for a nice state of the art on this problem).

During the second half of the past century, numerical semigroups came back
to the scene mainly due to their applications in algebraic geometry. Valuations of
analytically unramified one-dimensional local Noetherian domains are numerical
semigroups under certain conditions, and many properties of these rings can be
characterized in terms of their associated numerical semigroups. For a field K, the
valuation of the ring K[[tn1 , . . . , tne ]] is precisely 〈n1, . . . ,ne〉. This link can be used
to construct one-dimensional Noetherian local domains with the desired properties,
and it is basically responsible for how some invariants in a numerical semigroup
have been termed. Such invariants include the multiplicity, embedding dimension,
degree of singularity, type and conductor. Some families of numerical semigroups
also were considered partly because of this connection: symmetric numerical semi-
groups, pseudo-symmetric numerical semigroups, numerical semigroups with max-
imal embedding dimension and with the Arf property, saturated numerical semi-
groups, and complete intersections, each having their counterpart in ring theory. A
good translator for these concepts between both ring and semigroup theory is [5].
It is worth mentioning that these semigroups are important not only for their ap-
plications in algebraic geometry, but also because their definitions appear in a very
natural way in the scope of numerical semigroups. One of the aims of this volume
is to show this.

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 1
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 1,
c© Springer Science+Business Media, LLC 2009



2 Introduction

Recently, the study of factorizations on integral domains has moved to the set-
ting of commutative cancellative monoids (this is mainly due to the fact that addition
is not needed to study factorizations into irreducibles). Numerical semigroups are
cancellative monoids. Problems of factorizations in a monoid are closely related to
presentations of the monoid. By taking advantage of the results obtained in the past
decades for the computation of minimal presentations of a numerical semigroup,
numerical semigroups have become a nice source of examples in factorization the-
ory. This is not the only connection with number theory. Recently, the study of
certain Diophantine modular inequalities gave rise to the concept of proportionally
modular numerical semigroups, which are related with the Stern-Brocot tree, and
whose finite intersections can be realized as the positive cone of certain amenable
C∗-algebras.

Finding the set of factorizations of an element in a numerical semigroup can
be done with linear integer programming. We will also show another relation with
linear integer programming, by proving that the set of numerical semigroups with
given multiplicity is in one-to-one connection with the set of integer points in a
rational cone.

From a classic point of view, people working in semigroup theory have been
mainly concerned with characterizing families of semigroups via the properties they
fulfill. In the last chapter of this monograph, we present several characterizations of
numerical semigroups as finitely generated commutative monoids with some extra
properties.

At the end of each chapter, the reader will find a series of exercises. Some cover
concepts not included in the theory presented in the book, but whose relevance has
been highly motivated in the literature, and can be solved by using the tools pre-
sented in this monograph. Others are simply thought of as a tool to practice and to
deepen the definitions given in the chapter. There is also a series of exercises that
covers some recent results, and a reference to where they can be found is given.
Sometimes these problems are split in smaller parts so that the readers can produce
their own proofs.

Some of the proofs presented in this volume can be performed by using com-
mutative algebra tools. Our goal has been to write a self-contained monograph on
numerical semigroups that needs no auxiliary background other than basic integer
arithmetic. This is mainly why we have not taken advantage of commutative algebra
or algebraic geometry.
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Chapter 1
Notable elements

Introduction

The study of numerical semigroups is equivalent to that of nonnegative integer
solutions to a linear nonhomogeneous equation with positive integer coefficients.
Thus it is a classic problem that has been widely treated in the literature (see
[12, 13, 22, 28, 42, 101, 102]). Following this classic line, two invariants play a
role of special relevance in a numerical semigroup. These are the Frobenius num-
ber and the genus. Besides, in the literature one finds many manuscripts devoted to
the study of analytically unramified one-dimensional local domains via their value
semigroups, which turn out to be numerical semigroups (just to mention some of
them, see [5, 6, 19, 27, 32, 44, 105, 107]). Playing along this direction other invari-
ants of a numerical semigroup arise: the multiplicity, embedding dimension, degree
of singularity, conductor, Apéry sets, pseudo-Frobenius numbers and type. These
invariants have their interpretation in this context, and this is the reason why their
names may seem bizarre in the scope of monoids. In this sense the monograph [5]
serves as an extraordinary dictionary between these apparently two different parts
of Mathematics.

1 Monoids and monoid homomorphisms

Numerical semigroups live in the world of monoids. Thus we spend some time here
recalling some basic definitions and facts concerning them.

A semigroup is a pair (S,+) with S a set and + a binary operation on S that is
associative. All semigroups considered in this book are commutative (a+b = b+a
for all a,b∈ S). For this reason we will not keep repeating the adjective commutative
in what follows. Usually we will also omit the binary operation + while referring
to a commutative semigroup and will write S instead of (S,+). A subsemigroup T
of a semigroup S is a subset that is closed under the binary operation considered on

J.C. Rosales, P.A. Garcı́a-Sánchez, Numerical Semigroups, 5
Developments in Mathematics 20, DOI 10.1007/978-1-4419-0160-6 2,
c© Springer Science+Business Media, LLC 2009



6 1 Notable elements

S. Clearly, the intersection of subsemigroups of a semigroup S is again a subsemi-
group of S. Thus given A a nonempty subset of S, the smallest subsemigroup of S
containing A is the intersection of all subsemigroups of S containing A. We denote
this semigroup by 〈A〉, and call it the subsemigroup generated by A. It follows easily
that

〈A〉= {λ1a1 + · · ·+λnan | n ∈ N\{0},λ1, . . . ,λn ∈ N\{0},a1, . . . ,an ∈ A}

(where N denotes the set of nonnegative integers). We say that S is generated by
A⊆ S if S = 〈A〉. In this case, A is a system of generators of S. If A has finitely many
elements, then we say that S is finitely generated.

A semigroup M is a monoid if it has an identity element, that is, there is an
element in M, denoted by 0, such that 0+a = a+0 = a for all a ∈M (recall that we
are assuming that the semigroups in this book are commutative, whence this also
extends to monoids).

A subset N of M is a submonoid of M if it is a subsemigroup of M and 0 ∈ N.
Observe if M is a monoid, then {0} is a submonoid of M. This is called the trivial
submonoid of M. As for semigroups, the intersection of submonoids of a monoid is
again one of its submonoids. Given a monoid M and a subset A of M, the smallest
submonoid of M containing A is

〈A〉= {λ1a1 + · · ·+λnan | n ∈ N, λ1, . . . ,λn ∈ N and a1, . . . ,an ∈ A} ,

which we will call the submonoid of M generated by A. As in the semigroup case,
the set A is a system of generators of M if 〈A〉 = M, and we will also say that M
is generated by A. Accordingly, a monoid M is finitely generated if there exists a
system of generators of M with finitely many elements. Note that 〈 /0〉= {0}= 〈0〉.

Given two semigroups X and Y , a map f : X →Y is a semigroup homomorphism
if f (a+b) = f (a)+ f (b) for all a,b ∈ X . We say that f is a monomorphism, an epi-
morphism, or an isomorphism if f is injective, surjective or bijective, respectively.
Clearly, if f is an isomorphism so is its inverse f−1. Two semigroups X and Y are
said to be isomorphic if there exists an isomorphism between them. We will denote
this fact by X ∼= Y .

A map f : X → Y with X and Y monoids is a monoid homomorphism if it is a
semigroup homomorphism and f (0) = 0. The concepts of monomorphism, epimor-
phism, and isomorphism of monoids are defined as for semigroups.

2 Multiplicity and embedding dimension

The set N with the operation of addition is a monoid. In this book we are mainly
interested in the submonoids of N. We see next that they can be classified up to
isomorphism by those having finite complement in N. A submonoid of N with fi-
nite complement in N is a numerical semigroup. In this section we show that every
numerical semigroup (and thus every submonoid of N) is finitely generated, admits
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a unique minimal system of generators and its cardinality is upper bounded by the
least positive element in the monoid.

For A a nonempty subset of N, 〈A〉, the submonoid of N generated by A, is a
numerical semigroup if and only if the greatest common divisor of the elements of
A is one.

Lemma 2.1. Let A be a nonempty subset of N. Then 〈A〉 is a numerical semigroup
if and only if gcd(A) = 1.

Proof. Let d = gcd(A). Clearly, if s belongs to 〈A〉, then d | s. As 〈A〉 is a numerical
semigroup, N\ 〈A〉 is finite, and thus there exists a positive integer x such that d | x
and d | x+1. This forces d to be one.

For the converse, it suffices to prove that N\〈A〉 is finite. Since 1 = gcd(A), there
exist integers z1, . . . ,zn and a1, . . . ,an ∈ A such that z1a1 + · · ·+znan = 1. By moving
those terms with zi negative to the right-hand side, we can find i1, . . . , ik, j1, . . . , jl ∈
{1, . . . ,n} such that zi1ai1 + · · ·+ zik aik = 1− z j1a j1 −·· ·− z jl a jl . Hence there exists
s ∈ 〈A〉 such that s + 1 also belongs to 〈A〉. We prove that if n ≥ (s−1)s +(s−1),
then n ∈ 〈A〉. Let q and r be integers such that n = qs + r with 0 ≤ r < s. From
n ≥ (s− 1)s +(s− 1), we deduce that q ≥ s− 1 ≥ r. It follows that n = (rs + r)+
(q− r)s = r(s+1)+(q− r)s ∈ 〈A〉. ut

Numerical semigroups classify, up to isomorphism, the set of submonoids of N.

Proposition 2.2. Let M be a nontrivial submonoid of N. Then M is isomorphic to a
numerical semigroup.

Proof. Let d = gcd(M). By Lemma 2.1, we know that S = 〈
{ m

d | m ∈ M
}
〉 is a

numerical semigroup. The map f : M → S, f (m) = m
d is clearly a monoid isomor-

phism. ut

If A and B are subsets of integer numbers, we write A + B = {a + b | a ∈ A,b ∈
B}. Thus for a numerical semigroup S, if we write S∗ = S \ {0}, the set S∗ + S∗

corresponds with those elements in S that are the sum of two nonzero elements in S.

Lemma 2.3. Let S be a submonoid of N. Then S∗\(S∗+S∗) is a system of generators
of S. Moreover, every system of generators of S contains S∗ \ (S∗+S∗).

Proof. Let s be an element of S∗. If s 6∈ S∗ \ (S∗+S∗), then there exist x,y ∈ S∗ such
that s = x+y. We repeat this procedure for x and y, and after a finite number of steps
(x,y < s) we find s1, . . . ,sn ∈ S∗ \ (S∗ + S∗) such that s = s1 + · · ·+ sn. This proves
that S∗ \ (S∗+S∗) is a system of generators of S.

Now, let A be a system of generators of S. Take x ∈ S∗ \ (S∗ + S∗). There exist
n ∈ N \ {0}, λ1, . . . ,λn ∈ N and a1, . . . ,an ∈ A such that x = λ1a1 + · · ·+ λnan. As
x 6∈ S∗+S∗, we deduce that x = ai for some i ∈ {1, . . . ,n}. ut

This property also holds for any submonoid S of Nr for any positive integer r.
The idea is that whenever s = x+y with x and y nonzero, then x is strictly less than s
with the usual partial order on Nr. And there are only finitely many elements x ∈Nr
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with x ≤ s. However the set S∗ \ (S∗ +S∗) needs not be finite for r greater than one
(see Exercise 2.15). We are going to see that for r = 1 this set is always finite. To this
end we introduce what is probably the most versatile tool in numerical semigroup
theory.

Let S be a numerical semigroup and let n be one of its nonzero elements. The
Apéry set (named so in honour of [2]) of n in S is

Ap(S,n) = {s ∈ S | s−n 6∈ S} .

Lemma 2.4. Let S be a numerical semigroup and let n be a nonzero element of S.
Then Ap(S,n) = {0 = w(0),w(1), . . . ,w(n−1)}, where w(i) is the least element of
S congruent with i modulo n, for all i ∈ {0, . . . ,n−1}.

Proof. It suffices to point out that for every i ∈ {1, . . . ,n− 1}, there exists k ∈ N
such that i+ kn ∈ S. ut

Example 2.5. Let S be the numerical semigroup generated by {5,7,9}. Then S =
{0,5,7,9,10,12,14,→} (the symbol → means that every integer greater than 14
belongs to the set). Hence Ap(S,5) = {0,7,9,16,18}.

Observe that the above lemma in particular implies that the cardinality of Ap(S,n)
is n. With this result, we easily deduce the following.

Lemma 2.6. Let S be a numerical semigroup and let n ∈ S\{0}. Then for all s ∈ S,
there exists a unique (k,w) ∈ N×Ap(S,n) such that

s = kn+w.

This lemma does not hold for submonoids of Nr in general. However, there are
certain families of submonoids of Nr for which a similar property holds, and this
apparently innocuous result makes it possible to translate some of the known results
for numerical results to a more general scope (see [78]).

We say that a system of generators of a numerical semigroup is a minimal system
of generators if none of its proper subsets generates the numerical semigroup.

Theorem 2.7. Every numerical semigroup admits a unique minimal system of gen-
erators. This minimal system of generators is finite.

Proof. Lemma 2.3 states that S∗ \ (S∗ + S∗) is the minimal system of generators of
S. By Lemma 2.6, we have that for any n ∈ S∗, we get that S = 〈Ap(S,n)∪{n}〉. As
Ap(S,n)∪{n} is finite, we deduce that S∗ \ (S∗+S∗) is finite. ut

As every submonoid of N is isomorphic to a numerical semigroup, this property
translates to submonoids of N.

Corollary 2.8. Let M be a submonoid of N. Then M has a unique minimal system
of generators, which in addition is finite.
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Proof. Set d = gcd(M). Then T =
{ x

d | x ∈ M
}

is a submonoid of N such that
gcd(T ) = 1. In view of Lemma 2.1, this means that T is a numerical semigroup.
If A is the minimal system of generators of T , then {da | a ∈ A} is the minimal
system of generators of M. ut

Corollary 2.9. Let M be a submonoid of N generated by {0 6= m1 < m2 < · · ·< mp}.
Then {m1, . . . ,mp} is a minimal system of generators of M if and only if mi+1 6∈
〈m1, . . . ,mi〉.

Let S be a numerical semigroup and let {n1 < n2 < · · · < np} be its minimal
system of generators. Then n1 is known as the multiplicity of S, denoted by m(S).
The cardinality of the minimal system of generators, p, is called the embedding
dimension of S and will be denoted by e(S).

Proposition 2.10. Let S be a numerical semigroup. Then

1) m(S) = min(S\{0}),
2) e(S)≤ m(S).

Proof. Clearly the multiplicity is the least positive integer in S. The other statement
follows from the fact that {m(S)}∪Ap(S,m(S))\{0} is a system of generators of
S with cardinality m(S). ut

Observe that e(S) = 1 if and only if S = N. If m is a positive integer, then clearly
S = {0,m,→} is a numerical semigroup with multiplicity m. It is easy to check that
a minimal system of generators for S is {m,m + 1, . . . ,2m−1}. Hence e(S) = m =
m(S).

3 Frobenius number and genus

Frobenius in his lectures proposed the problem of giving a formula for the largest
integer that is not representable as a linear combination with nonnegative integer co-
efficients of a given set of positive integers whose greatest common divisor is one.
He also threw the question of determining how many positive integers do not have
such a representation. By using our terminology, the first problem is equivalent to
give a formula, in terms of the elements in a minimal system of generators of a nu-
merical semigroup S, for the greatest integer not in S. This element is usually known
as the Frobenius number of S, though in the literature it is sometimes replaced by
the conductor of S, which is the least integer x such that x+n ∈ S for all n ∈N. The
Frobenius number of S is denoted here by F(S) and it is the conductor of S minus
one. As for the second problem, the set of elements in G(S) = N\S is known as the
set of gaps of S. Its cardinality is the genus of S, g(S), which is sometimes referred
to as the degree of singularity of S.

Example 2.11. Let S = 〈5,7,9〉. We know that S = {0,5,7,9,10,12,14,→} and thus
F(S) = 13, G(S) = {1,2,3,4,6,8,11,13} and g(S) = 8.
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There is no known general formula for the Frobenius number nor for the genus
for numerical semigroups with embedding dimension greater than two (see [21]
where it is shown that no polynomial formula can be found in this setting or the
monograph [52] for a state of the art of the problem). However, if the Apéry set of
any nonzero element of the semigroup is known, then both invariants are easy to
compute.

Proposition 2.12 ([101]). Let S be a numerical semigroup and let n be a nonzero
element of S. Then

1) F(S) = (maxAp(S,n))−n,
2) g(S) = 1

n (∑w∈Ap(S,n) w)− n−1
2 .

Proof. Note that by the definition of the elements in the Apéry set, (maxAp(S,n))−
n 6∈ S. If x > (maxAp(S,n))− n, then x + n > maxAp(S,n). Let w ∈ Ap(S,n) be
such that w and x + n are congruent modulo n. As w < x + n, this implies that x =
w + kn for some positive integer k, and consequently x−n = w +(k−1)n belongs
to S.

Observe that for every w ∈ Ap(S,n), if w is congruent with i modulo n and i ∈
{0, . . . ,n−1}, then there exists a nonnegative integer ki such that w = kin+ i. Thus,
by using the notation of Lemma 2.4,

Ap(S,n) = {0,w(1) = k1n+1,w(2) = k2n+2, . . . ,w(n−1) = kn−1n+n−1}.

An integer x congruent with w(i) modulo n belongs to S if and only if w(i)≤ x. Thus

g(S) = k1 + · · ·+ kn−1

=
1
n
((k1n+1)+ · · ·+(kn−1n+n−1))− n−1

2

=
1
n ∑

w∈Ap(S,n)
w− n−1

2
. ut

If S is a numerical semigroup minimally generated by 〈a,b〉, then

Ap(S,a) = {0,b,2b, . . . ,(a−1)b}

and Proposition 2.12 tells us the following result that goes back to the end of the
19th century.

Proposition 2.13 ([102]). Let a and b be positive integers with gcd(a,b) = 1.

1) F(〈a,b〉) = ab−a−b,
2) g(〈a,b〉) = ab−a−b+1

2 .

Observe that for numerical semigroups of embedding dimension two g(S) =
(F(S) + 1)/2 (and thus F(S) is always an odd integer). This is not in general the
case for higher embedding dimensions, though this property characterizes a very
interesting class of numerical semigroups as we will see later.
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If S is a numerical semigroup and s ∈ S, then F(S)− s cannot be in S. From this
we obtain that the above equality is just an inequality in general.

Lemma 2.14. Let S be a numerical semigroup. Then

g(S)≥ F(S)+1
2

.

Thus numerical semigroups for which the equality holds are numerical semi-
groups with the “least” possible number of gaps.

Remark 2.15. If one fixes a positive integer f , then it is not true in general that
there are more numerical semigroups with Frobenius number f +1 than numerical
semigroups with Frobenius number f . The following table can be found in [91]
(ns(F) stands for the number of numerical semigroups with Frobenius number F).

F ns(F) F ns(F) F ns(F)
1 1 14 103 27 16132
2 1 15 200 28 16267
3 2 16 205 29 34903
4 2 17 465 30 31822
5 5 18 405 31 70854
6 4 19 961 32 68681
7 11 20 900 33 137391
8 10 21 1828 34 140661
9 21 22 1913 35 292081

10 22 23 4096 36 270258
11 51 24 3578 37 591443
12 40 25 8273 38 582453
13 106 26 8175 39 1156012

Bras-Amorós in [10] has computed the number of numerical semigroups with
genus g for g ∈ {0, . . . ,50}, and her computations show a Fibonacci like behavior
on the number of numerical semigroups with fixed genus less than or equal to 50.
However it is still not known in general if for a fixed positive integer g there are more
numerical semigroups with genus g+1 than numerical semigroups with genus g. We
reproduce in Table 1 the results obtained by Bras-Amorós (in the table ng stands for
the number of numerical semigroups with genus g).

Lemma 2.16. Let S be a numerical semigroup generated by {n1,n2, . . . ,np}. Let
d = gcd{n1, . . . ,np−1} and set T = 〈n1/d, . . . ,np−1/d,np〉. Then

Ap(S,np) = d(Ap(T,np)).
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Table 1 Number of numerical semigroups of genus up 50.

g ng ng−1 +ng−2 (ng−1 +ng−2)/ng ng/ng−1

0 1
1 1 1
2 2 2 1 2
3 4 3 0.75 2
4 7 6 0.857143 1.75
5 12 11 0.916667 1.71429
6 23 19 0.826087 1.91667
7 39 35 0.897436 1.69565
8 67 62 0.925373 1.71795
9 118 106 0.898305 1.76119

10 204 185 0.906863 1.72881
11 343 322 0.938776 1.68137
12 592 547 0.923986 1.72595
13 1001 935 0.934066 1.69088
14 1693 1593 0.940933 1.69131
15 2857 2694 0.942947 1.68754
16 4806 4550 0.946733 1.68218
17 8045 7663 0.952517 1.67395
18 13467 12851 0.954259 1.67396
19 22464 21512 0.957621 1.66808
20 37396 35931 0.960825 1.66471
21 62194 59860 0.962472 1.66312
22 103246 99590 0.964589 1.66006
23 170963 165440 0.967695 1.65588
24 282828 274209 0.969526 1.65432
25 467224 453791 0.971249 1.65197
26 770832 750052 0.973042 1.64981
27 1270267 1238056 0.974642 1.64792
28 2091030 2041099 0.976121 1.64613
29 3437839 3361297 0.977735 1.64409
30 5646773 5528869 0.97912 1.64254
31 9266788 9084612 0.980341 1.64108
32 15195070 14913561 0.981474 1.63973
33 24896206 24461858 0.982554 1.63844
34 40761087 40091276 0.983567 1.63724
35 66687201 65657293 0.984556 1.63605
36 109032500 107448288 0.98547 1.63498
37 178158289 175719701 0.986312 1.63399
38 290939807 287190789 0.987114 1.63304
39 474851445 469098096 0.987884 1.63213
40 774614284 765791252 0.98861 1.63128
41 1262992840 1249465729 0.98929 1.63048
42 2058356522 2037607124 0.989919 1.62975
43 3353191846 3321349362 0.990504 1.62906
44 5460401576 5411548368 0.991053 1.62842
45 8888486816 8813593422 0.991574 1.62781
46 14463633648 14348888392 0.992067 1.62723
47 23527845502 23352120464 0.992531 1.62669
48 38260496374 37991479150 0.992969 1.62618
49 62200036752 61788341876 0.993381 1.6257
50 101090300128 100460533126 0.99377 1.62525


