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Preface

Plant phenolics are secondary metabolites that constitute one of the most common and
widespread groups of substances in plants. They represent adaptive characters that have
been subjected to natural selection during evolution, when the presence of a particular
secondary metabolite has conferred a selection advantage to the plant containing it.

Polyphenols have a large and diverse array of beneficial effects on both plants and
humans. For example, they are famous as antioxidants, hormones, constituents of essen-
tial oils, natural neurotransmitters, and as having many other biological activities. Their
antioxidant ability is known to confer many health benefits such as reducing the risk of car-
diovascular disease and cancer. They also provide antimicrobial activity for the plant’s
own defense against invading pathogens. The diversity of structure and activity of phenolic
compounds has resulted in a multiplicity of research areas such as chemistry, biotechno-
logy, ecology, physiology, nutrition, medicine, and cosmetics. The International Conference
on Polyphenols, organized under the auspices of ‘Groupe Polyphénols’, is a unique oppor-
tunity for scientists in these and other fields to get together every other year and exchange
their ideas and new findings. Apart from the two-page manuscripts – Polyphenols Com-
munications – that comprise the proceedings of this conference, a separate volume has
been concurrently published, comprising full chapters by the conference guest speakers.
For the first time in the history of the conference, the board of ‘Groupe Polyphénols’ decided
in 2005 that, starting in Winnipeg (ICP 2006), such a volume should be published by a
renowned publisher such as Wiley–Blackwell, and given the series title Recent Advances
in Polyphenol Research. The present (first) volume in the series is from the 23rd conference,
which was hosted by the University of Manitoba in Winnipeg, Manitoba, Canada, from
August 22 to August 25 2006, and chaired by Dr Fouad Daayf. The University of Manitoba,
established in 1877, is one of the oldest universities in Canada. Its education and research
programs are dedicated to many areas including agriculture, art, architecture, medicine,
business, and science. The interest in polyphenols involves many departments on campus
including the Departments of Plant Science, Chemistry, Food Science, Nutrition, and Human
Ecology, as well as other health and functional food-related centers such as the Richardson
Center for Functional Foods and Nutraceuticals.

In addition to the guest speakers’ chapters, the present volume also includes full chap-
ters from other selected speakers at the 23rd International Conference on Polyphenols,
and covers five topics:

1) Phenols and Polyphenols Chemistry: (a) Isolation and structural elucidation; (b) Syn-
thesis; (c) Reactivity and physico-chemical properties; (d) Biomolecular interactions.
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2) Phenols and Polyphenols Biosynthesis and Genetic Manipulation: (a) Metabolic path-
ways; (b) Enzymology; (c) Biotechnology advances.

3) Ecology and Physiology of Plant Phenolics: (a) Biotic and abiotic stress; (b) Phenolic
functions in plant development; (c) Role of phenolics in soil ecology.

4) Food and Nutrition: (a) Dietary intake; (b) Bioavailability; (c) Safety and toxicity; (d)
Functional foods and nutraceuticals; (e) Taste.

5) Phenolics and Health: (a) Biological activities; (b) Drug discovery and development;
(c) Cosmetics.

These topics were presented in 59 oral communications and 222 posters, and scient-
ists had the opportunity to debate their results, and sometimes their divergent theories, in
an exciting manner.

The 23rd International Conference on Polyphenols would not have been possible with-
out the generous support of public and private donors such as the Manitoba Rural
Adaptation Council and the University of Manitoba. Other sponsors include Horphag,
l’Agence Universitaire de la Francophonie, Phytochemistry, Cargill, and Monsanto. Our
sincere thanks go to all of our sponsors.

Fouad Daayf, Conference Chair
Vincenzo Lattanzio, President of ‘Groupe Polyphénols’
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Chapter 1

Plant Phenolics – Secondary Metabolites
with Diverse Functions

Vincenzo Lattanzio, Paul A. Kroon, Stéphane Quideau 
and Dieter Treutter

1.1 Secondary metabolism in the interactions between plants
and their environment

Plant secondary metabolism constitutes a large reservoir of natural chemical diversity that
encompasses an enormous range of compounds and enzymes, and a wide spectrum of
mechanisms of gene regulation and of transport of metabolites and enzymes. Among the
thousands of metabolites produced by plants, only a few are part of ‘primary’ metabolic
pathways and the rest are termed ‘secondary’; this term is historical and was initially asso-
ciated with inessentiality. Levels of secondary metabolites in plants are both environmentally
induced as well as genetically controlled.

In contrast with basic metabolism, which refers to the anabolic and catabolic processes
required for cell maintenance and proliferation, secondary metabolism involves compounds
present in specialized cells that are not directly essential for basic photosynthetic or respir-
atory metabolism, but are thought to be required for plants’ survival in the environment.
Secondary metabolism is considered an integral part of the developmental program of plants,
and the accumulation of secondary metabolites can demarcate the onset of developmental
stages. The ability to synthesize secondary compounds has been selected throughout the
course of evolution in different plant lineages when such compounds addressed specific
needs. Secondary metabolites apparently act as defense (against herbivores, microbes, viruses
or competing plants) and signal compounds (to attract pollinating or seed dispersing 
animals), as well as protecting the plant from ultraviolet radiation and oxidants. There-
fore, they represent adaptive characters that have been subjected to natural selection 
during evolution (Hättenschwiler & Vitousek, 2000; Pichersky & Gang, 2000; Kutchan,
2001; Theis & Lerdau, 2003; Wink, 2003; Kliebenstein, 2004; Kutchan & Dixon, 2005;
Memelink, 2005).

This requirement for secondary metabolites to have highly diverse biological activities
has led plants to accumulate a vast number of compounds. Plant genomes are variously
estimated to contain 20,000–60,000 genes, and perhaps 15–20% of these encode enzymes
for secondary metabolism, while the genetic complement of the fruit fly (Drosophila
melanogaster) is substantially lower (13,601 predicted genes). One explanation for this
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discrepancy in the relationship between biological and genetic complexity may lie in the
differences between the ways that plants and animals protect themselves against predators,
pests, diseases, and abiotic stress. Animals have developed nervous and immune systems
that enable them to detect and respond to danger, and they are capable of avoiding per-
ilous situations. By contrast, plants cannot escape from their biotic and abiotic stressors,
being linked to the ground by means of their root system, and therefore they must stay
and protect themselves. Plants, as sessile organisms, evolve and exploit metabolic systems
to create a rich repertoire of complex natural products that hold adaptive significance for
their survival in challenging ecological niches on earth. The production of chemicals that
deter or kill pests and pathogens represents one mean of self-protection. The pattern of
secondary metabolites in a given plant is complex; it changes in a tissue- and organ-specific
way; regularly, differences can be seen between different developmental stages (e.g., organs
important for survival and reproduction have the highest and most potent secondary meta-
bolites), between individuals, and between populations (Wink, 1988; Pichersky & Gang,
2000; Osbourn et al., 2003; Wink, 2003; Noel et al., 2005).

Plants produce a large number of secondary metabolites, which are classified into several
groups according to their biosynthetic routes and structural features. Phenolic compounds
are the most widely distributed secondary metabolites, ubiquitously present in the plant king-
dom: it is estimated that about 2% of all carbon photosynthesized by plants, amounting to
about 1 × 109 t per annum, is converted into flavonoids or closely related compounds (Robards
& Antolovich, 1997). The terms ‘phenol’ and ‘polyphenol’ can be defined chemically as
substances that possess an aromatic ring bearing one (phenol) or more (polyphenol) hydroxyl
substituents, but in the context of plant phenolics such a definition is not satisfactory, since
it would include compounds such as the phenolic carotenoid 3-hydroxyisorenieratene or the
phenolic female sex hormone estrone, which are principally terpenoid in origin (Harborne,
1989). A first comprehensive definition of ‘plant polyphenols,’ based on the earlier proposal
of T. White, E.C. Bate-Smith & T. Swain, was given by E. Haslam, who stated that the term
‘polyphenol’ (syn. vegetable tannin) refers to water-soluble phenolic compounds having
molecular masses between 500 and 3,000–4,000 Da, possessing 12–16 phenolic groups and
5–7 aromatic rings per 1000 relative molecular mass, and expressing special properties such
as the ability to precipitate proteins and alkaloids (Haslam, 1998). This original definition
of polyphenols has broadened out considerably over the years to include phenolics with
much simpler structures. A large number of these plant phenolics are small molecules with
no tanning action. As a general rule, the terms ‘plant phenolics’ and ‘polyphenols’ should
refer to secondary natural metabolites arising biogenetically from either the shikimate/
phenylpropanoid pathway or ‘polyketide’ acetate/malonate pathway, or both, producing
monomeric and polymeric phenols and polyphenols, as chemically defined above, and which
fulfill a very broad range of physiological roles in plants (Quideau, 2004, 2006). In fact,
although the bulk of these compounds play cell wall structural roles, plant tissues syn-
thesize a vast array of non-structural constituents that have various roles in plant growth
and survival.

Unless they are completely esterified, etherified or glycosylated, plant phenolics are
normally soluble in polar organic solvents. Most phenolic glycosides are water-soluble
but the corresponding aglycones are usually less so. With a few exceptions, water solubil-
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ity increases with the number of hydroxyl groups present. Some phenolics are solubilized
by sodium hydroxide and sodium carbonate, but in alkaline media their oxidation is enhanced
and therefore treatment with alkaline solvents should either be performed under N2 or –
preferably – be avoided. Phenolics with only a few hydroxyl groups are soluble in ether,
chloroform, ethyl acetate, methanol, and ethanol. Methanol, ethanol, water, and alcohol–water
mixtures are most commonly used for dissolving phenolic compounds for analytical pur-
poses (Van Sumere, 1989). All phenolic compounds exhibit intense absorption in the UV
region of the spectrum and those that are colored absorb strongly in the visible region as
well. Each class of phenolic compound has distinctive absorption characteristics. For exam-
ple, phenols and phenolic acids show spectral maxima in the range 250–290 nm; cinnamic
acid derivatives have principal maxima in the range 290–330 nm; flavones and flavonols
exhibit absorption bands of approximately the same intensity at about 250 and 350 nm;
chalcones and aurones have an absorption peak of great intensity above 350 nm and a much
less intense band at 250 nm; anthocyanins and betacyanins show rather similar absorption
in the visible region (475–560 nm and 535–545 nm, respectively) and a subsidiary peak
at about 270–275 nm (Mabry et al., 1970).

Plants need phenolic compounds for pigmentation, growth, reproduction, resistance to
pathogens, and many other functions. The structure of plant phenolics and polyphenols
varies from simple molecules, such as phenolic acids, to highly polymerized compounds,
such as proanthocyanidins, and several thousand (among them over 8,150 flavonoids) dif-
ferent compounds have been identified with a large range of structures. Several classes of
phenolics have been categorized on the basis of their basic skeleton (Fig. 1.1): C6 (simple
phenols, benzoquinones), C6–C1 (phenolic acids), C6–C2 (acetophenones, phenylacetic acids),
C6–C3 (hydroxycinnamic acids, coumarins, phenylpropenes, chromones), C6–C4 (naph-
thoquinones), C6–C1–C6 (xanthones), C6–C2–C6 (stilbenes, anthraquinones), C6–C3–C6

(flavonoids, isoflavonoids), (C6–C1)2 (hydrolyzable tannins), (C6–C3)2 (lignans, neolignans),
(C6–C3–C6)2 (biflavonoids), (C6–C3)n (lignins), (C6)n (catechol melanins), (C6–C3–C6)n (con-
densed tannins) (Harborne, 1980; Hättenschwiler & Vitousek, 2000; Iwashina, 2000).

Phenolic compounds are found throughout the plant kingdom but the type of compound
present varies considerably according to the phylum under consideration. Phenolics are
uncommon in bacteria, fungi, and algae and the classes of phenols recorded are few;
flavonoids are almost completely absent. Bryophytes are regular producers of polyphe-
nols including flavonoids, but it is in the vascular plants that the full range of polyphenols
is found (Swain, 1975; Harborne, 1980). Phenolic compounds have been synthesized dur-
ing the course of evolution by different plant species when the presence of a particular
secondary metabolite has conferred a selectionary advantage on the plant containing it.
As previously stated, plants synthesize a greater array of secondary compounds than 
animals because they cannot rely on physical mobility to escape from their predators and
have therefore evolved a chemical defense against such predators. Generally, the role of
phenolic compounds in defense is related to their antibiotic, antinutritional or unpalatable
properties.

Besides their involvement in plant–animal and/or plant–microorganism relationships,
plant phenolics also have key roles as the major red, blue, and purple pigments, as anti-
oxidants and metal chelators, as signaling agents both above and below ground between
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plants and other organisms, and as UV light screens. This latter property has very much
benefited some higher members of the Charophyceae, which are regarded as prototypes
of amphibious plants that presumably preceded true land plants when they emerged from
an aquatic environment onto the land; their successful adaptation to land was achieved
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Fig. 1.1 Some examples of phenolic structures.
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largely by massive formation of ‘plant phenolic’ compounds. Finally, some studies have
shown that phenolic metabolism is not only a protective mechanism against biotic and
abiotic stresses but also part of the molecular programs that contribute to normal plant
growth and development (Noel et al., 2005; Taylor & Grotewold, 2005).

To achieve their function plant phenolics generally accumulate in specific tissues or
cell types in which subcellular localization is highly regulated. Secondary metabolites are
often transported from source cells to neighboring cells, or even further to other tissues
or remote organs. Several studies have indicated a high degree of compartmentalization
of phenolic compounds and of the enzymes involved in their biosynthesis. Phenolics usu-
ally accumulate in the central vacuoles of guard cells and epidermal cells as well as subepi-
dermal cells of leaves and shoots. Furthermore, some phenolics are found covalently linked
to plant cell wall, while others occur in waxes or on the external surfaces of plant organs.
Some findings suggest also a deposition of flavonoids in the nuclei of certain tree species;
it has been suggested that a flavonoid–DNA complex provides mutual protection against
oxidative damage (Wink, 1997; Sarma & Sharma, 1999; Beckman, 2000; Croteau et al.,
2000; Feucht et al., 2004; Yazaki, 2005).

1.2 Function and use of plant phenolics

Plant phenolics have been considered for a long time to be waste products of primary
metabolism. The defense hypothesis was not accepted by most botanists before the 20th

century because most of them were not convinced of evolution and adaptive explanations.
On the other hand, the potential value of plant secondary metabolites to taxonomy has been
recognized for nearly 200 years, even if their practical application has been restricted to
the 20th century, and predominantly to the last 40 years. The use of secondary compounds
has clear advantages over the use of primary compounds in establishing phylogenetic rela-
tionships at species or infraspecific levels because differences in the complement of sec-
ondary compounds are qualitative differences whereas differences in the concentrations
of primary compounds are quantitative differences, and these are subject to environmental
as well as to genetic control. Flavonoids are particularly convenient for this purpose as
they are widely distributed among plants and are chemically stable. The existence of a
common pattern of secondary compounds may indeed provide much clearer evidence of
common ancestry than morphological similarities attributable either to common ancestry
or to convergent evolution. Moreover, the existence of a characteristic phenolic pattern,
which taxonomists use to separate species, can also have enough adaptive value for survival
through natural selection (Bell, 1980; Van Sumere & Vande Casteele, 1985; Lattanzio et al.,
1996; Wink, 2003).

In the past 30 years the view of plant phenolic metabolites as one of nature’s mean-
ingless waste products has been replaced by the current opinion that plant phenolics play
crucial roles in plant ecology and plant physiology. In addition, biomedical research has
revealed that dietary phenolics, because of their antioxidant and free radical scavenging
properties, play important roles in the prevention of many of the major contemporary chronic
diseases (Kutchan, 2001).
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1.2.1 UV sunscreens

The hypothesis of the protective role of phenolics against harmful UV rays is supported by
the enhanced levels of phenolics observed in plants exposed to strong UV radiation. Plants
in the field are exposed to ambient solar ultraviolet-B (UV-B) radiation (280–320 nm),
which is an environmental challenge negatively affecting DNA, proteins and membranes,
thus leading to altered metabolism through the generation of reactive oxygen species (ROS).
Plants protect themselves from this harmful radiation by synthesizing phenolic compounds,
which act as a screen inside the epidermal cell layer, and by making adjustments to the
antioxidant systems at both cell and whole organism level. By means of this mechanism
phenolics would prevent mutagenesis and cellular death by dimerization of thymine units
in the DNA, which shows an absorption maximum at 260 nm, and possible photodestruction
of coenzymes NAD or NADP, which have a maximum at 260 nm. It has been proposed
that flavonoids with their high absorptivity at 250–270 and 335–360 nm act as good UV
screens (Swain, 1975; Carletti et al., 2003).

It is noticeable that tropical and high-altitude plants contain a higher proportion of
flavonoids than temperate ones do. Several studies have demonstrated the change in flavonoid
composition of plant leaves as a consequence of an excess of light or UV radiation. The
activation of flavonoid biosynthetic genes by UV radiation has been shown in a number of
studies (Chappell & Hahlbrock, 1984; Olsson et al., 1998; Hofmann et al., 2000; Logemann
et al., 2000; Kolb et al., 2001).

The importance of flavonoids in UV protection has also been proved using mutants of
Arabidopsis that have a block in flavonoid production and are, therefore, UV-hypersensitive
phenotypes (Ryan et al., 2001). These studies suggest that other phenolic compounds may
be at least as important as flavonoids in UV protection. Speculating about the role of phenyl-
propanoids as sunscreens to absorb UV-B irradiation in various phenylpropanoid mutants
of Arabidopsis thaliana, Kliebenstein (2004) observed that all phenylpropanoid-deficient
mutants exposed to UV-B radiation were more UV-B sensitive in comparison with the
wild type, but there were dramatic differences in sensitivity to UV-B between these mutants.
These results have suggested that both preformed hydroxycinnamic acid sinapoyl esters
and induced flavonols act as UV-B protectants and that the importance of hydroxycin-
namic acids and flavonols is directly related to their relative concentrations.

1.2.2 Phenolics as signal compounds

There are several reports suggesting that phenolic compounds influence the pools and fluxes
of inorganic and organic soil nutrients. Polyphenols enter the soil mainly as leachates from
above- and below-ground parts of plants and/or within above- and below-ground plant
litter. Phenolic compounds can directly affect the composition and activity of decomposer
communities thus influencing the rates of decomposition and nutrient cycling. Different
types of soluble phenolics, such as ferulic acid, gallic acid or flavonoids, have been found
to either stimulate or inhibit spore germination and hyphal growth of saprophytic fungi.
Mycorrhizal fungi might be even more sensitive to phenolic compounds, but again dif-
ferent types of polyphenols can have opposite effects. Plant mycorrhizal infection, nutrient
uptake and plant growth can be impaired by specific phenolics released by competitors
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(Hättenschwiler & Vitousek, 2000), a process refered to as allelopathy. Commonly this term
is mainly used to describe the chemical interaction between two plants. In plants, allelochem-
icals can be present in leaves, bark, roots, root exudates, flowers, and fruits. The delivery
of allelochemicals into the rhizosphere is often thought to occur through leaching from leaves
and other aerial plant parts, through volatile emission, by root exudation, and by the break-
down of bark and leaf litter. Some identified phenolic allelochemicals are: p-hydroxy ben-
zoic acid and p-coumaric acid (present in leaves), quercetin, juglone and 2,4-dihydroxy-1,4
(2H) benzoxazin-3-one (DIBOA) (present in leaves, bark and root exudates), and (−)-
catechin and sorgoleone (found in rhizosphere and root exudates) (Inderjit & Gross, 2002;
Weir et al., 2004). Bais et al. (2003) present evidence that Centaurea maculosa, an invas-
ive species in the western USA, displaces native plant species by exuding the phytotoxin
(−)-catechin from its roots. This allelochemical triggers a wave of reactive oxygen species
initiated at the root meristem, which leads to a Ca2+ signaling cascade triggering genome-
wide changes in gene expression and, ultimately, death of the root system. Resistance to
allelochemicals is largely accomplished through detoxification pathways that involve the
modification, followed by the secretion or the vacuolar sequestration, of xenobiotics.

In addition to affecting the soil microorganisms responsible for nutrient mineralization,
phenolic compounds can alter nitrogen availability by complexing proteins. Polyphenol–
protein complexes originate either during senescence of plant tissues, when polyphenols
stored in the vacuole come into contact with cytoplasmatic proteins, or in the soil, when
polyphenols complex proteins from litter or extracellular enzymes from microorganisms.
These complexes cause the brown coloring of senescent leaves and are resistant to most
decomposing organisms, except basidiomycetes with the appropriate polyphenol oxidase
activity, and earthworms, which can directly use a large proportion of nitrogen contained
in the complexes (Haslam, 1998; Lattanzio, 2003; Papadopoulou & Frazier, 2004).

Plants depend on the ability of roots to communicate with microbes. The converse is
also true; many bacteria and fungi are dependent on associations with plants that are often
regulated by root exudates. Biological interactions that are driven by root exudates are
more complex and include signal traffic between roots and soil microbes, and one-way
signals that relate the nature of chemical and physical soil properties to the roots. Specific
compounds identified in root exudates have been shown to play roles in these interactions.
For example, isoflavonoids and flavonoids present in the root exudates of a variety of
leguminous plants activate the Rhizobium genes responsible for the nodulation process,
and might be responsible for vesicular–arbuscular mycorrhiza colonization. Flavonoid profiles
in root exudates differ considerably among legumes, and this specificity enables mutual-
ists and beneficial bacteria such as rhizobia to distinguish their hosts from other legumes
(Bais et al., 2004, 2006). Although rhizobia colonize roots in a way that is reminiscent
of pathogenic microorganisms, no host plant defense reactions are triggered during suc-
cessful symbioses: symbiotic interactions, by definition, are beneficial to both partners.
Nevertheless, the plants obviously control the invading bacteria; failure in effective nodule
formation or infections with rhizobia defective in surface polysaccharides often result in
pathogenic responses. Symbiosis between leguminous plants and rhizobia involves the 
de novo development of a specialized plant organ, the root nodule. In the nodules, rhizobia
fix dinitrogen into ammonia, which is assimilated by the host plant, and, in turn, rhizobia
are supplied with carbon compounds.
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The nodulation process in rhizobia–legume symbiosis requires a sequence of highly
regulated and coordinated events, initiated by an exchange of specific signaling compounds
between both partners. The prerequisite for the formation of a nitrogen-fixing nodule is
the generation of flavonoid signal(s) that are secreted from the root exudates of the legu-
minous host. The flavonoid aglycone is presumed to diffuse into the rhizobial bacteria,
perhaps through porins (Mithöfer, 2002). The flavonoids in root exudates induce, in con-
junction with NodD protein [the product of the only nodulation (nod ) gene constitutively
expressed by rizobia], the transcription of an important set of Rhizobium Nod genes. The
Nod genes are responsible for the synthesis of sulfated acylated tetraglucosamine glycolipids
(NodRm-1), the so-called Nod factors, that are secreted by induced rhizobia and initiate
root-hair curling and cortical cell division in the infectible zone of legume roots (Long,
1989; Brewin, 1991; Aoki et al., 2000; Limpens & Bisseling, 2003; Kobayashi et al., 2004).
Examples of flavonoids found to be active in the induction of Nod gene expression are
eriodictyol (3′,4′,5,7-tetrahydroxyflavanone) and apigenin-7-O-glucoside isolated from pea
root exudate, active at a concentration lower than 50 nM, and luteolin and chrysoeriol
(3′-methoxyluteolin) released from alfalfa seeds. Other flavonoid classes released naturally
from legume plants to induce nod-gene expression in their appropriate microsymbionts
are flavanones, such as naringenin and hesperetin, chalcones, and isoflavonoids, such as
daidzein and genistein (Hartwig et al., 1989; Mathesius et al., 1998).

1.2.3 Phenolics as pigments

An important role of flavonoids is to serve as visual signals by acting as pigments in fruits
and flowers, firstly to attract animals as pollinators in flowers, and later to attract animals
to eat the fruits and thereby help in seed dispersal. Fruit colors are primarily determined
genetically, although environmental factors such as temperature, light conditions, and avail-
ability of nutrients can have an effect on flavonoid composition and on the final hue of
the fruit. Concerning anthocyanins, which are mainly responsible for the bluish to purple
and reddish colors in plants, several different factors can affect the final color of the fruit
or flower. Delphinidin-derived anthocyanins are known to be responsible for bluish 
colors, whereas cyanidin- and pelargonidin-derived anthocyanins are found from mauve 
and reddish tissues, respectively. Anthocyanins readily form complexes with so-called co-
pigments that can intensify and modify the initial color given by the pigment. Apparently,
almost all polyphenols, as well as other molecules such as purines, alkaloids and metal-
lic cations, have the ability to function as co-pigments. In addition, the temperature and
pH of the vacuolar solution may affect the final color (Brouillard & Dangles, 1994; Brouillard
et al., 1997; Mol et al., 1998; de Freitas & Mateus, 2006). Chalcones and aurones are
two classes of flavonoids that contribute to yellow flower color in a number of plants; 
for example, the chalcone isosalipurposide is the sole yellow coloring matter of yellow
carnation, while the aurone aureusidin, occurring as 6-glucoside aureusin, is the major
yellow pigment in the snapdragon (Antirrhinum majus).

Variations in hydroxylation pattern of the five commonest flavones and flavonols 
(apigenin, luteolin, kaempferol, quercetin, and myricetin) produce structures that give white,
yellow or ivory colors to the tissues in which they are located. For example, the insertion
of a 2′-hydroxyl group into luteolin gives the flavone isoetin, which is a yellow flower
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