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Preface

During recent years the science of plant surfaces, and the cuticle in particular,
has advanced at a fast pace, encompassing new fields of study along the way.
Considerable progress has been made possible by the application of new con-
cepts and techniques for investigating the biosynthesis, composition, structure and
functional complexity of the plant cuticle.

We now have an increased understanding of the microscopic and sub-
microscopic fine structure of the cuticular membrane as a whole, as well as of
the cutin matrix and the associated wax deposits. By employing mutants and apply-
ing molecular biological techniques and advanced analytical tools, a much clearer
image can now be drawn of the composition of cuticular waxes and the biosynthetic
pathways leading to them. Intriguing variations can be found in the cuticular chem-
istry, morphology and function between and within plant species. Studies assessing
the impact of UV radiation on plant life have emphasised the role of the cuticle
and the underlying epidermis as optical filters for solar radiation. The field con-
cerned with the diffusive transport of lipophilic organic non-electrolytes across the
plant cuticle has reached a state of maturity, which makes it possible to quantitat-
ively analyse and predict permeabilities based on physico-chemical predictors and
to manipulate them in vivo. Recently, a new paradigm has been proposed for the
diffusion of polar compounds and water across the cuticle. Within the context of
plant ecophysiology, cuticular transpiration can now be considered in the perspect-
ive of whole-leaf water relations. New and unexpected roles have been assigned to
the cuticle in plant development and in pollen–stigma interactions. Finally, much
progress has been made in understanding the cuticle as a specific and extraordinary
substrate for the interactions of the plant with microorganisms, fungi and insects.

Since the early 1970s, three books on the plant cuticle have been published.
Only the first addressed all aspects of the subject; the other two were multiauthor
volumes arising from scientific meetings. Considering the progress made in this
field, a book which deals comprehensively with plant surface characteristics and
functions is overdue. The title, Biology of the Plant Cuticle, is intended to express
the multidisciplinary and integrative approach to the subject. As functions are inter-
connected and rely heavily on the (bio)chemistry and properties of the cuticle, it is
hoped that bringing together thus far disparate views of the subject will substantially
advance the field of plant surface science. The book is also intended to provide a
comprehensive overview and critical discussion of the current state of knowledge,
paying close attention to the applied aspects of the field wherever appropriate.

Biology of the Plant Cuticle is aimed at a broad audience, ranging from biolo-
gists working on the molecular and whole-organism level to industrial agrochemists.
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It is hoped that it will be of interest to phytochemists, plant (eco)physiologists,
ecologists and environmental scientists, as well as to scientists and practitioners
from the agricultural and horticultural sciences. In comparison with its prede-
cessors, this book extensively considers the biological interactions occurring on
plant surfaces and, therefore, is hoped to be of special appeal to scientists who, in
the past, did not consider the plant surface a priori as a subject of prime import-
ance. Thus, this volume is furthermore directed at phytopathologists, environmental
microbiologists, entomologists and chemical ecologists.

The editors are indebted to the chapter authors for an enjoyable collaboration on
this project and for timely delivery of carefully prepared manuscripts. In addition, the
editors gratefully acknowledge the encouragement, advice and support continuously
provided by Graeme MacKintosh and David McDade of Blackwell Publishing.

Markus Riederer
Caroline Müller



1 Introduction: biology of the plant cuticle
Markus Riederer

‘Does it make sense, and is it fun at all, to spend so much time with the outermost
micrometer of a plant?’ This was the question a member of a search committee
asked when the author applied for a job at a German university. As all scientists in
this field know and deeply feel, it is fun indeed to study the plant cuticle and the
plethora of processes related to it. The authors of this book hope that the reader will
come to the conclusion that it is worthwhile to invest time, brains and funds into
this endeavour.

The cuticle has often been called the ‘skin’ of the primary parts of higher plants,
and in fact, the Latin word from which this term is derived (cuticula) means ‘thin
skin’. The term cuticle has undergone a kind of evolution and profound changes in
meaning during the last two centuries. At the beginning, the whole primary integ-
ument tissue or epidermis of a plant was called ‘cuticle’ stressing the convergence
with animal skin, which is also cellular in nature. The modern usage of the word,
meaning ‘a superficial film formed of the cutinized outer layers of the superficial
walls of the epidermal cells’ (Oxford English Dictionary Online) of a plant, goes
back to A.P. de Candolle. In 1827, he restricted the use of the French term ‘cuticule’
to the meaning in which it is used today (Wagenitz, 1996). Thus, the word cuticle
is no longer used for a cellular layer but for a continuous extracellular membrane.
In 1852, the word appeared in English for the first time in Henfrey’s translation
of H. von Mohl’s ‘Grundzüge der Anatomie und Physiologie der vegetabilischen
Zelle’ (OED Online). It is this term which will accompany us throughout this book.

1.1 The evolution of the plant cuticle

The cuticle as a structure has a very long history on the palaeobiological timescale.
It is fortunate that the cuticle is a highly recalcitrant material which can easily resist
decay for millions of years under favourable deposition conditions. It is fascinat-
ing that major chemical features like cutin composition are preserved over such
prolonged periods of time (Ewbank et al., 1996; Edwards et al., 1997). Thus, essen-
tially intact cuticles with clearly delineated epidermis cell silhouettes can be obtained
from old sediments. The oldest remnants of plant cuticles date back to the boundary
between the late Siluarian and the early Devonian (about 400 million years ago)
periods. The earliest cuticles, in the modern sense of the term which is assigned to
higher plants, were found dispersed in sediments and belong to sporangia of rhynio-
phytoids. These specimens lack the impression of stomata while beginning with the
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basal Devonian period, preserved cuticles show imprints from guard and accessory
cells that are comparable to the modern stomatal apparatus. For a recent review on
this subject see Edwards et al. (1996).

The finding that cuticles and stomata appear concomitantly in early kormo-
phytes has profound impact on modern concepts of the evolution of vascular land
plants and also on the interpretation of the selection pressure which acted on the
evolution of stomata (Raven, 1977, 2002). Palaeoecophysiology has interpreted the
simultaneous appearance of cuticles and stomata as evidence for the physiological
adaptations to the colonisation of the land and thus for the relatively dry atmosphere
by basal precursors of modern higher plants. Cuticles and stomata form a syndrome
together with extended root systems, supracellular transport in vascular structures
and the development of intercellular air spaces (Raven, 1977, 2002). These features
are interpreted as necessary adaptations for photosynthesising homoiohydric life
forms in an atmosphere with low water activity. The early cuticle probably also
had additional functions equivalent to those of modern cuticles with defence against
parasites, protection against ultraviolet (UV) radiation and water repellence being
the most important ones.

1.2 Major functions of the plant cuticle

The cuticle is a structure that incorporates numerous functions of essential import-
ance for plant life (Kerstiens, 1996b). This book treats the major functions in detail
and, in most cases, devotes separate chapters to each of them. Nevertheless, a short
synopsis is included in this introduction because it appears necessary to make one
point very clear: the cuticle is a non-living though highly multifunctional structure
into which numerous functions have been integrated. As will be shown later, this
integration is sometimes not ideal as some physiological demands are in conflict
with each other.

1.2.1 Transpiration control

As mentioned earlier, one of the major exigencies of the terrestrial lifestyle of
higher plants is to have control over water relations. In order to stay alive, which
essentially means to be more or less turgescent, the plant has to maintain the equi-
librium between transpirational water loss and root water uptake. Any pronounced
disequilibrium will severely compromise the viability and thus the fitness of
the plant.

The control of transpiration from leaves, primary stems, flowers and fruits has
two components: the stomata and the cuticle. Depending on the primary focus of
scientific interest, the importance of either the stomata or the cuticle will be stressed
by different authors. However, an effective control of transpiration is feasible only if
the stomata and the cuticle act together in an optimised way. The low permeability
of the cuticle makes it possible to control water loss by adjusting stomatal aperture.
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But control will only work in a satisfactory way if the water loss across the cuticular
surface is lower than the residual water loss through stomatal pores at optimal closure
of stomata.

The cuticular permeability for water and transpiration confinement by the plant
cuticle will be treated extensively in Chapters 8 and 9. This subject, of course, has
met the interest of many researchers in the past. For general and early literature, the
reader is referred to Stålfelt (1956), Schönherr (1982), and the textbooks by Larcher
(2003) and Nobel (1991).

1.2.2 Control of loss and uptake of polar solutes

In principle, all organisms must have control over their inner milieu and therefore
must have resistant integuments separating them from the environment. This is
also true for terrestrial plants which would loose ions and polar organic solutes
from the apoplastic solution unless they have a highly resistant cuticle that impedes
the transport from the interior to the environment. Thus, the plant gains control
over the loss of solutes and, at the same time, may modulate it by salt-excreting
glands or hydathodes according to its specific needs. As the transport across the
cuticle is symmetric, this membrane also hinders the uptake of polar substances
from the outside. Control over solute loss and uptake is exerted by the same barrier
properties of the cuticle as transpiration control. It might be speculated whether the
need for controlling solute loss was an additional driving force in the evolution of
the cuticular diffusion barrier.

A new view of the cuticular permeability of polar substances is currently
evolving. There is increasing evidence that ions and small polar solutes move across
the cuticle via continuous polar pathways that bypass the wax-based cuticular trans-
port barrier. Chapter 8 (and partially also Chapter 9) will present this new view of
polar solute (and water) transport across the cuticle and will put it in perspective
with older work implying that such pathways may exist. For a thorough review of
the older literature and for a primarily horticultural point of view on the subject of
solute loss from plants (leaching), refer to the review by Tukey (1970).

1.2.3 Controlling the exchange of gases and vapours

When stomata are closed (which, on the average, is the case for approximately 12 h
a day), the cuticle completely limits the loss and uptake of gases and vapours across
the plant–atmosphere interface. This is true not only for water vapour as treated
earlier but also for gases like carbon dioxide, oxygen, inorganic air pollutants and
volatile organic compounds like terpenes (Lendzian and Kerstiens, 1991; Kerstiens
et al., 1992; Kerstiens, 1994). For highly lipophilic organic vapours, the cuticle
is the preferred pathway of exchange even under conditions when the stomata are
open (Riederer, 1995; Trapp, 1995). Exerting control over gas and vapour fluxes is,
without any doubt, beneficial to the plant in most cases.
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However, there is a conflict between controlling volatile exchange and photo-
synthesis. It has been shown experimentally in intact leaves with artificially clogged
stomata that while the cuticle allows small amounts of carbon dioxide and water
vapour to pass through, it markedly discriminates against the transport of carbon
dioxide (Boyer et al., 1997). A comparison with the properties of synthetic poly-
meric membranes like polyethylene, polycarbonate or polyester makes this property
of the plant cuticle understandable. Woolley (1967) compared the permeabilities
of plastic films to water and carbon dioxide and found that no synthetic material
in existence has a higher permeability for carbon dioxide than for water. We can
therefore conclude that intrinsic properties of a transport barrier against water and
polar solutes confer low permeabilities to carbon dioxide and many other inorganic
gases (Langowski, 2002). Evolution over the past 400 million years does not seem
to have generated a membrane that can escape these physical constraints. This is
the case even though a strong selective pressure acts towards a cuticle that allows
photosynthesis during the light period but with the stomata closed.

1.2.4 Transport of lipophilic substances

The cuticle is the main aboveground interface for the exchange of lipophilic organic
compounds between the environment and the interior of primary plant parts. All
lipophilic compounds with low volatility or in solution have to cross the cuticle in
order to enter or leave fruits, primary stems or leaves. The stomatal pathway is either
not open to them (aqueous solutions of organic compounds) or is a very restricted
route of exchange (semi-volatile compounds). The organic compounds in question
may either be secondary metabolites of the plant or natural as well as anthropogenic
compounds (pollutants, plant protection agents) occurring in the environment. From
an applied point of view, the sorption and uptake of plant protection agents is of
prime importance. Both the basic and applied aspects of this topic are discussed
in Chapter 8. For publications covering the older literature, see these reviews and
books: Van Overbeek (1956), Currier and Dybing (1959), Foy (1964), Sargent
(1965), Bukovac (1976) and Hartley and Graham-Bryce (1980).

1.2.5 Water and particle repellence

After rains, many leaf surfaces are not covered by films of water and thus rapidly
dry up. The cuticular surfaces of many plant species, at least their younger and
pristine parts, are repellent to water and most water-based solutions. This is advant-
ageous as water on the leaf surface may have several negative consequences for
the plant; it (1) leads to leaching of ions and polar organic solutes from the plant’s
interior, and (2) creates suitable conditions for the colonisation by potentially harm-
ful microbes like phytopathogenic bacteria or parasitic fungi. The latter aspect
will be covered in Chapters 11 and 12 where the current knowledge on microbial
communities and filamentous fungi on plant surfaces will be discussed in detail.
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Certain plant surfaces may not only repel water and aqueous solutions but also
microscopic particles like particulate aerosol, dust, spores and microbes. This is
due to a self-cleaning mechanism based on the physico-chemical properties of
some leaf surfaces and water droplets running off the surface taking along particles.
This phenomenon has been termed Lotus effect and industrial applications have
been explored (Barthlott and Neinhuis, 1997; Wagner et al., 2003; Otten and
Herminghaus, 2004). The fine structure of the cuticle and the chemical composition
of cutin and cuticular waxes are covered in Chapters 2, 3 and 4, respectively.

1.2.6 Attenuation of photosynthetically active and UV radiation

One of the main driving forces for the colonisation of the terrestrial environment by
plants is the luxuriant availability of radiation in the wavelength range from 400 to
800 nm in most cases. However, photosynthesis depends on a highly complicated
and sensitive arrangement of pigments, proteins and membrane-enclosed compart-
ments. This complex is easily damaged by excessive light. One of the protective
mechanisms involves the cuticle: a dense cover of epicuticular wax crystals enhances
scattering and reflection to a degree making tolerable the intensity of the radiation
which reaches the photosynthetically active tissues in the interior of the leaf.

Another part of the electromagnetic spectrum hitting plant surfaces is UV
radiation in the wavelength range from 280 to 400 nm. Excessive irradiation by
UV results in damages in the photosynthetic apparatus and other vital parts of the
plant cell. The cuticle, often together with the outer epidermal cell wall and the
vacuoles of the epidermis, can contribute to an effective screening of UV radiation
and thus to protecting the sensitive inner tissues. Chapter 6 covers the optical prop-
erties in the visible and UV range of the cuticle but also looks at properties of the
epidermis and distinct sub-epidermal layers.

1.2.7 Mechanical containment

In a limited number of cases, the mechanical properties of plant cuticles support
other structures like cell walls in maintaining the structural integrity of plant tissues.
An economically important example for the mechanical importance of cuticles is
fruit cracking in tomato and sweet cherry. In both cases, increasing internal pressure
by uptake of water via roots or the fruit surface leads to the development of cracks.
These cracks severely interfere with the economic and nutritional value of the fruits.
Several studies have been performed on this issue either from an applied horticultural
(Emmons and Scott, 1997; Bukovac et al., 1999; Knoche et al., 2002) or from a
biomechanical (Wiedemann and Neinhuis, 1998; Matas et al., 2004) point of view.

1.2.8 Separating agent in plant development

The cuticle plays a crucial role in plant development also and may be compared
to a separating agent in developmental processes. Mutants with defective cuticles
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exhibit increased water loss and, at the same time, extraordinary morphological
abnormalities such as the fusion of organs. The emerging knowledge on the role
played by the cuticle in cellular interactions and plant morphogenesis is extensively
covered in Chapter 10.

1.2.9 Interface for biotic interactions

The cuticle-covered surface of higher plants is the main locality for major
aboveground interactions with small organisms. On a microscopic scale, it is the
interaction of bacteria, yeasts and fungi with the plant that may profoundly be
influenced by cuticular properties. Features of the cuticle may have effects on
adhesion, host recognition and mineral and carbon nutrition of the microbes as
well as on the availability of liquid water. In addition, the cuticle may provide
mechanical protection against the invasion by microbes. Cuticle–microbe interac-
tions are treated in Chapters 11 and 12. For extensive reviews on these matters refer
to Blakeman (1981, 1982, 1993) and Beattie and Lindow (1995).

On the macroscopic scale, the cuticle may interfere when insects or other arth-
ropods interact with leaf surfaces. This may happen when a herbivore is searching
for a suitable host for food or oviposition. Numerous cases have been reported
where cuticular and leaf surface features in general influence herbivore behaviour
and thus indirectly the integrity and fitness of the plant. This subject is reviewed
in Chapter 13.

1.3 Convergence with other integuments

Not only plants but many other terrestrial organisms face at least some of the prob-
lems listed earlier. Very often, the main challenge is the danger of desiccation due
to living in a dry atmosphere. The long-term maintenance of water balance must be
solved by any terrestrial organism irrespective of its habitat. In order to hold back
the water obtained from their surroundings, animals like plants typically possess an
outer integument that greatly reduces the rate of water loss (Hadley, 1981, 1991).

In many species, the outer layers of the integument are covered and/or impreg-
nated with more or less solid lipids which are primarily responsible for the observed
waterproofing properties. This is especially true for plants and arthropods (insects
and arachnids) both of which have a lipophilic matrix (cutin in plants, epicuticle
in arthropods) with associated waxes. In both cases, these lipids are mixtures of
long-chain aliphatic compounds as described for plants in detail in Chapters 3 and 4
and for insects in several reviews (Blomquist et al., 1987; de Renobales et al., 1991;
Nelson and Blomquist, 1995). The cuticles of both arthropods and plants are con-
tinuous non-cellular membranes with multiple layers which cover the epidermis.
In arthropods and in higher plants alike it is the physical structure, arrangement
and composition of cuticular lipids that determines the waterproofing quality of
the integument. Quantity and composition are species and age specific. For further
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details on the convergence of plant and arthropod waterproofing properties and their
relationship to chemical composition and physical structure of the cuticle, see the
reviews by Hadley (1981, 1989, 1991).

This parallelism in the chemical, structural and physical properties of the outer
layers of the integument is an outstanding example of convergent evolution in two
widely divergent groups of organisms. The evolutionary success of wax-based tran-
spiration barriers is extraordinary: if we take conservative species estimates as given
by Wilson (1988, 1992), approximately 80% of all species on earth share a cuticle-
like integument with low water permeability achieved by associated waxes. It may
be speculated that two properties of mixtures of long-chain aliphatic molecules are
responsible for this extraordinary evolutionary success: (1) waxes are plastic and can
therefore follow growth and movements, and (2) they are multi-component, partly
liquid or amorphous solids having self-healing properties which allow closing small
defects inflicted on the integuments of plants or arthropods.

1.4 Objectives of this book

The science of the plant cuticle has received increasing attention among plant
scientists as hitherto unknown functions and properties of this fraction of the
epidermis have been discovered. Palaeobiologists, ecologists and especially plant
evolutionary biologists become increasingly interested in cuticular remains and what
can be deduced from their occurrence and structure. The volume of literature on
the plant cuticle is growing at an increasing rate. A search in the BIOSIS database
shows that during the last ten years (that is the time interval since the last book on
the cuticle has appeared), approximately 2300 publications concerning the cuticles
of plants have appeared.

The overall subject of this book has been treated in the past in several books.
To the author’s knowledge, the first modern experiment-based and comprehensive
treatment of the cuticle and the associated waxes was provided by Frey-Wyssling
(1938). Twenty years later, Martin and Juniper (1970) published a book which was
the first to be exclusively devoted to the cuticles of plants. Thereafter, two volumes
each compiling the proceedings of meetings devoted to the plant cuticle were edited
by Cutler et al. (1982) and by Kerstiens (1996a), respectively. A small booklet on
the surfaces of plants oriented at a general scientific audience was published by
Juniper and Jeffree (1983).

Considering the progress made in this field since then, a new book covering
the whole field of cuticular science appears overdue. Since Martin and Juniper
(1970), the present book is the first written exclusively for this purpose and not
derived from a scientific meeting. The title Biology of the Plant Cuticle has been
chosen in order to express the multidisciplinary and integrative views of the subject.
Cuticular functions are interrelated and heavily rely on the (bio)chemistry and the
physical properties of the cuticle. Therefore, combining so far disparate views on this
subject into a common perspective is expected to advance the field of plant surface
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science substantially. Bringing the different functions together will delineate where
and under which conditions they are in accordance and in conflict with each other
depending on the special needs of the plant.

Obviously, the book is intended to provide a comprehensive and critical treatment
of the current state of knowledge about plant surfaces and the cuticle in particular in
its full depth and breadth. Recent developments having a pronounced impact on our
understanding of the cuticle’s fine structure, biosynthesis, composition, physical
and transport properties are extensively reviewed in this book. For the first time,
a comprehensive overview of cuticular functions in plant morphogenesis is given.
Part of the book is devoted to the rapidly evolving field of biotic interactions taking
place on plant surfaces. Where appropriate, special attention has been paid to the
applied aspects of the field, especially in agricultural chemistry.
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