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Preface

Wood is undoubtedly the most versatile raw material available to man. It is
burnt as fuel to provide energy (accounting for about 70% of all wood
harvested), shaped into utensils and implements of various kinds, used as a
cost-effective structural engineering material, converted into fibres for most
paper production, and put to newer uses as a source of industrial chemicals.
The steady increase in the demand for wood, resulting from a concomitant
increase in its applications, means that pressure on forests is constantly
increasing. The need to cut down trees for wood is in direct conflict with the
need to preserve forests for the conservation of biodiversity and as sinks for
carbon dioxide. It is therefore essential that forests are managed sustainably, if
demand is to continue to be met without detriment to our environment. This
can be achieved by developing new forests and replacing trees that are har-
vested, while at the same time ensuring that the trees that are grown produce
wood of good quality. 

The problem lies in the definition of wood quality. Wood which may
produce pulp with good paper-making properties may not be suitable for use in
construction, for example. The intrinsic variability of wood properties is also
of concern in relation to quality. In the case of the paper industry, the pulping
process is modified and the fibres are blended to produce a uniform end prod-
uct. The construction industry relies on the grading of timber at the sawmill to
select those timbers which are fit for purpose. Both processes have important
economic implications.

For this reason, selection of seedlings for planting based on their potential
wood properties should depend on their anticipated use. However, it is
impossible to predict what the requirements might be 50–70 years later when
the tree is ready for harvesting. Because of this, the pulp industry is beginning
to look at fast-growing species, such as hybrid poplar, to be harvested in less
than 10 years. The juvenile characteristics associated with the timber from
these trees make them unsuitable for other high value purposes, except perhaps
as veneers. There are good biological reasons why this juvenile wood develops
and is required by saplings, but its presence is currently exercising the minds of
wood scientists concerned about its inferior properties as a raw material. 

The quality of wood results largely from the chemical and physical struc-
ture of the cell walls of its component fibres. This can be modified in nature
as the tree responds to physical environmental stresses, such as wind acting
on the growing tree. Internal stresses can accumulate, which are released
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catastrophically when the tree is felled, rendering the timber useless, or at least
reducing its value considerably. The quality of timber as an engineering
material also depends on the structure of the wood and the way it has
developed in the living tree.

Thus, tree improvement for quality cannot be carried out without an under-
standing of the biological basis underlying wood formation and structure.
Wood is what it is because it is made by trees, and the question then is what are
trees doing to wood? The primary aim in preparing this volume was to bring
together the viewpoints of biologists and physical scientists, to cover the spec-
trum from the formation of wood to its structure and properties, and to relate
these properties to industrial use. We have attempted to produce a book which
is different from those concerned entirely with the biological or the engineer-
ing aspects of wood, and we hope that it will provide useful insights into both
industrial and academic aspects of the subject.

We are grateful to all those who have contributed chapters.
J.R. Barnett

G. Jeronimidis



1 Tree growth and wood quality 
Rodney Arthur Savidge 

1.1 Cambial growth 

1.1.1 Wood is a biosynthetic end product 

Cambial (or secondary) growth comprises innumerable phenomena of biophysics,
biochemistry and cell biology, and few of these phenomena are yet well
understood (Savidge et al., 2000; Savidge, 2001a). There has never been
a dedicated resolve on the part of either forestry or biology to develop an in-depth
understanding of how trees make wood. Consequently, progress has been a
function of the piecemeal efforts of a few individuals and small groups. Under the
pressure of increasing demands for wood and wood fibre associated with world
population growth, and in the face of dwindling forest area containing increas-
ingly juvenile stock, the need to have greater knowledge of the biological factors
controlling wood supply, in terms of both quantity and quality, seems obvious.
Moreover, the international climate-change community, evidently unaware
of how little is understood about wood formation in trees, has identified forests
as important sinks for draining off excess atmospheric carbon dioxide, the
capacity of which can supposedly be readily increased (Savidge, 2001b). 

Based on the different wood anatomies of conifers (softwoods) and hardwoods,
softwood cambial growth gives the impression of being the less complex. Soft-
woods are also of worldwide distribution and importance, making consideration
of their secondary growth a logical starting point for summarizing what is
known about life processes underlying wood formation and the control of
wood quality. Some aspects of hardwoods are considered later in this chapter. 

1.1.2 Zonation 

Under the microscope, the actively growing cambium of a conifer exhibits
several developmental zones. The cambial zone (CZ, Fig. 1.1A) is seen to
comprise two cell types, ray and fusiform cambial cells. The former are
approximately isodiametric whereas the latter are many times longer than wide
when measured across either their radial or tangential axes of symmetry.
Through periclinal cell divisions, both ray and fusiform cambial cells produce
radial files of daughter cells, adding inwardly to the pre-existing wood and
outwardly to the pre-existing phloem (Fig. 1.1A). New fine structural details
of the periclinal division as it occurs in conifers following cryofixation were
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Fig. 1.1 (A) Cross section of the region of active wood formation in Pinus contorta. CZ, cambial
zone; RE, zone of primary wall radial expansion; SL, zone of secondary wall formation and
lignification, with mature tracheids below. A ray bisects the field of view. Bar = 100 μm. (B) Higher
magnification of A showing the region transitional between the RE and SL zones, with a ray bisecting
the field. Bar = 20 μm. (C) Cross section of wood of Abies balsamea. The compound middle lamella
and tripartite secondary wall are evident, as are bordered pits. A ray bisects the field. Bar = 40 μm.
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recently reported (Rensing et al., 2002). Younger cambium in terminal parts of
trees and older cambium at the bases of aged trees generally have shorter fusi-
form cells than cambium in the intervening stem region. Fusiform cell length
is a major factor in determining the final length of conifer tracheids (or fibres);
consequently, the longer fibres in uncultivated aged trees are found in the
middle-aged region of the stem. 

On the inner periphery of the CZ, cell-division activity is supplanted by
enlargement of CZ daughter cells by expansion of the primary cell-wall surface
area. It occurs primarily in the radial direction, creating a zone of radially
expanding and expanded primary-walled cells (RE, Fig. 1.1A). Although cell
division and expansion both contribute to overall increase in tree girth,
expansion – thought to be driven by turgor pressure and facilitated by auxin-
promotion of cell-wall loosening – is the primary means of moving the CZ
centrifugally (Savidge, 1996). 

During, but usually near the completion of each cell’s primary-wall expansion,
a decision is made to either initiate or not the development of bordered pits
(Fig. 1.1D). Those RE cells undergoing bordered-pit development subse-
quently begin producing secondary-wall lamellae and lignin, thus generating the
secondary-wall forming layer (SL), a zone of still-living cells (Figs 1.1A–D). 

1.1.3 Bordered-pit development 

Bordered-pit numbers are typically highest in earlywood and decline to negligible
frequency in the last-produced latewood tracheids of each annual ring. Bordered
pits are usually confined to radial walls, although they occur naturally in
tangential walls, particularly of latewood tracheids at low abundance (Panshin
& de Zeeuw, 1980). Tangential wall bordered pits have been induced to
develop experimentally in large numbers by manipulating auxin concentration
(Leitch & Savidge, 1995). 

Both the cell biology and biochemistry underlying bordered-pit development
remain uncertain, but it is clear that the process involves a series of successive

Fig. 1.1 (continued) (D) Radial section of P. resinosa developing earlywood, with mature latewood
on the far right. The arrow points to a bordered pit at an early stage of development of its over-arching
border. The bar (50 μm) is in a ray tracheid having smaller diameter bordered pits. (E) SEM view of a
compression wood tracheid showing separations in the microfibrillar matrix of the S2 layer (arrow). The
bar at lower right is 4 μm. (F) Tangential section of Picea glauca showing a microdomain (arrowed) of
tracheids with upward to left orientation relative to the surrounding elements. Bar = 200 μm. (G) Radial
view of Betula alleghaniensis showing a juvenile core that changes abruptly, at the arrowed location, to a
different wood. Bar = 15 mm. (H) Cross section at the arrowed point in G showing the interface between
the corewood (lower) and the exterior wood (above). The bar at lower right is Bar = 10 μm. 
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and quite profound modifications to the compound middle lamella between
adjoining RE cells, as can be seen in Fig. 1.1D. The spatial correspondence of
the borders in adjoining cells is clear evidence that some form of intercellular
communication occurs (Savidge, 2001a). After the circular site, or margo, of
the pit-to-be has become visible and the torus (not found in bordered pits of all
species but common in the Pinaceae) has begun to form in an RE cell, birefringent
putatively cellulosic highly oriented microfibrils begin to be deposited exclusively
around the circumference of each margo. This localized deposition of circularly
oriented crystalline microfibrils continues, around and around, progressing
gradually inward while winding upward towards an imaginary line at the centre
and perpendicular to the plane of the margo. Thus, the over-arching pit border
is formed, leaving an aperture usually about half the diameter of that of the
margo. During its formation, the over-arching border can be isolated as a discrete
ring (Savidge, 2000a); however, other evidence indicates that over-arching
borders of discrete bordered pits are actually interconnected by thin microfibrillar
strands (Savidge, 1996). 

The presence of a spherical organelle tightly appressed to the plasma
membrane, such that the side in contact with the membrane is flattened, may
be the explanation for how the margo and over-arching border arise (Savidge,
2000a). Contact between the cell membrane and the flattened organelle is
envisaged to prevent microfibril deposition occurring within the area of the
margo and, if the organelle contains lytic enzymes (as supposed from its
evidently vacuolar origin – Bethke et al., 1998; Savidge, 2000a), it could
concomitantly serve to hydrolyze non-cellulosic constituents of the underlying
compound middle lamella. The upper, domed surface of the membrane-bound
organelle would obviously also serve as template for the formation of the
circular over-arching border. 

1.1.4 Secondary-wall lamellae 

After the onset of bordered-pit development, general secondary-wall polysac-
charide deposition commences, followed by the initiation of lignification in
the middle lamella, most conspicuously at cell corners. By the completion of
these processes, three secondary-wall layers appear to be present when viewed
under the light microscope (Fig. 1.1C), although electron microscopy indicates
that each layer actually comprises a number of sub-lamellae. This structure has
profound implications for wood properties and utilization, and it is described
in detail in Chapters 2 and 4. The chemical structure of the wall is the subject
of Chapter 3. [The problem of dimensional stability in wood ultimately
reduces to its chemistry, in particular the relative abundances of different
chemical bonds to resist stress and stabilize the macrostructure. What is really
needed in this area is a detailed understanding of the chemical reactions
occurring during wood formation and how they are controlled.]
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1.1.5 Microfibrils and lignin 

The essential events underlying differentiation of a cambial derivative into
a woody element are microfibril deposition and lignification. Considerable
research has been conducted into both over the last century, but at the level of
biochemistry much remains to be discovered about how these processes
proceed (Lewis & Sarkanen, 1998; Atalla, 1998; Delmer, 1999; Brett, 2000;
Savidge, 2000a; Savidge & Förster, 2001). To do justice to the continuing
uncertainty, it would probably be correct to say that most research so far
attempted has suffered from a lack of clear definition, insufficient material for
investigation and/or a lack of resolution. Compounding the overall problem, no
substantial and therefore convincing synthesis of cellulose in vitro using a cell-
free biological system has yet been achieved, despite a number of reports on
putative cellulose synthase genes (Delmer, 1999; Brett, 2000; Taylor et al.,
2000; Williamson etal., 2001; Desprez etal., 2002). 

A common conclusion from many scientific investigations has been that
microfibril orientation is determined by the orientation of cortical microtubules
(Chaffey et al., 2000), but no shortage of additional investigations has
presented data indicating the contrary. Many have noted a lack of correlation
between the two orientations (e.g. Sugimoto etal., 2000a,b; Bichet etal., 2001).
It has also been suggested that microfibril production must precede cortical
microtubule orientation (Fisher & Cyr, 1998). Indeed, some evidence indicates
that there may be no need for microtubules at all during microfibril deposition
(Savidge & Barnett, 1993). 

Although the field of microtubule–microfibril correlation analysis seems to
be at an impasse, there is substantial experimental evidence indicating that the
orientation of cortical microtubules is altered by the phytohormone environment
(Blancaflor & Hasenstein, 1995; Wenzel et al., 2000). Microfibril has become
synonymous with cellulose, but xyloglucan and glucomannan microfibrils – easily
confused with cellulose microfibrils when merely imaged at the structural
level – are well-known constituents of secondary-wall layers and, arguably, are
as important as cellulose in determining many of the properties of wood (Jones,
1971; Wilkie, 1985; Brett, 2000). Could the explanation be that some micro-
fibril polymerizations are, and others are not, linked to cortical microtubules? 

The biochemistry of lignification is supposedly far better understood than
the formation of microfibrils, but the reality is that it also remains an open
question, far from completely understood (Lewis & Sarkanen, 1998; Savidge
& Förster, 2001). 

1.1.6 Protoplasmic autolysis 

Biological control of protoplasmic autolysis during xylogenesis has received
little attention. It should be noted that sapwood is not, in contrast to popular
perception, a dead tissue. A large proportion of cambial derivatives which
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become incorporated into sapwood actually remain living, for example as ray
and axial parenchyma, and as non-autolyzed fibres, those cells dying only
years later in association with heartwood formation (Savidge, 1996). Hard-
wood fibres tend to be ambivalent in pursuing a programme of cell death, but
tracheary elements (i.e. tracheids and vessel members) in both conifers and
hardwoods seem to be committed to apoptosis occurring within at least a year,
and usually within a month, after the elements have otherwise differentiated. As
the newly matured and protoplasmically autolyzed woody elements become
distanced from the CZ, water begins flowing from one element to another
through bordered pits and, in the case of hardwoods, through the perforation
plates separating vessel members. Thus, water is distributed throughout the
tree. It is probable that the living component has a role in resisting the onset of
decay, and it is well established that diurnal and phenological changes in
chemistry are normal to the sapwood, a result of their metabolism. 

1.1.7 Cambial fusiform cell length and orientation 

Fusiform cambial cells usually, but not invariably, give the appearance of being
stretched in a direction more or less parallel to the long axis of the stem (or branch,
or root). Fibre elongation in hardwoods is promoted by the phytohormone class
known as gibberellins (Stant, 1961; Eriksson etal., 2000), and these presumably
also influence the elongated character of fusiform cambial cells in all species
(Savidge, 1985; Kijidani etal., 2001). Gibberellin promotion of fusiform cambial
cell elongation remains to be unequivocally demonstrated, however. Continuing
basipetal transport of auxin through the cambium was found to maintain the
fusiform nature of cambial cells, preventing them from shortening and becoming
septate axial parenchyma (Savidge, 1983; Savidge & Farrar, 1984). As shown
in Fig. 1.1F, microdomains of disoriented cells sometimes arise within other-
wise oriented populations, and the control mechanisms underlying microdomain
formation, although still poorly understood, are believed to be at the heart of
spiral, wavy and interlocked grain formation in trees (Savidge & Farrar, 1984). 

1.2 Perennial cambial growth 

1.2.1 Episodic but variable cambial growth 

Wood can be seen as an engineering material, an aggregate of fibres and fines,
or as a mass of different chemical substances and voids in combination, but more
fundamentally wood is a biological end product generated during cambial
growth over successive years. Cambial growth is episodic, restricted in temperate
zones to the warm spring and summer months when photoperiod is long, and
limited to periods of water availability in the tropical zones (Savidge, 1993).
The outcome of each growth episode can be envisaged simplistically as the
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formation of an inverted cone, or layer, of durable, supportive woody elements
deposited upon the pre-existing structure. Each new layer of wood at the
commencement of its formation becomes chemically cemented to the woody
elements of the preceding layer through covalent bonding between lignin,
polysaccharides and other substances. Consequently, wood when green usually
is a seamless, continuously reinforced material, although there are exceptions
(Fig. 1.1G). Vertical or rotational shear-slip at the boundary between increments
(Fig. 1.1H) is encountered only following stresses sufficiently severe to crush
or otherwise deform the weaker earlywood elements. 

1.2.2 Tapering to the point in form and function 

Every tree tapers to minute apical meristems supporting primary (or extension)
growth. Cambium arises immediately basal to sites of primary growth; thus,
cambial age and therefore the time available to increase the girth of the corres-
ponding axis necessarily vary along the axis. Sites of primary growth are the
locations within the tree having the highest concentrations of nutriment.
Consequently, both solute concentration and water-potential gradients extend
longitudinally over stem and branch axes. In other words, the intrinsic environ-
ment experienced by individual cambial cells will vary from one point to the
next, even when the extrinsic environment of the whole tree is maintained
constant within a controlled growth chamber. 

The reality of chemical and physical gradients extending longitudinally, and
also circumferentially and radially, in the cambial region is surely the key factor
determining the variable nature of wood (Savidge, 1996, 2001a). In the final
biological analysis, individual elements of wood constitute phenotypes arising
through interactions between each cambial derivative’s genotype and its sub-
cellular environment (Savidge, 1996, 2000a). The cambial genotype throughout
a tree can be assumed to be constant, but because the physical and chemical
environments experienced by cambial cells vary at different locations, the nature
of gene expression and the resulting end products reasonably can also be expected
to vary. Thus, although perhaps not welcome information for wood-processing
industries, within the framework of the biological sciences it is entirely to be
expected that the nature of wood must inevitably vary over the tree. 

The above may give the impression that cambial growth, though variable,
always occurs, and certainly the concept of annual rings and the physiologically
unsubstantiated interpretations given to them by the field of dendrochronology
reinforce that supposition. On the other hand, cambial growth in conifers is
commonly suppressed at the bases of a tree’s lower live branches, as well as at
the bole base, in old trees (Meredieu & Caraglio, 2002). Moreover, pronounced
taper does not necessarily always attend morphogenesis of perennial woody
plants having cambium. Lateral roots, for example, typically extend through
soil for many metres nevertheless maintaining quite small diameters over the
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distance, little or no cambial growth attending their primary growth. Vines also
are quite capable of focusing their energy and biomass allocation on extension
growth, although cambial growth does occur to a limited extent particularly
near the base of the vine. Many hardwood species when grown in tight quarters
allocate minimal resources to secondary growth, instead growing in height to
produce long slender stems. Considering the differences between roots, vines
and trees, there appears to be a connection between the occurrence of cambial
growth and the need of the stand-alone tree to biosynthesize sufficient structural
support to resist the force of gravity. 

1.3 Wood quality in perspective 

1.3.1 Defining wood quality 

Wood quality, as understood within both dictionary and practical contexts, has
to do with the degree of excellence – in relation to some preconceived applica-
tion(s) – of each log, piece of wood or woody fibre under consideration. Because
quality assessment is multi-faceted and depends on the intended application,
there is no absolute measure. Quality assessment by the woodsmen who fell and
process the trees and by the mill workers who decide how logs should be used
involves experienced observation and snap-judgment integration of particular
features, based largely on subjective experience. 

1.3.2 Measuring wood quality 

Some aspects of quality, such as wood density, cellulose, lignin or extractive
contents, can be repeatedly analyzed and quantitatively expressed with high
accuracy and precision, although always within the proviso that the estimate may
be accurate only for the sample actually measured and within the method
employed. Other measures, such as fibre length, cell-wall thickness, microfibril
angle, bordered-pit number and percentages of the various types of woody
elements coexisting in a wood are more problematic. Upon repeated random
sampling and measurement of the same preparation, a Gaussian distribution is
predictably obtained, and the magnitude of the standard deviation may provide
equally or more important information than the mean value. However, that
information essentially is no more than a confirmation of what can be readily seen
when viewing a section of wood in the compound light microscope (Fig. 1.1).
Immense variation exists within wood. In other words, the sub-micrometre pre-
cision of microscopic imaging and associated measuring of small samples of
wood readily and consistently reveals that so-called accurate estimates on wood
samples obtained through physical and/or chemical analytical procedures in fact
are low resolution, relatively crude simplifications. They do little justice to the
immense variation existing in wood, from nanometre to higher scales. 



TREE GROWTH AND WOOD QUALITY 9

1.3.3 Wood quantity versus wood quality 

Wood quantity and quality can be contemplated independently of one another,
at least in an abstract sense. Whereas wood quantity is concerned with the total
amount of wood (measured as diameter, length, volume, weight or any combi-
nation thereof) and can be expressed numerically with accuracy and precision,
quality assessment frequently involves subjective estimations. However, both
have their origin in the cambial region, and the dimensions of the bole usually
have a major influence on quality as well as quantity, particularly at the applied
level. For example, clear or knot-free wood is obtained from larger diameter
trees; lumber dimensions in the mill are decided on the basis of log length and
diameter; slow-grown conifers with smaller diameter stems have more dense
and therefore stronger woods than those of fast-grown trees; and more dense
and therefore higher yielding pulps come from fast- as compared to slow-grown
hardwoods. In other words, fundamental research projects focusing on the con-
trol of cambial growth, allocation of photosynthate and nutrients to cambium,
metabolism in the cambium, water potential relations across, along and around
the cambial sheath, and cambial cell biology in general have direct relevance to
understanding wood quality as well as wood quantity (Larson, 1969). 

1.3.4 Stem dimensions and quality 

Stem dimensions are a function not only of how quickly height and girth
increase during any one episode of growth, but of how many growth episodes
have occurred. A massive millenary redwood or a 140-year-old straight-stemmed
American chestnut (Figs 1.2A and B, respectively) generally would be expected
to have high quality boles. On the other hand, as Figs 1.2C and D show, despite
their ages, the boles of a century-old eastern white pine or of an 800-year-old
white spruce might fail most quality tests, excepting perhaps those of specialist
wood artificers. Thus, aging, although usually an enhancing factor, is of itself
no guarantee that the wood in a tree will be of high quality in relation to the
more common uses of wood. 

Although the many wood-quality problems attending taper appear to be
unavoidable during the youth of the stand-alone tree, trees when approaching
their maximum height tend to lose taper, secondary growth continuing especially
in the crown after primary growth has been reduced to production of new leaves
or needles with little associated extension growth (Fig. 1.2). Thus, the problem
of taper finds a solution in time, and the primary controlling factor ultimately is
the vision forest management can muster in its long-term planning. 

1.3.5 G×E control of wood quality 

There are both genetic and environmental reasons for time not being the sole
determinant of stem dimensions (Savidge, 1996, 2000a, 2001a). The genetic
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Fig. 1.2 (A) Mature Sequoiadendron giganteum bole in Mountain Home Demonstration State Forest,
California. For scale, a man at the base of the tree is arrowed. (B) A young Castanea dentata bole of
good form, Mount Uniacke, Nova Scotia. (C) Pinus strobus, typical of the trees rejected by loggers
throughout New Brunswick, Canada. (D) Picea glauca var. albertiana, severely spiral grained, near
Mount Nansen, Yukon Territory, Canada. (E) P. glauca phenotype in the New Brunswick Botanical
Garden. (F) Normal branched and foxtailed Pinus caribea (reproduced with FAO permission from
Kozlowski & Greathouse, 1970). (G) Another interesting Picea glauca phenotype in the New
Brunswick Botanical Garden. 


