Plant Nutritional Genomics

Edited by

MARTIN R. BROADLEY, Plant Sciences Division, School of Biosciences, University of Nottingham, UK

and

PHILIP J. WHITE. Warwick HRI, University of Warwick, Wellesbourne, Warwick, UK

CRC Press

Plant Nutritional Genomics

Biological Sciences Series

A series which provides an accessible source of information at research and professional level in chosen sectors of the biological sciences.

Series Editor:

Professor Jeremy A. Roberts, Plant Science Division, School of Biosciences, University of Nottingham. UK.

Titles in the series:

Biology of Farmed Fish Edited by K.D. Black and A.D. Pickering

Stress Physiology in Animals Edited by P.H.M. Balm

Seed Technology and its Biological Basis Edited by M. Black and J.D. Bewley

Leaf Development and Canopy Growth Edited by B. Marshall and J.A. Roberts

Environmental Impacts of Aquaculture Edited by K.D. Black

Herbicides and their Mechanisms of Action Edited by A.H. Cobb and R.C. Kirkwood

The Plant Cell Cycle and its Interfaces Edited by D. Francis

Meristematic Tissues in Plant Growth and Development Edited by M.T. McManus and B.E. Veit

Fruit Quality and its Biological Basis Edited by M. Knee

Pectins and their Manipulation Edited by Graham B. Seymour and J. Paul Knox

Wood Quality and its Biological Basis Edited by J.R. Barnett and G. Jeronimidis

Plant Molecular Breeding Edited by H.J. Newbury

Biogeochemistry of Marine Systems Edited by K.D. Black and G. Shimmield

Programmed Cell Death in Plants Edited by J. Gray

Water Use Efficiency in Plant Biology Edited by M.A. Bacon

Plant Lipids – Biology, Utilisation and Manipulation Edited by D.J. Murphy

Plant Nutritional Genomics Edited by M.R. Broadley and P.J. White

Plant Nutritional Genomics

Edited by

MARTIN R. BROADLEY, Plant Sciences Division, School of Biosciences, University of Nottingham, UK

and

PHILIP J. WHITE. Warwick HRI, University of Warwick, Wellesbourne, Warwick, UK

CRC Press

© 2005 by Blackwell Publishing Ltd

Editorial offices: Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK Tel: +44 (0) 1865 776868 Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton, Victoria 3053, Australia Tel: +61 (0)3 8359 1011

ISBN-10 1-4051-2114-9 ISBN-13 978-14051-2114-9

Published in the USA and Canada (only) by CRC Press LLC, 2000 Corporate Blvd., N.W., Boca Raton, FL 33431, USA Orders from the USA and Canada (only) to CRC Press LLC

USA and Canada only ISBN 0-8493-2362-2

The right of the Authors to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

First published 2005

Library of Congress Cataloging-in-Publication Data: A catalogue record for this title is available from the Library of Congress

British Library Cataloguing-in-Publication Data: A cataloge record for this title is available from the British Library

Set in 10.5/12 pt Times by TechBooks Printed and bound in Great Britain by MPG Books Ltd, Bodmin, Cornwall

The publisher's policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards.

For further information on Blackwell Publishing, visit our website: www.blackwellpublishing.com

Contents

Co Pre	ntribı eface	itors		xiii xvii
1	Nitr FR/	ogen ANÇO	VISE DANIEL-VEDELE and SYLVAIN CHAILLOU	1 J
	1.1	Introd	luction	1
	1.2	Amm	onium and nitrate uptake and transport within the plant	3
		1.2.1	Ammonium uptake and transport	4
		1.2.2	Molecular analysis of ammonium uptake	5
		1.2.3	Regulation of ammonium uptake: physiological	
			evidence and molecular basis	5
		1.2.4	Nitrate uptake and transport	6
		1.2.5	Identification of genes coding for nitrate transporters	7
			1.2.5.1 The <i>NRT1</i> family of transporters	7
			1.2.5.2 The <i>NRT2</i> family of transporters	8
		1.2.6	Regulation of nitrate influx and the role of NRT1	
			and NRT2 genes	10
	1.3	Nitrog	gen assimilation	12
		1.3.1	Nitrate reduction	12
		1.3.2	Ammonium assimilation	13
			1.3.2.1 The GS/GOGAT cycle	13
			1.3.2.2 Glutamate dehydrogenase (GDH)	15
	1.4	Concl	uding remarks: the search for new genes	16
		1.4.1	Search for homologues of genes from different	
			organisms	16
		1.4.2	Searches for candidate genes using high throughput	
			screening	17
		1.4.3	Naturally occurring variation	17
	Refe	erences		19
2	Pota SA1	assium BINE	ZIMMERMANN and ISABELLE CHÉREL	26
	0111			
	2.1	Introd	luction	26
	2.2	Physi	ology of K ⁺ transport	27

2.2.2 Potassium uptake by roots 28 2.2.3 Potassium distribution in the plant 30 2.4 Control of gas exchange by potassium-driven stomatal movements 30 2.3 Molecular identification of K ⁺ transporters 31 2.3.1 Shaker-like channels 34 2.3.2 KCO channel family 36 2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1.1 Effect of drought stress and abscisic acid (ABA) 50 2.4.2.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3.1 Introduction 66 3.2 Plant species have different calcium requirements extoned the cytosol from an excessive calci			2.2.1	Functional identification of K ⁺ currents	27
2.2.3 Potassium distribution in the plant 30 2.2.4 Control of gas exchange by potassium-driven stomatal movements 30 2.3 Molecular identification of K ⁺ transporters 31 2.3.1 Shaker-like channels 34 2.3.2 KCO channel family 36 2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3			2.2.2	Potassium uptake by roots	28
2.2.4 Control of gas exchange by potassium-driven stomatal movements 30 2.3 Molecular identification of K ⁺ transporters 31 2.3.1 Shaker-like channels 34 2.3.2 KCO channel family 36 2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Effect of nutritional status 43 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILLP J. WHITE 3.1 Introduction 73 3.4 Identif			2.2.3	Potassium distribution in the plant	30
stomatal movements 30 2.3 Molecular identification of K ⁺ transporters 31 2.3.1 Shaker-like channels 34 2.3.2 KCO channel family 36 2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Effect of nutritional status 43 2.4.1.1 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 61 3.1 Introduction 73 3.4 Identifying genes involved in calcium accumulation 73 3.5 The genetics of ca			2.2.4	Control of gas exchange by potassium-driven	
2.3 Molecular identification of K ⁺ transporters 31 2.3.1 Shaker-like channels 34 2.3.2 KCO channel family 36 2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 61 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The g				stomatal movements	30
2.3.1 Shaker-like channels 34 2.3.2 KCO channel family 36 2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 3.1 Transcriptional regulation 40 2.4.1.1 Effect of drought stress and abscisic acid (ABA) 2.4.2 Post-translational regulation 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium tolerance (protecting the cytosol from an exc		2.3	Molec	cular identification of K ⁺ transporters	31
2.3.2 KCO channel family 36 2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 <			2.3.1	Shaker-like channels	34
2.3.3 KUP/HAK/KT family 36 2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effect of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 73 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5			2.3.2	KCO channel family	36
2.3.4 K ⁺ /H ⁺ antiporters 37 2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effect of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Ackno			2.3.3	KUP/HAK/KT family	36
2.3.5 Trk/HKT 37 2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 61 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 </th <th></th> <th></th> <th>2.3.4</th> <th>K⁺/H⁺ antiporters</th> <th>37</th>			2.3.4	K ⁺ /H ⁺ antiporters	37
2.3.6 CNGC family 38 2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur			2.3.5	Trk/HKT	37
2.3.7 Redundancy and specificity 38 2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur MALCOLM J. HAWKESFORD 87 4.1			2.3.6	CNGC family	38
2.3.8 From Arabidopsis to grapevine: potassium transport and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 <th></th> <th></th> <th>2.3.7</th> <th>Redundancy and specificity</th> <th>38</th>			2.3.7	Redundancy and specificity	38
and wine quality 39 2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic 43 acid (ABA) 50 2.4.2 Post-translational regulation 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89			2.3.8	From Arabidopsis to grapevine: potassium transport	
2.4 Regulation of K ⁺ transport 40 2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic 43 2.4.1.2 Effect of drought stress and abscisic 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89				and wine quality	39
2.4.1 Transcriptional regulation 40 2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic 43 acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		2.4	Regul	ation of K ⁺ transport	40
2.4.1.1 Effects of nutritional status 43 2.4.1.2 Effect of drought stress and abscisic 50 acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89			2.4.1	Transcriptional regulation	40
2.4.1.2 Effect of drought stress and abscisic acid (ABA) 50 2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89				2.4.1.1 Effects of nutritional status	43
acid (ABA)502.4.2 Post-translational regulation502.5 Conclusions and perspective53Acknowledgements54References543 Calcium66PHILIP J. WHITE663.1 Introduction663.2 Plant species have different calcium requirements673.3 Identifying genes involved in calcium accumulation733.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load)783.5 The genetics of calcium accumulation by plants81Acknowledgements82References824 Sulphur87MALCOLM J. HAWKESFORD874.1 Introduction874.1 Introduction874.2 Acquisition of sulphate89				2.4.1.2 Effect of drought stress and abscisic	
2.4.2 Post-translational regulation 50 2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89				acid (ABA)	50
2.5 Conclusions and perspective 53 Acknowledgements 54 References 54 3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89			2.4.2	Post-translational regulation	50
Acknowledgements54References543 Calcium66PHILIP J. WHITE663.1 Introduction663.2 Plant species have different calcium requirements673.3 Identifying genes involved in calcium accumulation733.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load)783.5 The genetics of calcium accumulation by plants81Acknowledgements82References824 Sulphur MALCOLM J. HAWKESFORD874.1 Introduction 4.2 Acquisition of sulphate87		2.5	Concl	usions and perspective	53
References543 Calcium66PHILIP J. WHITE663.1 Introduction663.2 Plant species have different calcium requirements673.3 Identifying genes involved in calcium accumulation733.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load)783.5 The genetics of calcium accumulation by plants81Acknowledgements82References824 Sulphur MALCOLM J. HAWKESFORD874.1 Introduction 4.2 Acquisition of sulphate87		Ackı	nowledg	gements	54
3 Calcium 66 PHILIP J. WHITE 66 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		Refe	rences		54
9 PHILIP J. WHITE 3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89	3	Calc	cium		66
3.1 Introduction 66 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		PHI	LIP J.	WHITE	00
3.1 Infoduction 80 3.2 Plant species have different calcium requirements 67 3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		31	Introd	uction	66
3.3 Identifying genes involved in calcium accumulation 73 3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		3.2	Plant	species have different calcium requirements	67
3.4 Identifying genes involved in calcium tolerance (protecting the cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		3.3	Identi	fying genes involved in calcium accumulation	73
cytosol from an excessive calcium load) 78 3.5 The genetics of calcium accumulation by plants 81 Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		3.4	Identi	fying genes involved in calcium tolerance (protecting the	
3.5 The genetics of calcium accumulation by plants81Acknowledgements82References824 Sulphur87MALCOLM J. HAWKESFORD874.1 Introduction874.2 Acquisition of sulphate89			cytosc	ol from an excessive calcium load)	78
Acknowledgements 82 References 82 4 Sulphur 87 MALCOLM J. HAWKESFORD 87 4.1 Introduction 87 4.2 Acquisition of sulphate 89		3.5	The g	enetics of calcium accumulation by plants	81
References824Sulphur MALCOLM J. HAWKESFORD874.1Introduction 4.2874.2Acquisition of sulphate89		Ackı	nowled	gements	82
4Sulphur MALCOLM J. HAWKESFORD874.1Introduction 4.2874.2Acquisition of sulphate89		Refe	rences	-	82
MALCOLM J. HAWKESFORD874.1 Introduction874.2 Acquisition of sulphate89	4	Sulr	hur		87
4.1Introduction874.2Acquisition of sulphate89	7	MA	LCOL	LM J. HAWKESFORD	07
4.2 Acquisition of sulphate 89		4.1	Intro	duction	87
		4.2	Acqu	isition of sulphate	89

CC)N]	ΓEI	NΊ	S

	4.3	The s	sulphate transporter family	90	
	4.4	Regu	lation of sulphate transporter expression and sulphate		
		assin	nilation	93	
	4.5	Sulpl	hate assimilation	95	
	 4.6 Sulphurtransferases and sulphotransferases 4.7 Methionine biosynthesis 4.8 Glutathione 4.9 Nitrogen/sulphur interactions 4.10 Pathogen defence 				
	4.11	Geno	omic studies	103	
	4.12	Outle	ook	104	
	Ackı	nowled	gements	104	
	Refe	rences		105	
5	Phos	sphoru	s	112	
	KAS	SHCH	ANDRA G. RAGHOTHAMA		
	5.1	Introd	luction	112	
	5.2	Phosp	hate acquisition is an inducible response in plants	112	
		5.2.1	Inducible phosphate acquisition is associated with		
			increased transcription of high-affinity phosphate		
			transporters	113	
		5.2.2	How do plants regulate phosphate homeostasis?	115	
		5.2.3	Plant root modifications lead to increased phosphate		
			acquisition	116	
	5.3	Phosp	hate transporters	116	
		5.3.1	Functional analysis of phosphate transporters	116	
		5.3.2	Molecular regulation of phosphate uptake in plants	117	
		5.3.3	Global regulation of gene expression during phosphate		
			deficiency	119	
	5.4	Perspe	ective: Future genetic approaches to isolate phosphate		
		signal	ing components	120	
	Ackno	Acknowledgements			
	Refer	ences		122	
6	Sodi	um		127	
U		ᄭᄱ	NG SHI DAVA BDESSAN DAIH M	14/	
	HAS	SEGA	WA and JIAN-KANG ZHU		
	6.1	Introd	luction	127	
	6.2	Arabi	dopsis as a model for salt-tolerance research	127	
	6.3	sos m	utants	128	

vii

	6.4	SOS genes	129
		6.4.1 SOS3	129
		6.4.2 <i>SOS2</i>	131
		6.4.3 <i>SOS1</i>	134
		6.4.4 <i>SOS4</i>	136
		6.4.5 <i>SOS5</i>	137
	6.5	Other genes important for Na ⁺ homeostasis	138
		6.5.1 <i>HKT1</i>	138
		6.5.2 NHX1	140
		6.5.3 H ⁺ pumps	142
	6.6	Cellular Na ⁺ homeostasis and SOS pathway	143
	6.7	Prospects	144
	Refe	prences	145
7	Maj	pping links between the genome and ionome in plants	150
	BR	ETT LAHNER and DAVID E. SALT	
	7.1	Introduction	150
	7.2	Concept of the ionome	151
	7.3	Characterization of the plant ionome—A single ion at a time	151
	7.4	Characterization of the plant ionome-multiple ions at a time	152
		7.4.1 High-throughput ion profiling	153
		7.4.2 Sample preparation	154
		7.4.3 Sample analysis	156
		7.4.4 Potential rate limiting factors	157
		7.4.5 Data handling	157
		7.4.6 Bioinformatics	158
	7.5	Environmental, temporal and spatial ionomics	159
	7.6	Linking the ionome and genome	162
		7.6.1 Forward genetic approaches	163
		7.6.2 Exploiting natural variation	165
		7.6.3 Reverse genetic approaches	166
	Ack	nowledgements	167
	Refe	erences	167
8	Tra	nscriptional profiling of membrane transporters	170
	FRA	ANS J.M. MAATHUIS and ANNA AMTMANN	
	8.1	Introduction	170
	8.2	An overview of microarray technology	171
		8.2.1 What microarray studies can do	172
		8.2.2 Gene expression studies	173
		8.2.3 Genomic analyses	174

	8.3	Gener	al aspects of microarray technology	174
		8.3.1	Microarray manufacturing	175
		8.3.2	Experimental design	175
		8.3.3	RNA isolation and labelling	176
	8.4	Transe	criptomics data analysis and interpretation	177
		8.4.1	Image analysis	177
		8.4.2	Normalisation	178
		8.4.3	Identifying differentially expressed genes	178
		8.4.4	Gene clustering	179
		8.4.5	Biological interpretation of data	180
	8.5	Trans	porter transcriptomics	182
		8.5.1	The role of membrane transporters in plant nutrition	
			and stress	183
		8.5.2	Membrane transporter genes	183
		8.5.3	Questions that need an answer	184
		8.5.4	A gene family-based transcriptomics study	185
	8.6	Treatr	nent based studies	187
	8.7	Using	publicly available transcriptomics data	191
	8.8	Outlo	ok	193
	Ack	nowled	gements	194
	Refe	erences		194
0	Fvn	loring	natural genetic variation to improve plant	
,	nuti	ient co	intent	201
	DIC	icit co	htent	
	1)(('K VR	EUGDENHIL MARKGM AARTS	201
	DIC	CK VR Maa	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF	201
	and	CK VR MAA	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF	201
	DIC and 9.1	CK VR MAA Introd	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF uction	201
	DIC and 9.1 9.2	CK VR MAA Introd The g	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation	201 201 202
	DIC and 9.1 9.2 9.3	CK VR MAA Introd The g Genet	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in	201 201 202
	DIC and 9.1 9.2 9.3	CK VR MAA Introd The g Genet model	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species	201 202 205
	DIC and 9.1 9.2 9.3	CK VR MAA Introd The g Genet model 9.3.1	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i>	201 202 205 205
	DIC and 9.1 9.2 9.3	CK VR MAA Introd The g Genet model 9.3.1 9.3.2	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice	201 202 205 205 207
	DIC and 9.1 9.2 9.3	Introd Introd The g Genet 9.3.1 9.3.2 9.3.3	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species	201 202 205 205 207 209
	DIC and 9.1 9.2 9.3	Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF luction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in l species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits	201 202 205 205 207 209
	DIC and 9.1 9.2 9.3 9.4	Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in croo	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants	201 202 205 205 207 209 211
	DIC and 9.1 9.2 9.3 9.3	Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in cro 9.4.1	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants Wheat	201 202 205 205 207 209 211 211
	DIC and 9.1 9.2 9.3 9.4	Introd Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in croj 9.4.1 9.4.2	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Juction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants Wheat Maize	201 202 205 205 207 209 211 211 211
	DIC and 9.1 9.2 9.3 9.4	CK VR MAA Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in croj 9.4.1 9.4.2 9.4.3	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF Auction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants Wheat Maize Bean	201 202 205 205 207 209 211 211 211 212
	DIC and 9.1 9.2 9.3 9.4	K VR MAA Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in croj 9.4.1 9.4.2 9.4.3 9.4.4	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF huction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants Wheat Maize Bean <i>Brassica rapa</i>	201 202 205 205 207 209 211 211 211 212 212
	DIC and 9.1 9.2 9.3 9.4	Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in croj 9.4.1 9.4.2 9.4.3 9.4.4 Physid	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF luction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in l species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants Wheat Maize Bean <i>Brassica rapa</i>	201 202 205 205 207 209 211 211 211 212 212 213
	DIC and 9.1 9.2 9.3 9.4 9.4	K VR MAA Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in cro 9.4.1 9.4.2 9.4.3 9.4.4 Physic Transi	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF huction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants Wheat Maize Bean <i>Brassica rapa</i> plogical processes underlying micronutrient content ferring knowledge from model to crop species	201 202 205 205 207 209 211 211 211 212 212 213 214
	DIC and 9.1 9.2 9.3 9.4 9.4 9.5 9.6 Refe	K VR MAA Introd The g Genet model 9.3.1 9.3.2 9.3.3 Genet in cro 9.4.1 9.4.2 9.4.3 9.4.4 Physic Transi	EUGDENHIL, MARK G.M. AARTS RTEN KOORNNEEF huction genetic and molecular analysis of natural variation ic variation for nutrient content and related traits in species <i>Arabidopsis</i> Rice Heavy metal hyperaccumulating species ic variation for nutrient content and related traits p plants Wheat Maize Bean <i>Brassica rapa</i> ological processes underlying micronutrient content ferring knowledge from model to crop species	201 202 205 205 207 209 211 211 211 212 212 213 214 215

ix

10	Mapj MAT	ping nutritional traits in crop plants THIAS WISSUWA	220
	10.1	Introduction	220
	10.2	Objectives in mapping nutritional traits and resulting	
		technical considerations	222
	10.3	Choice of mapping population	223
	10.4 10.5	Choice of environment and phenotypic evaluation method Design example – mapping of OTLs for tolerance	223
		to Zn deficiency in rice	224
		10.5.1 Choice of mapping population	225
		10.5.2 Considerations on screening methods	226
	10.6	Mapping of nutritional traits – just a starting point	227
		10.6.1 Selecting OTLs for further analysis	228
		10.6.2 OTL confirmation and fine mapping	228
		10.6.3 OTLs, related physiological mechanisms	
		and underlying genes	229
	10.7	Case study – mapping of the <i>Pup1</i> locus in rice	230
		10.7.1 OTL mapping and confirmation	230
		10.7.2 Fine mapping	234
		10.7.3 Toward cloning of <i>Pup1</i>	235
		10.7.4 The use of <i>Pup1</i> in marker assisted breeding	237
	10.8	Conclusions	238
	Refei	ences	239
11	Susta R. F	inable crop nutrition: constraints and opportunities ORD DENISON and E. TOBY KIERS	242
	11.1	Introduction	242
	11.2	Constraint/opportunity 1: conservation of matter	243
	11.3	Constraint/opportunity 2: our crops' legacy of	
		preagricultural evolution	249
	11.4	Constraint/opportunity 3: conflicts of interest in	
		nutritional symbioses	251
	11.5	A fourth constraint/opportunity: complexity	259
	Refer	ences	260
12	Meth	ods to improve the crop-delivery of minerals to humans	
	and l	ivestock	265
	MIC	HAEL A. GRUSAK and ISMAIL CAKMAK	
	12.1	Introduction	265
	12.2	Plants as sources of dietary minerals	266

х

CON	ΝTE	NTS

	12.2.1	Mineral nutrition for humans	266		
	12.2.2	Recommended intake versus actual intake in humans	267		
	12.2.3	Bioavailability	268		
	12.2.4	Mineral nutrition for livestock	269		
12.3	Concep	tual strategies for mineral improvement	270		
12.4	Exploit	ing existing genetic variation	271		
	12.4.1	Wheat	272		
	12.4.2	Rice	275		
	12.4.3	Maize	275		
	12.4.4	Bean	276		
	12.4.5	Other crops	276		
12.5	Integrat	ting genomic technologies for mineral improvement	277		
	12.5.1	The path to gene discovery	278		
	12.5.2	The path to improved cultivars	280		
12.6	Future	needs	281		
Discla	aimer		282		
Ackn	Acknowledgements				
Refer	ences		282		

13	Use of plants to manage sites contaminated with metals	287
	STEVEN N. WHITING, ROGER D. REEVES, DAVID G.	
	RICHARDS, MIKE S. JOHNSON, JOHN A. COOKE,	
	FRANÇOIS MALAISSE, ALAN PATON, J. ANDREW	
	C. SMITH, J. SCOTT ANGLE, RUFUS L. CHANEY,	
	ROSANNA GINOCCHIO, TANGUY JAFFRÉ, BOB	
	JOHNS, TERRY MCINTYRE, O. WILLIAM PURVIS,	
	DAVID E. SALT, HENK SCHAT, FANGJIE ZHAO	
	and ALAN J.M. BAKER	

13.1	Introduction			
	13.1.1 Defining plants that can be used to manage			
		contaminated sites	287	
	13.1.2	Evolution of metallophytes on		
		metal-contaminated soils	288	
	13.1.3	How are plants exploited in the management of		
		contaminated land?	289	
	13.1.4	Stabilizing metal-contaminated soils with vegetation	289	
	13.1.5	Ex situ 'biotech' applications for metallophytes	290	
13.2	Global	status of metallophytes – promoting conservation of a		
	genetic	resource	290	
	13.2.1	The need for field explorations using an		
		ecological approach	291	
	13.2.2	Metallophyte 'hotspots'	292	

		13.2.3	The need	to develop the resource base: databases,	
			germplas	m and living collections	293
	13.3	Using r	netallophy	tes for the restoration or rehabilitation of	
		mined a	and disturb	bed land	294
	13.4	Access	to metallo	phyte genetic resources	296
		13.4.1	Access an	nd benefit sharing	297
		13.4.2	Action re	quired	298
	13.5	Metallo	ophytes as	a resource base for phytotechnologies	299
		13.5.1	Phytostal	bilization	299
		13.5.2	Phytorem	nediation	300
		13.5.3	Looking	to the future	301
	13.6	Genetic	c modificat	ion to 'design' metallophytes for use	
		in the r	emediatior	n of contaminated land	302
		13.6.1	Unravelli	ng metal tolerance	302
		13.6.2	Unravelli	ng metal hyperaccumulation	303
			13.6.2.1	Metal acquisition	303
			13.6.2.2	Physiological dissection of	
				hyperaccumulators	304
		13.6.3	Strategies	s to develop plants for phytoremediation	
			and restor	ration	304
		13.6.4	Looking	to the future	306
	13.7	Does th	e prospect	t of using metallophytes in site remediation	
		and rec	lamation r	aise ethical issues?	307
	13.8	Conclu	sions: the	use of metal-tolerant plants to manage	
		contam	inated site	S	308
	Endn	otes			308
	Ackn	owledgm	nents		310
	Refer	rences			310
Ind	ex				317

Contributors

Mark G.M. Aarts	Laboratory of Genetics, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
Anna Amtmann	Laboratory of Plant Physiology and Biophysics, Bower Building, IBLS, University of Glasgow, Glas- gow, G12 8QQ, UK
J. Scott Angle	College of Agriculture and Natural Resources, University of Maryland, MD 20742, USA
Alan J.M. Baker	School of Botany, The University of Melbourne, Victoria 3010, Australia
Ray A. Bressan	Department of Horticulture and Landscape Archi- tecture, Horticulture Building, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907, USA
Martin R. Broadley	Plant Science Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
Ismail Cakmak	Faculty of Engineering and Natural Sciences, Sabanci University, 81474 Tuzla, Istanbul, Turkey
Sylvain Chaillou	Plant Nitrogen Nutrition Unit, INRA Versailles, route de St Cyr, 78026 Versailles Cedex, France
Rufus L. Chaney	Animal and Environmental Sciences Laboratory, USDA-ARS, Beltsville, MD 20705, USA
Isabelle Chérel	INRA – Biochimie et Physiologie Moléculaire des Plantes, 1 place Viala, 34060 Montpellier Cedex 1, France

John A. Cooke	School of Life and Environmental Sciences, Univer- sity of Natal, Durban 4041, South Africa
Françoise Daniel-Vedele	Plant Nitrogen Nutrition Unit, INRA Versailles, Route de St Cyr, 78026 Versailles Cedex, France
R. Ford Denison	Agronomy and Range Science Department, Univer- sity of California, One Shields Avenue, Davis, CA 95616-8515, USA
Rosanna Ginocchio	CIMM, Av. Parque Antonio Rabat 6500, Vitacura, Santiago, Chile
Michael A. Grusak	Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
Paul M. Hasegawa	Department of Horticulture and Landscape Archi- tecture, Horticulture Building, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907, USA
Malcolm J. Hawkesford	Agriculture and the Environment Division, Rotham- sted Research, Harpenden, Herts AL5 2JQ, UK
Tanguy Jaffré	Institut de Récherche pour le Developpement (IRD), BP A5, 98848 Nouméa, New Caledonia, Canada
Bob Johns	Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK
Mike S. Johnson	School of Biological Science, University of Liverpool, Liverpool L69 7ZB, UK.
E. Toby Kiers	Agronomy and Range Science Department, Univer- sity of California, One Shields Avenue, Davis, CA 95616-8515, USA
Maarten Koornneef	Laboratory of Genetics, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
Brett Lahner	Department of Horticulture and Landscape Architec- ture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA

xiv

CONTRIBUTORS

Frans J.M. Maathuis	Department of Biology (Area 9), University of York, York, YO10 5YW, UK
François Malaisse	Laboratoire d'Ecologie, Faculté Universitaire des Sci- ences Agronomiques de Gembloux, 5030 Gembloux, Belgium
Terry McIntyre	Environmental Technology Advancement Direc- torate, Environmental Protection Service, 351 St. Joseph Blvd., Hull, Quebec, K1A 0H3, Canada
Alan Paton	Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK
O. William Purvis	Department of Botany, The Natural History Museum, Cromwell Rd, London SW7 5BD
Kashchandra G. Raghothama	Department of Horticulture and Landscape Architec- ture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
Roger D. Reeves	Institute of Fundamental Sciences – Chemistry, Massey University, Palmerston North, New Zealand
David G. Richards	Rio Tinto Plc, 6 St James's Square, London SW1Y 4LD, UK
David E. Salt	Department of Horticulture and Landscape Architec- ture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
Henk Schat	Department of Ecology and Ecotoxicology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
Huazhong Shi	Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409- 1061, USA
J. Andrew C. Smith	Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
Dick Vreugdenhil	Laboratory of Genetics, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands

CONTRIBUTORS

Philip J. White	Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK
Steven N. Whiting	Golder Associates (UK) Ltd, Attenborough House, Browns Lane Business Park, Stanton-on-the-Wolds, Notts, NG12 5BL, UK
Matthias Wissuwa	International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
Fangjie Zhao	Agriculture and Environment Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
Jian-Kang Zhu	Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, 2150 Batchelor Hall, University of California, Riverside, CA 92521
Sabine Zimmerman	INRA - Biochimie et Physiologie Moléculaire des Plantes, 1 place Viala, 34060 Montpellier Cedex 1, France

Preface

A 'textbook' plant typically comprises about 85% water and 13.5% carbohydrates. The remaining fraction contains at least 14 mineral elements, without which plants would be unable to complete their life cycles. These essential mineral elements include six macronutrients – N, K, P, S, Mg and Ca – which are present in relatively large amounts in plant tissues (mg g⁻¹ of dry tissue), and several micronutrients, including Fe and Zn, which are present in smaller amounts (μ g g⁻¹ of dry tissue). Tissue concentrations of these essential mineral elements must be maintained within a certain range, since mineral deficiencies limit growth and crop production, and mineral excesses are toxic. In addition, plants accumulate non-essential and/or toxic mineral elements such as Sr, Na, Cd and Pb, when these are present in the soil.

Understanding plant nutrition and applying this knowledge to practical use is important for several reasons. First, nutrient deficiencies in crop production can be remedied by the application of fertilisers. However, fertiliser use incurs direct financial costs to the farmer and indirect costs to society. Indirect costs include the consumption of energy during the production, transport and application of fertilisers, and the depletion of finite natural resources. Further, since many crops do not recover fertilisers efficiently, unrecovered nutrients can pollute adjacent natural habitats, leading to a decline in species biodiversity. An understanding of plant nutrition allows fertilisers to be used more wisely. Second, the nutritional composition of crops must be tailored to meet the health of humans and livestock. Over three billion people worldwide do not receive adequate amounts of mineral elements such as Ca, Zn, Fe and Se in their diets, due to the low mineral content of many staple food crops. An understanding of plant mineral nutrition allows this 'hidden hunger' to be sated. Third, many regions of the world are currently unsuitable for crop production due to soil salinity, acidity, or contamination with toxic elements such as heavy metals or radionuclides. An understanding of plant nutrition can be used to develop strategies either for the remediation/restoration of this land, or for the cultivation of novel crops.

The application of knowledge of plant nutrition can be achieved through genotypic or agronomic approaches. Genotypic approaches, based on crop selection and/or breeding (conventional or GM), have recently begun to benefit from technological advances, including the completion of plant genome sequencing projects. This book is intended to provide an overview of how *plant nutritional genomics*, defined as *the interaction between a plant's genome and*

its nutritional characteristics, has developed in light of these technological advances, and how this new knowledge might be usefully applied.

In the first section of the book, the molecular physiology of the uptake, transport, and assimilation of the major plant mineral nutrients are reviewed. Françoise Daniel-Vedele and Sylvain Chaillou (INRA-Versaille) have described how genomics can help researchers to understand the mechanisms of uptake and utilisation of N (Chapter 1). Similarly, Malcolm Hawkesford (Rothamsted Research) has reviewed the genes impacting on the uptake, transport and assimilation of S (Chapter 4). Molecular aspects of P transport have been described by Kashchandra Raghothama (Purdue) (Chapter 5) and Philip White (Warwick HRI) has provided a comprehensive overview of the genetics of Ca accumulation (Chapter 3). Sabine Zimmermann and Isabelle Chérel (INRA-Montpellier) have described the molecular biology and regulation of K⁺ uptake (Chapter 2) and the first section concludes with a review of sodium (Na⁺) tolerance and Na⁺ transport (Chapter 6) by Huazhong Shi (Texas) and colleagues. In the second section, techniques to enable the study of plant nutritional genomics are discussed, including the use of high throughput ionomic profiling, by Brett Lahner and David Salt (Purdue) (Chapter 7), and transcriptional profiling, by Frans Maathuis (York), and Anna Amtmann (Glasgow) (Chapter 8). The use of natural genetic variation to study plant nutrition in both model and crop species is reviewed by Dick Vreugdenhil and colleagues (Wageningen) (Chapter 9) and by Matthias Wissuwa (IRRI) (Chapter 10). The final section of the book provides insights into how plant nutritional genomics might be useful in an applied context. Depending upon your viewpoint, these chapters illustrate either (i) how far we have come in a short period of time or (ii) how far we have yet to travel. In Chapter 11, Toby Kiers and Ford Denison (Davis) have provided a thoughtprovoking insight into the long-term sustainability of crop nutrition. Michael Grusak (Baylor College of Medicine, Houston) and Ismail Cakmak (Sabanci University, Istanbul) have described international efforts to improve the mineral composition of crops in Chapter 12. The book concludes with an in-depth discussion by Steven Whiting, Alan Baker (Melbourne) and colleagues of the role of plants in the restoration or remediation of sites contaminated with heavy metals (Chapter 13).

This book is aimed at researchers and professionals, together with postgraduate students. However, we hope that the material will also stimulate advanced undergraduate students and those interested in the application of this knowledge. We thank the authors for their contributions to this volume, and Graeme MacKintosh and David McDade (Blackwell Publishing) for helping to solicit and edit the material. We would also like to thank John Hammond (Warwick HRI) for his comments on certain chapters. Finally, we thank our families for their continued support.

> Martin R. Broadley Philip J. White

1 Nitrogen

Françoise Daniel-Vedele and Sylvain Chaillou

1.1 Introduction

Nitrogen is a major component of amino and nucleic acids. The main sources of nitrogen (N) for plants are nitrate (NO_3^-) and ammonium (NH_4^+), although plants are also able to exploit organic N sources including amino acids, amides and urea. Plant species from a small number of plant families (e.g. the Fabaceae) are able to use molecular dinitrogen (N₂) as an N source through symbioses with N-fixing bacteria. Compared to C, H and O, which account for 90% of plant dry matter, the N content of plants is low, comprising 1–5% (Mengel & Kirkby, 1987; Marschner, 1995; Heller et al., 1998), although N levels of up to 7.5% have been observed in the shoots of Arabidopsis (Loudet et al., 2003). Proteins and NO₃⁻ account for 50% and 40% of total shoot N, respectively (Loudet *et al.*, 2003), and free amino acids account for 5-10% of total shoot N. Nitrate can be translocated in the xylem sap, although it is relatively phloem-immobile. In contrast, free amino acids circulate readily between roots and shoots through the xylem and phloem, and growing organs supply amino acids to this pool (Cooper & Clarkson, 1989). Ammonium occurs in the xylem sap, but only at low concentrations, for example 0.05 to 1 mM in pea or oilseed rape (Rochat & Boutin, 1991; Schjoerring et al., 2002). Nitrate accumulation in the vacuoles of leaf cells can reach high concentrations (40–70 mM), and thus vacuolar $NO_3^$ can provide a reserve of N for the plant, and it may also contribute to the overall osmotic pressure of the leaf, and therefore to plant turgor (Chaillou & Lamaze, 2001). An osmotic role for NO_3^- is supported by the observation that an Arabidopsis mutant, deficient in a NO₃⁻ transporter (the chll mutant), has a reduced stomatal opening which correlates with reduced NO₃⁻ accumulation in its guard cells (Guo et al., 2003). Nitrate has a further role in water relations since it can promote water transport from roots to shoot, possibly by regulating the expression of aquaporin genes (Limami & Ameziane, 2001; Wang et al., 2001). In addition to metabolic and turgor-related roles, NO₃⁻ also has a signalling role, for example through the induction of genes involved in N and C metabolism (Crawford & Forde, 2002). Ammonium cannot replace NO_3^{-1} in its osmotic or signalling functions and it is toxic at the cellular level (von Wiren et al., 2001). However, NH₄⁺ is a reduced form of N, which can be rapidly assimilated into amino acids without an energy-costly reducing step. It is therefore paradoxical that NO_3^{-1} is the preferential N source for most plant species, since a complex reduction pathway requiring two enzymes, (nitrate reductase, NR, and nitrite reductase, NiR) and energy equivalent to 15 moles of ATP per mole of NO_3^- , is required for assimilation of NO_3^- (Fig. 1.1). It is possible that this paradox reflects an adaptation of plants to the mineralisation of organic N, which is prevalent in the majority of aerobic soils of the world, particularly in temperate regions, which ultimately leads to the dominance of NO_3^- as an N source in most soils.

The amount of N necessary for a plant to complete its life cycle varies greatly between species. Some plants are less N demanding than others. For example, many non-agricultural plant species can thrive under conditions of low N whilst high-yielding agricultural species have a high N demand. The genetic basis of differing N requirements between species is still unknown, although quantitative genetics could offer promising insights into the phenomena (Glass & Siddiqi, 1995; Hirel *et al.*, 2001; Loudet *et al.*, 2003). Further, the N demand of a plant varies according to its developmental stage. For example, N demand is high during vegetative growth and decreases during the reproductive phase, which corresponds with the remobilisation of reserves accumulated as NO₃⁻, amino

Figure 1.1 The N-assimilation pathway. Different cellular compartments are indicated in italic whilst the different steps of the pathway are underlined.

NITROGEN

acids or proteins in different organs during the vegetative growth. Knowledge of the chronological changes in N demand throughout the plant developmental cycle has led to improvements in N-fertilisation practices, allowing reductions in the use of N fertilisers, especially in cereal production. Further, a greater understanding of N-assimilation pathway has allowed crop physiologists to design methods to test the N status of a plant, for example by measuring the NO₃⁻ content of xylem sap. This has allowed crop-based N demands to be determined and fertiliser applications adjusted accordingly. Reducing N-fertiliser inputs in crop production can reduce leaching losses of NO₃⁻, which therefore minimises the pollution of water courses, and can reduce unnecessary financial costs (Meynard *et al.*, 2002).

Knowledge of the N composition of plants is also important in food production. For example, wheat grain for use in bread production must have protein content in excess of 12%. Conversely, the protein content of barley grain for use in beer production must not exceed 10%. A further issue on the N composition of plants is the debate on the safe levels of NO_3^- in fresh produce. This has led to intense debates between producers, researchers and the wider public. For example, it is possible that eating salad leaves such as lettuce (*Lactuca sativa*) or spinach (*Spinacia oleracea*) may be hazardous to human health if the NO_3^- content exceeds 2500 mg NO_3^- kg⁻¹f. wt, according to official European standards, whilst cattle may be poisoned by formation of methaemoglobin if the NO_3^- content of fresh herbage exceeds 1500 mg NO_3^- kg⁻¹ f. wt (Van Diest, 1986).

It is, therefore, clear that the study of N in plants is important in the context of sustainable agriculture, food quality and food safety. *This chapter will show how genomics can help researchers understand the mechanisms of N uptake and transport. It will review the genomics approaches used to study the enzymes responsible for N assimilation, and describe the search for new genes and their target functions. The use of this information to create new cultivars with improved N-use efficiency will be discussed.*

1.2 Ammonium and nitrate uptake and transport within the plant

Both anionic and cationic forms (NO_3^- and NH_4^+ , respectively) of inorganic N are usually available in natural soils but their relative concentrations can vary dramatically. In temperate climates with well-aerated soils, NH_4^+ concentrations are very low, due to rapid nitrification. Conversely, NH_4^+ is the main source of N in acidic or waterlogged soils, and under mixed NO_3^-/NH_4^+ nutritional conditions NH_4^+ is often the preferential form of N taken up by the root system (Dubois & Grenson, 1979; Glass & Siddiqi, 1995; Gazzarrini *et al.*, 1999). Nitrate and NH_4^+ concentrations can vary by three or four orders of magnitude in agricultural soils (Wolt, 1994). With certain exceptions, higher

plants are able to cope with these variations and have developed uptake systems for each ion. These systems differ in their specificity and affinity, and their functioning is regulated at the level of gene expression (transcriptional) as well as post-transcriptionally.

Inside root cells, NO_3^- and NH_4^+ may be redirected towards different targets. Nitrate can be stored in the vacuole, where it may become the main source of N when the external supply becomes limiting (der Leij et al., 1998), or may contribute to the general osmoticum. It can also be reduced to nitrite (NO_2^{-}) in the cytosol by nitrate reductase (NR). Finally, it can be redirected out of the root cell either by export to the external medium or by unloading to xylem vessels, from where it can reach the aerial part of the plant (Forde & Clarkson, 1999). All of these NO_3^- or NO_2^- movements require transport across different membranes. Thermodynamic calculations show that NO3- transport across the root plasma membrane is an active process (Glass & Siddiqi, 1995). The compartmentation of NH₄⁺ is also highly complex, since ammonium is derived from NO₃⁻ reduction, but most comes from photorespiration, degradation of proteins or transamination reactions. Intriguingly, evidence to challenge the assumption that NH_4^+ concentrations in normal plant tissues is low (Howitt & Udvardi, 2000) has recently been obtained (Britto et al., 2001). Further, although it is believed that NH₄⁺ generated or absorbed in roots is assimilated immediately, translocation of NH_4^+ from the root to the shoot can occur (Schjoerring *et al.*, 2002).

Dissecting the molecular basis of soil-to-plant, or within-plant, fluxes of N has been the challenge for the past decade. The enormous and rapid progress in plant functional genomics has already revealed some of the molecular components of these complex pathways. In this section, we will describe the characteristics of these transport systems, their known molecular components and the regulation of their activities at the physiological and molecular levels.

1.2.1 Ammonium uptake and transport

Net uptake of NH_4^+ by root cells is the difference between influx and efflux. Influx is usually measured using isotopes as ${}^{13}NH_4^+$ or ${}^{15}NH_4^+$ during shortterm experiments (Clarkson *et al.*, 1996). A biphasic pattern of influx is observed for many species such as *Lemna gibba*, rice or *Arabidopsis*. Below external NH_4^+ concentrations ($[NH_4^+]_{ext}$) of 1 mM, influx operates via a saturable highaffinity transport system (HATS), whilst a non-saturable low-affinity transport system (LATS) is active at $[NH_4^+]_{ext}$ above 1 mM (Wang *et al.*, 1993). The kinetic parameters calculated for the HATS may vary from one species to the other and within the same species depending on environmental conditions (von Wiren *et al.*, 2001). This diversity may result from co-existing transporters, each of them being involved in a particular process and showing different kinetic properties. This hypothesis is strengthened by the discovery of a multigenic family potentially encoding several NH_4^+ transporters.

1.2.2 Molecular analysis of ammonium uptake

To identify genes involved in NH₄⁺ transport, mutants resistant to methylammonium, a toxic homologue of NH4⁺ which shares the same transporters (Venegoni et al., 1997), have been isolated in many species, from yeast (Dubois & Grenson, 1979) and Chlamydomonas reinhardtii (Franco et al., 1987) to Nicotiana plumbaginifolia (Godon et al., 1996). Functional complementation of a yeast mutant defective for methylammonium uptake led to the identification of the first NH_4^+ transporter gene from veast and simultaneously from *Arabidopsis* (Marini et al., 1994; Ninnemann et al., 1994). From southern blot analysis and, more recently, from the sequenced genome of Arabidopsis, the AtAMT1 gene family can be seen to comprise five homologous members and a more distantly related gene, AtAMT2. These encode hydrophobic proteins of 475-514 amino acids which belong to the ammonium transporter (AMT)/methylammonium permease (MEP) family, which are ubiquitous across bacteria, archae, fungi, plants and animals (Saier et al., 1999). Deduced amino acid sequences and prediction analyses indicate that an 11 trans-membrane domain is probably present in eukaryotic members of the family, with an outside localisation of the N terminus, which has been experimentally demonstrated for the yeast MEP2 protein (Marini & Andre, 2000). The yeast heterologous expression system has been successfully used to determine the kinetic properties of these proteins. Different substrate affinities (Km) for NH_4^+ were observed among the different AtAMT1 members. Whilst AtAMT1;2 and AtAMT1;3 showed Km values between 25 and 40 µM, AtAMT1;1 had a Km value lower than 0.5 µM (Gazzarrini et al., 1999). However, recent studies found no difference between AtAMT1;1 and AtAMT1;2 in their affinity for NH₄⁺ (Shelden *et al.*, 2001). *AtAMT1;1*, AtAMT1;2, AtAMT1;3 and AtAMT2 are expressed in roots. Other AMT homologues have been cloned from rice - OsAMT1;1 and OsAMT2 (Suenaga et al., 2003) - and tomato - LeAMT1;1, LeAMT1;2 and LeAMT1;3 (Lauter et al., 1996; von Wiren et al., 2000). In tomato, LeAMT1;1 and LeAMT1;2 are preferentially expressed in root hairs, thus raising the NH_4^+ uptake efficiency because NH_4^+ is strongly adsorbed to soil constituents. Interestingly, LeAMT1;3 is preferentially expressed in leaves and the protein exhibits unique features such as a short N terminus when compared to AMT proteins from Arabidopsis or rice (von Wiren et al., 2000).

1.2.3 Regulation of ammonium uptake: physiological evidence and molecular basis

N uptake by roots is controlled by the N demand of the whole plant linked to the external N availability. For example, a decrease in the $[NH_4^+]_{ext}$ from 1 mM to 0.2 μ M led to an adaptative response in rice that simultaneously decreased the Km (from 188 to 32 μ M) and increased the maximum influx rate (Vmax) of the HATS (Wang *et al.*, 1993). The regulation of gene expression in response to

N starvation has been studied in Arabidopsis for the multigenic AtAMT family (Gazzarrini et al., 1999; Rawat et al., 1999; Shelden et al., 2001). AtAMT1;1 mRNA levels increased markedly over a 2-day period after N removal, whilst AtAMT1;2 and AtAMT1;3 were less affected. The high affinity of AtAMT1;1 for NH_4^+ , and its co-regulation with NH_4^+ influx, suggest that AtAMT1:1 is a good candidate for an important component of the HATS. When N-depleted plants were re-supplied with NH4⁺ or amino acid, feedback signals led to a rapid decrease of net NH₄⁺ uptake in wheat (Glass and Siddiqi, 1995). The same was true for Arabidopsis (Rawat et al., 1999) and tomato (von Wiren et al., 2000) although gene expression studies provide evidence that the AtAMT1 and the LeAMT1 transporters are not regulated in the same way. Whilst LeAMT1;1 and AtAMT1;1 respond similarly by a decrease in mRNA levels, LeAMT1;2 is induced in roots by NH₄⁺, and even more strongly by NO₃⁻ supply (von Wiren et al., 2000). When tomato plants are grown under NO₃⁻ nutrition and low CO₂, the expression of *LeAMT1*; *1* and *LeAMT1*; *3* is slightly higher in leaves, suggesting that the corresponding protein could play a role in the retrieval of NH_4^+ derived from photorespiration. Gene expression was recently analysed in rice and revealed distinct N-dependent regulation for AMTs, differing from that in tomato or Arabidopsis (Sonoda et al., 2003).

Light and/or photosynthesis also controls NH_4^+ uptake. During a day/night cycle, NH_4^+ uptake peaks at the end of the light period and is induced by sugar during the dark phase. Again, this corresponds to the regulation of *AMT* gene expression in *Arabidopsis* (Gazzarrini *et al.*, 1999), tomato (von Wiren *et al.*, 2000) and tobacco (Matt *et al.*, 2001). Both diurnal variations and response to sucrose induce the expression of *AtAMT1;2* and *AtAMT1;3* which showed a more pronounced response to both signals than *AtAMT1;1* (Lejay *et al.*, 2003). In addition to transcriptional regulation of NH_4^+ uptake, several lines of evidence also point to the possibility of post-transcriptional control. Using L-methionine-DL-sulfoximine (MSX) to block NH_4^+ influx rates without any decline in *AtAMT1;1* transcript levels (Rawat *et al.*, 1999). The role of NH_4^+ ion itself in post-transcriptional regulation of the HATS is supposed to take place via a direct inhibition of AMT transport activity or by inhibiting the synthesis of AMT proteins (Crawford & Forde, 2002).

1.2.4 Nitrate uptake and transport

Nitrate influx has been studied intensively at the physiological and molecular levels (Muller *et al.*, 1995; Devienne *et al.*, 1994). In contrast, NO_3^- efflux, which redirects a significant proportion of the absorbed NO_3^- , has been rarely studied. Nitrate influx is mediated by two distinct systems, the HATS and the LATS. When $[NO_3^-]_{ext}$ is low (<1 mM), the HATS mediates NO_3^- influx,

NITROGEN

first, at a low rate, assuming that the plants have not been previously exposed to NO_3^- , and then at a higher rate, as evidenced by changes in Km and Vmax (Hole *et al.*, 1990; Aslam *et al.*, 1992; Kronzucker *et al.*, 1995). These characteristics indicate that there are two components in the HATS, one which is constitutive (cHATS) and the other inducible (iHATS). When $[NO_3^-]_{ext}$ exceeds 500 μ M, the non-saturable LATS system becomes evident. Electrophysiological studies have demonstrated that both the HATS and LATS are mediated by electrogenic 1 $NO_3^-/2H^+$ symporters (Glass *et al.*, 1992).

1.2.5 Identification of genes coding for nitrate transporters

Two gene families encode proteins that are involved in either the low (*NRT1*) or the high (*NRT2*) affinity NO_3^- systems. These families share structural features but no homology at the amino acid level.

1.2.5.1 The NRT1 family of transporters

The first gene encoding a low-affinity NO₃⁻ transporter was cloned in Arabidopsis by isolating and characterising a chlorate resistant T-DNA insertion mutant chll (Tsay et al., 1993). Chlorate is an analogue of NO₃-which is reduced to toxic chlorite by NR (see Section 1.3.1). chl1 showed reduced NO₃⁻ uptake, particularly when plants were grown in the presence of NH_4^+ (Huang et al., 1996; Touraine & Glass, 1997). The corresponding AtNRT1.1 cDNA encodes a 590-amino acid protein, containing 12 putative membrane-spanning domains. When expressed in Xenopus oocytes, this cDNA allowed NO₃⁻ uptake (Tsay et al., 1993) with biphasic kinetics (Liu et al., 1999). The dual affinity of the AtNRT1.1 transporter has since been shown to be regulated by a phosphorylation/de-phosphorylation mechanism (Liu & Tsay, 2003). Further, three other AtNRT1 genes have since been identified in Arabidopsis, AtNRT1.2, AtNRT1.3 and AtNRT1.4, which show 36%, 51% and 42% identity, respectively at the amino acid level with AtNRT1.1. Functional analysis of AtNRT1.2 in Xeno*pus* oocytes showed that it is also a low-affinity (Km = 6 mM) NO₃⁻ transporter (Liu et al., 1999). The functions of the two other genes are still not known. Another member of this family, AtPTR2B, encodes a peptide transporter (Rentsch et al., 1995; Song et al., 1996). Oligopeptide transport seems to be a feature of the NRT1 family as BnNRT1.2, which was one of the two cDNAs identified in Brassica napus, is also able to transport NO_3^- and L-histidine when expressed in oocytes (Zhou et al., 1998). Using AtNRT1.1 as a heterologous probe, Lauter and colleagues have isolated two cDNAs from a tomato root-hair specific library (Lauter et al., 1996). Although the corresponding protein shares 65% identity with AtNRT1.1, their role in NO₃⁻ uptake remains to be demonstrated. Corresponding homologous genes have also been identified in N. plumbaginifolia (Fraisier et al., 2001).

1.2.5.2 The NRT2 family of transporters

Chlorate has also been used to screen for mutants affected in the HATS, but to date this has only been successful in fungi. In *Aspergillus nidulans*, the chlorate resistant *crna* mutant was shown to be defective in NO_3^- uptake. The *CRNA* cDNA encodes a transport protein of 507 amino acid containing 12 membrane-spanning domains with two groups of 6 segments separated by a central loop (Unkles *et al.*, 1991). Two *CRNA*-related genes have since been isolated from *Chlamydomonas reinhardtii*: *CrNRT2.1*, which encodes a high affinity NO_3^-/NO_2^- bi-specific transporter, and *CrNRT2.2*, which encodes a high affinity NO_3^- specific transporter. The presence of a third protein, Nar2, was found to be necessary to form an active NO_3^- transport system (Quesada *et al.*, 1994; Galvan & Fernandez, 2001).

In higher plants, the first NRT2 genes were cloned in barley (Trueman et al., 1996) and N. plumbaginifolia (Quesada et al., 1997) by PCR amplification using degenerate primers corresponding to conserved motifs found in a subgroup of the major facilitator superfamily (MSF) transporters. Independently, the AtNRT2.1 gene was subsequently isolated using differential display (Filleur & Daniel-Vedele, 1999) and PCR amplification (Zhuo et al., 1999) techniques. NRT2 genes have since been identified in many other plants species (Fig. 1.2). The complete genome sequence of Arabidopsis has revealed the presence of seven NRT2 genes, distributed across three chromosomes (Orsel et al., 2002a). AtNRT2.1/AtNRT2.2 and AtNRT2.3/AtNRT2.4 are arranged in tandem at the top of chromosome 1 and the bottom of chromosome 5, respectively, whilst AtNRT2.6 and AtNRT2.7 are located on chromosomes 3 and 5. Using the amino acid sequence of AtNRT2.1 as a reference, AtNRT2.2, AtNRT2.3, AtNRT2.4, AtNRT2.5, AtNRT2.6 and AtNRT2.7 proteins exhibit 91%, 77%, 88%, 69%, 77% and 57% similarity, respectively. A phylogenetic tree (Fig. 1.2) of all Arabidopsis and other higher plant sequences show that AtNRT2.1, AtNRT2.2, AtNRT2.3, AtNRT2.4 and AtNRT2.6 proteins are similar, whilst AtNRT2.5 and AtNRT2.7 are closer to lower eukaryotic (alga or fungi) than to other plant proteins. In contrast to NRT1, the only NRT2 cDNAs that have been shown to mediate active NO_3^- uptake following injection into Xenopus oocytes are CRNA or CrNRT2. Further, the co-injection of Nar2 with CrNRT2.1 is required to obtain active NO₃⁻ uptake (Zhou et al., 2000).

Reverse genetics is a valuable part of the functional genomics toolkit since it allows the function of specific genes to be disrupted (Bouchez & Hofte, 1998). In *Arabidopsis*, extensive populations mutagenised with an insertion element (transposon or T-DNA) have recently become available (Bouche & Bouchez, 2001). A T-DNA mutant affected in both *AtNRT2.1* and *AtNRT2.2* genes has been identified, in which the HATS but not the LATS activities are disrupted (Filleur *et al.*, 2001). This mutant could be used to determine the function of *NRT2* genes in global NO₃⁻ transport processes in plants. The organ specificity

Figure 1.2 Unrooted tree of NRT2 proteins. Sequences are from Hansenula polymorpha (YNT1, NCBI protein number CAA93631), Aspergillus nidulans (Crna, NCBI AAA62125), Escherichia coli (NarK, NCBI CAA34126), Chlamydomonas reinhardtii (CrNrt2.1, NCBI CAA80925; CrNrt2.2, NCBI CAA80926; CrNrt2.3, NCBI CAA11238), Arabidopsis thaliana (AtNrt2.1, NCBI ACC64170; AtNrt2.2, NCBI AAC35884; AtNrt2.3, NCBI BAB10099; AtNrt2.4, NCBI BAB10098; AtNrt2.5, NCBI AAF78499; AtNrt2.6, NCBI CAB89321; AtNrt2.7, NCBI CAB87624), Oryza sativa (OsNrt2, NCBI BAA33382), Hordeum vulgare (HvNrt2.1, NCBI AAC49531; HvNrt2.2, NCBI AAC49532; HvNrt2.3, NCBI AAD28363; HvNrt2.4, NCBI AAC19532), Lotus japonicus (LjNrt2.1, NCBI CAC35729), and Nicotiana plumbaginifolia (NpNrt2.1, NCBI CAA69387).

of expression also indicates the possible roles of *NRT2*. In higher plants, most *NRT2* genes isolated thus far are expressed preferentially in roots. In tomato, *LeNRT2* expression is not observed in whole shoots or leaves (Ono *et al.*, 2000) whilst in *N. plumbaginifolia*, *NpNRT2.1* transcripts are detectable at low levels in leaves, petioles, buds flowers or seeds (Quesada *et al.*, 1994). In *Arabidopsis*, Orsel *et al.* (2002b) have demonstrated variation in the expression levels between the seven genes within the *NRT2* gene family. However, although most of the *NRT2* genes are expressed more in roots than in shoots, *AtNRT2.7* showed a greater expression in the aerial tissues, which could indicate a role in NO_3^- fluxes within the leaves.

1.2.6 Regulation of nitrate influx and the role of NRT1 and NRT2 genes

The regulation of NO_3^- uptake is highly complex and it has been the subject of several reviews (Crawford & Glass, 1998; Daniel-Vedele et al., 1998; Forde & Clarkson, 1999; Forde, 2000; Galvan & Fernandez, 2001; Glass et al., 2001; Williams & Miller, 2001). Both environmental factors and internal signals control NO₃⁻ uptake mediated by HATS and LATS. As indicated previously, NO₃⁻ itself is an inducer, which discriminates between constitutive (cHATS and cLATS) and inducible (iHATS) NO₃⁻ uptake systems (Behl et al., 1988). As opposed to NO_3^- , addition of reduced N sources such as NH_4^+ or amino acids to the culture medium inhibits NO_3^- uptake (Muller & Touraine, 1992; Kronzucker et al., 1999). Nitrate uptake is also regulated by diurnal cycles and light intensity, which may be due to the transport of photosynthates to the root (Delhon et al., 1995). Internal signals are thought to match the rate of N acquisition to the demand for N (Glass & Siddiqi, 1995). During N starvation, plants increase their capacity to absorb NO_3^- transiently, which may be a consequence of de-repression of NO₃⁻ transport due to N metabolites accumulating under non-limiting conditions. After NO_3^- is re-supplied, feedback regulation takes place (Siddiqi *et al.*, 1989), but the signals responsible for the decrease in NO_3^{-1} influx have not yet been identified.

How does NO_3^- influx and gene expression correlate? In *Arabidopsis*, the expression of *AtNRT2.1* and regulation of NO_3^- influx are tightly linked. For example, *AtNRT2.1* is induced by low levels of NO_3^- to a transient maximum. Further, *AtNRT2.1* expression transiently induced by N starvation (Filleur & Daniel-Vedele, 1999; Zhuo *et al.*, 1999) is strictly correlated to the influx during a day/night cycle and it is inducible by sugars (Lejay *et al.*, 1999). The regulation of *AtNRT2.1* may depend on the C flux from glycolysis (Lejay *et al.*, 2003). These correlations, together with defects of the regulation of iHATS activities (NO_3^- inducible, starvation de-repressible and NH_4^+ repressible high affinity uptake) in the *atnrt2a* mutant (Cerezo *et al.*, 2001) strongly support the hypothesis that the *AtNRT2.1/AtNRT2.2* genes play a major role in the NO_3^- uptake mediated by the iHATS. The role(s) of other *AtNRT2* genes remains to