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Preface

A ‘textbook’ plant typically comprises about 85% water and 13.5% carbohy-
drates. The remaining fraction contains at least 14 mineral elements, without
which plants would be unable to complete their life cycles. These essential
mineral elements include six macronutrients – N, K, P, S, Mg and Ca – which
are present in relatively large amounts in plant tissues (mg g−1 of dry tissue),
and several micronutrients, including Fe and Zn, which are present in smaller
amounts (μg g−1 of dry tissue). Tissue concentrations of these essential mineral
elements must be maintained within a certain range, since mineral deficiencies
limit growth and crop production, and mineral excesses are toxic. In addition,
plants accumulate non-essential and/or toxic mineral elements such as Sr, Na,
Cd and Pb, when these are present in the soil.

Understanding plant nutrition and applying this knowledge to practical use is
important for several reasons. First, nutrient deficiencies in crop production can
be remedied by the application of fertilisers. However, fertiliser use incurs direct
financial costs to the farmer and indirect costs to society. Indirect costs include
the consumption of energy during the production, transport and application of
fertilisers, and the depletion of finite natural resources. Further, since many crops
do not recover fertilisers efficiently, unrecovered nutrients can pollute adjacent
natural habitats, leading to a decline in species biodiversity. An understanding of
plant nutrition allows fertilisers to be used more wisely. Second, the nutritional
composition of crops must be tailored to meet the health of humans and livestock.
Over three billion people worldwide do not receive adequate amounts of mineral
elements such as Ca, Zn, Fe and Se in their diets, due to the low mineral content
of many staple food crops. An understanding of plant mineral nutrition allows
this ‘hidden hunger’ to be sated. Third, many regions of the world are currently
unsuitable for crop production due to soil salinity, acidity, or contamination with
toxic elements such as heavy metals or radionuclides. An understanding of plant
nutrition can be used to develop strategies either for the remediation/restoration
of this land, or for the cultivation of novel crops.

The application of knowledge of plant nutrition can be achieved through
genotypic or agronomic approaches. Genotypic approaches, based on crop se-
lection and/or breeding (conventional or GM), have recently begun to benefit
from technological advances, including the completion of plant genome se-
quencing projects. This book is intended to provide an overview of how plant
nutritional genomics, defined as the interaction between a plant’s genome and
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its nutritional characteristics, has developed in light of these technological ad-
vances, and how this new knowledge might be usefully applied.

In the first section of the book, the molecular physiology of the uptake,
transport, and assimilation of the major plant mineral nutrients are reviewed.
Françoise Daniel-Vedele and Sylvain Chaillou (INRA-Versaille) have described
how genomics can help researchers to understand the mechanisms of uptake
and utilisation of N (Chapter 1). Similarly, Malcolm Hawkesford (Rothamsted
Research) has reviewed the genes impacting on the uptake, transport and assim-
ilation of S (Chapter 4). Molecular aspects of P transport have been described
by Kashchandra Raghothama (Purdue) (Chapter 5) and Philip White (Warwick
HRI) has provided a comprehensive overview of the genetics of Ca accumula-
tion (Chapter 3). Sabine Zimmermann and Isabelle Chérel (INRA-Montpellier)
have described the molecular biology and regulation of K+ uptake (Chapter 2)
and the first section concludes with a review of sodium (Na+) tolerance and Na+
transport (Chapter 6) by Huazhong Shi (Texas) and colleagues. In the second
section, techniques to enable the study of plant nutritional genomics are dis-
cussed, including the use of high throughput ionomic profiling, by Brett Lahner
and David Salt (Purdue) (Chapter 7), and transcriptional profiling, by Frans
Maathuis (York), and Anna Amtmann (Glasgow) (Chapter 8). The use of natu-
ral genetic variation to study plant nutrition in both model and crop species is
reviewed by Dick Vreugdenhil and colleagues (Wageningen) (Chapter 9) and
by Matthias Wissuwa (IRRI) (Chapter 10). The final section of the book pro-
vides insights into how plant nutritional genomics might be useful in an applied
context. Depending upon your viewpoint, these chapters illustrate either (i) how
far we have come in a short period of time or (ii) how far we have yet to travel.
In Chapter 11, Toby Kiers and Ford Denison (Davis) have provided a thought-
provoking insight into the long-term sustainability of crop nutrition. Michael
Grusak (Baylor College of Medicine, Houston) and Ismail Cakmak (Sabanci
University, Istanbul) have described international efforts to improve the min-
eral composition of crops in Chapter 12. The book concludes with an in-depth
discussion by Steven Whiting, Alan Baker (Melbourne) and colleagues of the
role of plants in the restoration or remediation of sites contaminated with heavy
metals (Chapter 13).

This book is aimed at researchers and professionals, together with postgrad-
uate students. However, we hope that the material will also stimulate advanced
undergraduate students and those interested in the application of this knowl-
edge. We thank the authors for their contributions to this volume, and Graeme
MacKintosh and David McDade (Blackwell Publishing) for helping to solicit
and edit the material. We would also like to thank John Hammond (Warwick
HRI) for his comments on certain chapters. Finally, we thank our families for
their continued support.

Martin R. Broadley
Philip J. White



1 Nitrogen
Françoise Daniel-Vedele and Sylvain Chaillou

1.1 Introduction

Nitrogen is a major component of amino and nucleic acids. The main sources
of nitrogen (N) for plants are nitrate (NO3

−) and ammonium (NH4
+), although

plants are also able to exploit organic N sources including amino acids, amides
and urea. Plant species from a small number of plant families (e.g. the Fabaceae)
are able to use molecular dinitrogen (N2) as an N source through symbioses with
N-fixing bacteria. Compared to C, H and O, which account for 90% of plant
dry matter, the N content of plants is low, comprising 1–5% (Mengel & Kirkby,
1987; Marschner, 1995; Heller et al., 1998), although N levels of up to 7.5%
have been observed in the shoots of Arabidopsis (Loudet et al., 2003). Proteins
and NO3

− account for 50% and 40% of total shoot N, respectively (Loudet et al.,
2003), and free amino acids account for 5–10% of total shoot N. Nitrate can
be translocated in the xylem sap, although it is relatively phloem-immobile. In
contrast, free amino acids circulate readily between roots and shoots through
the xylem and phloem, and growing organs supply amino acids to this pool
(Cooper & Clarkson, 1989). Ammonium occurs in the xylem sap, but only at
low concentrations, for example 0.05 to 1 mM in pea or oilseed rape (Rochat &
Boutin, 1991; Schjoerring et al., 2002). Nitrate accumulation in the vacuoles of
leaf cells can reach high concentrations (40–70 mM), and thus vacuolar NO3

−
can provide a reserve of N for the plant, and it may also contribute to the
overall osmotic pressure of the leaf, and therefore to plant turgor (Chaillou &
Lamaze, 2001). An osmotic role for NO3

− is supported by the observation that
an Arabidopsis mutant, deficient in a NO3

− transporter (the chl1 mutant), has a
reduced stomatal opening which correlates with reduced NO3

− accumulation in
its guard cells (Guo et al., 2003). Nitrate has a further role in water relations since
it can promote water transport from roots to shoot, possibly by regulating the
expression of aquaporin genes (Limami & Ameziane, 2001; Wang et al., 2001).
In addition to metabolic and turgor-related roles, NO3

− also has a signalling role,
for example through the induction of genes involved in N and C metabolism
(Crawford & Forde, 2002). Ammonium cannot replace NO3

− in its osmotic or
signalling functions and it is toxic at the cellular level (von Wiren et al., 2001).
However, NH4

+ is a reduced form of N, which can be rapidly assimilated into
amino acids without an energy-costly reducing step. It is therefore paradoxical
that NO3

− is the preferential N source for most plant species, since a complex



2 PLANT NUTRITIONAL GENOMICS

reduction pathway requiring two enzymes, (nitrate reductase, NR, and nitrite
reductase, NiR) and energy equivalent to 15 moles of ATP per mole of NO3

−,
is required for assimilation of NO3

− (Fig. 1.1). It is possible that this paradox
reflects an adaptation of plants to the mineralisation of organic N, which is
prevalent in the majority of aerobic soils of the world, particularly in temperate
regions, which ultimately leads to the dominance of NO3

− as an N source in
most soils.

The amount of N necessary for a plant to complete its life cycle varies greatly
between species. Some plants are less N demanding than others. For example,
many non-agricultural plant species can thrive under conditions of low N whilst
high-yielding agricultural species have a high N demand. The genetic basis of
differing N requirements between species is still unknown, although quantitative
genetics could offer promising insights into the phenomena (Glass & Siddiqi,
1995; Hirel et al., 2001; Loudet et al., 2003). Further, the N demand of a plant
varies according to its developmental stage. For example, N demand is high
during vegetative growth and decreases during the reproductive phase, which
corresponds with the remobilisation of reserves accumulated as NO3

−, amino
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Figure 1.1 The N-assimilation pathway. Different cellular compartments are indicated in italic whilst the
different steps of the pathway are underlined.
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acids or proteins in different organs during the vegetative growth. Knowledge
of the chronological changes in N demand throughout the plant developmental
cycle has led to improvements in N-fertilisation practices, allowing reductions
in the use of N fertilisers, especially in cereal production. Further, a greater un-
derstanding of N-assimilation pathway has allowed crop physiologists to design
methods to test the N status of a plant, for example by measuring the NO3

− con-
tent of xylem sap. This has allowed crop-based N demands to be determined and
fertiliser applications adjusted accordingly. Reducing N-fertiliser inputs in crop
production can reduce leaching losses of NO3

−, which therefore minimises the
pollution of water courses, and can reduce unnecessary financial costs (Meynard
et al., 2002).

Knowledge of the N composition of plants is also important in food pro-
duction. For example, wheat grain for use in bread production must have pro-
tein content in excess of 12%. Conversely, the protein content of barley grain
for use in beer production must not exceed 10%. A further issue on the N
composition of plants is the debate on the safe levels of NO3

− in fresh pro-
duce. This has led to intense debates between producers, researchers and the
wider public. For example, it is possible that eating salad leaves such as lettuce
(Lactuca sativa) or spinach (Spinacia oleracea) may be hazardous to human
health if the NO3

− content exceeds 2500 mg NO3
− kg−1f. wt, according to of-

ficial European standards, whilst cattle may be poisoned by formation of meth-
aemoglobin if the NO3

− content of fresh herbage exceeds 1500 mg NO3
− kg−1

f. wt (Van Diest, 1986).
It is, therefore, clear that the study of N in plants is important in the con-

text of sustainable agriculture, food quality and food safety. This chapter will
show how genomics can help researchers understand the mechanisms of N up-
take and transport. It will review the genomics approaches used to study the
enzymes responsible for N assimilation, and describe the search for new genes
and their target functions. The use of this information to create new cultivars
with improved N-use efficiency will be discussed.

1.2 Ammonium and nitrate uptake and transport within the plant

Both anionic and cationic forms (NO3
− and NH4

+, respectively) of inorganic
N are usually available in natural soils but their relative concentrations can vary
dramatically. In temperate climates with well-aerated soils, NH4

+ concentra-
tions are very low, due to rapid nitrification. Conversely, NH4

+ is the main
source of N in acidic or waterlogged soils, and under mixed NO3

−/NH4
+ nu-

tritional conditions NH4
+ is often the preferential form of N taken up by the

root system (Dubois & Grenson, 1979; Glass & Siddiqi, 1995; Gazzarrini et al.,
1999). Nitrate and NH4

+ concentrations can vary by three or four orders of
magnitude in agricultural soils (Wolt, 1994). With certain exceptions, higher
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plants are able to cope with these variations and have developed uptake systems
for each ion. These systems differ in their specificity and affinity, and their func-
tioning is regulated at the level of gene expression (transcriptional) as well as
post-transcriptionally.

Inside root cells, NO3
− and NH4

+ may be redirected towards different targets.
Nitrate can be stored in the vacuole, where it may become the main source of N
when the external supply becomes limiting (der Leij et al., 1998), or may con-
tribute to the general osmoticum. It can also be reduced to nitrite (NO2

−) in the
cytosol by nitrate reductase (NR). Finally, it can be redirected out of the root cell
either by export to the external medium or by unloading to xylem vessels, from
where it can reach the aerial part of the plant (Forde & Clarkson, 1999). All of
these NO3

− or NO2
− movements require transport across different membranes.

Thermodynamic calculations show that NO3
− transport across the root plasma

membrane is an active process (Glass & Siddiqi, 1995). The compartmentation
of NH4

+ is also highly complex, since ammonium is derived from NO3
− reduc-

tion, but most comes from photorespiration, degradation of proteins or transam-
ination reactions. Intriguingly, evidence to challenge the assumption that NH4

+
concentrations in normal plant tissues is low (Howitt & Udvardi, 2000) has re-
cently been obtained (Britto et al., 2001). Further, although it is believed that
NH4

+ generated or absorbed in roots is assimilated immediately, translocation
of NH4

+ from the root to the shoot can occur (Schjoerring et al., 2002).
Dissecting the molecular basis of soil-to-plant, or within-plant, fluxes of N has

been the challenge for the past decade. The enormous and rapid progress in plant
functional genomics has already revealed some of the molecular components of
these complex pathways. In this section, we will describe the characteristics of
these transport systems, their known molecular components and the regulation
of their activities at the physiological and molecular levels.

1.2.1 Ammonium uptake and transport

Net uptake of NH4
+ by root cells is the difference between influx and efflux.

Influx is usually measured using isotopes as 13NH4
+ or 15NH4

+ during short-
term experiments (Clarkson et al., 1996). A biphasic pattern of influx is observed
for many species such as Lemna gibba, rice or Arabidopsis. Below external
NH4

+concentrations ([NH4
+]ext) of 1 mM, influx operates via a saturable high-

affinity transport system (HATS), whilst a non-saturable low-affinity transport
system (LATS) is active at [NH4

+]ext above 1 mM (Wang et al., 1993). The
kinetic parameters calculated for the HATS may vary from one species to the
other and within the same species depending on environmental conditions (von
Wiren et al., 2001). This diversity may result from co-existing transporters, each
of them being involved in a particular process and showing different kinetic
properties. This hypothesis is strengthened by the discovery of a multigenic
family potentially encoding several NH4

+ transporters.
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1.2.2 Molecular analysis of ammonium uptake

To identify genes involved in NH4
+ transport, mutants resistant to methylammo-

nium, a toxic homologue of NH4
+ which shares the same transporters (Venegoni

et al., 1997), have been isolated in many species, from yeast (Dubois & Grenson,
1979) and Chlamydomonas reinhardtii (Franco et al., 1987) to Nicotiana
plumbaginifolia (Godon et al., 1996). Functional complementation of a yeast
mutant defective for methylammonium uptake led to the identification of the
first NH4

+ transporter gene from yeast and simultaneously from Arabidopsis
(Marini et al., 1994; Ninnemann et al., 1994). From southern blot analysis and,
more recently, from the sequenced genome of Arabidopsis, the AtAMT1 gene
family can be seen to comprise five homologous members and a more distantly
related gene, AtAMT2. These encode hydrophobic proteins of 475–514 amino
acids which belong to the ammonium transporter (AMT)/methylammonium
permease (MEP) family, which are ubiquitous across bacteria, archae, fungi,
plants and animals (Saier et al., 1999). Deduced amino acid sequences and pre-
diction analyses indicate that an 11 trans-membrane domain is probably present
in eukaryotic members of the family, with an outside localisation of the N termi-
nus, which has been experimentally demonstrated for the yeast MEP2 protein
(Marini & Andre, 2000). The yeast heterologous expression system has been
successfully used to determine the kinetic properties of these proteins. Different
substrate affinities (Km) for NH4

+ were observed among the different AtAMT1
members. Whilst AtAMT1;2 and AtAMT1;3 showed Km values between 25
and 40 �M, AtAMT1;1 had a Km value lower than 0.5 �M (Gazzarrini
et al., 1999). However, recent studies found no difference between AtAMT1;1
and AtAMT1;2 in their affinity for NH4

+ (Shelden et al., 2001). AtAMT1;1,
AtAMT1;2, AtAMT1;3 and AtAMT2 are expressed in roots. Other AMT homo-
logues have been cloned from rice – OsAMT1;1 and OsAMT2 (Suenaga et al.,
2003) – and tomato –LeAMT1;1,LeAMT1;2 andLeAMT1;3 (Lauter et al., 1996;
von Wiren et al., 2000). In tomato, LeAMT1;1 and LeAMT1;2 are preferentially
expressed in root hairs, thus raising the NH4

+ uptake efficiency because NH4
+ is

strongly adsorbed to soil constituents. Interestingly, LeAMT1;3 is preferentially
expressed in leaves and the protein exhibits unique features such as a short N
terminus when compared to AMT proteins from Arabidopsis or rice (von Wiren
et al., 2000).

1.2.3 Regulation of ammonium uptake: physiological
evidence and molecular basis

N uptake by roots is controlled by the N demand of the whole plant linked to the
external N availability. For example, a decrease in the [NH4

+]ext from 1 mM to
0.2 �M led to an adaptative response in rice that simultaneously decreased the
Km (from 188 to 32 �M) and increased the maximum influx rate (Vmax) of
the HATS (Wang et al., 1993). The regulation of gene expression in response to
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N starvation has been studied in Arabidopsis for the multigenic AtAMT family
(Gazzarrini et al., 1999; Rawat et al., 1999; Shelden et al., 2001). AtAMT1;1
mRNA levels increased markedly over a 2-day period after N removal, whilst
AtAMT1;2 andAtAMT1;3were less affected. The high affinity of AtAMT1;1 for
NH4

+, and its co-regulation with NH4
+ influx, suggest that AtAMT1;1 is a good

candidate for an important component of the HATS. When N-depleted plants
were re-supplied with NH4

+ or amino acid, feedback signals led to a rapid
decrease of net NH4

+ uptake in wheat (Glass and Siddiqi, 1995). The same
was true for Arabidopsis (Rawat et al., 1999) and tomato (von Wiren et al.,
2000) although gene expression studies provide evidence that the AtAMT1 and
the LeAMT1 transporters are not regulated in the same way. Whilst LeAMT1;1
and AtAMT1;1 respond similarly by a decrease in mRNA levels, LeAMT1;2 is
induced in roots by NH4

+, and even more strongly by NO3
− supply (von Wiren

et al., 2000). When tomato plants are grown under NO3
− nutrition and low

CO2, the expression of LeAMT1;1 and LeAMT1;3 is slightly higher in leaves,
suggesting that the corresponding protein could play a role in the retrieval of
NH4

+ derived from photorespiration. Gene expression was recently analysed in
rice and revealed distinct N-dependent regulation for AMTs, differing from that
in tomato or Arabidopsis (Sonoda et al., 2003).

Light and/or photosynthesis also controls NH4
+ uptake. During a day/night

cycle, NH4
+ uptake peaks at the end of the light period and is induced by

sugar during the dark phase. Again, this corresponds to the regulation of AMT
gene expression in Arabidopsis (Gazzarrini et al., 1999), tomato (von Wiren
et al., 2000) and tobacco (Matt et al., 2001). Both diurnal variations and re-
sponse to sucrose induce the expression of AtAMT1;2 and AtAMT1;3 which
showed a more pronounced response to both signals than AtAMT1;1 (Lejay
et al., 2003). In addition to transcriptional regulation of NH4

+ uptake, several
lines of evidence also point to the possibility of post-transcriptional control. Us-
ing l-methionine-dl-sulfoximine (MSX) to block NH4

+ assimilation, Rawat
and colleagues demonstrated a 30% decrease in NH4

+ influx rates without any
decline inAtAMT1;1 transcript levels (Rawat et al., 1999). The role of NH4

+ ion
itself in post-transcriptional regulation of the HATS is supposed to take place
via a direct inhibition of AMT transport activity or by inhibiting the synthesis
of AMT proteins (Crawford & Forde, 2002).

1.2.4 Nitrate uptake and transport

Nitrate influx has been studied intensively at the physiological and molecular
levels (Muller et al., 1995; Devienne et al., 1994). In contrast, NO3

− efflux,
which redirects a significant proportion of the absorbed NO3

−, has been rarely
studied. Nitrate influx is mediated by two distinct systems, the HATS and the
LATS. When [NO3

−]ext is low (<1 mM), the HATS mediates NO3
− influx,
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first, at a low rate, assuming that the plants have not been previously exposed to
NO3

−, and then at a higher rate, as evidenced by changes in Km and Vmax (Hole
et al., 1990; Aslam et al., 1992; Kronzucker et al., 1995). These characteristics
indicate that there are two components in the HATS, one which is constitutive
(cHATS) and the other inducible (iHATS). When [NO3

−]ext exceeds 500 �M,
the non-saturable LATS system becomes evident. Electrophysiological studies
have demonstrated that both the HATS and LATS are mediated by electrogenic
1 NO3

−/2H+ symporters (Glass et al., 1992).

1.2.5 Identification of genes coding for nitrate transporters

Two gene families encode proteins that are involved in either the low (NRT1) or
the high (NRT2) affinity NO3

− systems. These families share structural features
but no homology at the amino acid level.

1.2.5.1 The NRT1 family of transporters
The first gene encoding a low-affinity NO3

− transporter was cloned in Ara-
bidopsis by isolating and characterising a chlorate resistant T-DNA insertion
mutant chl1 (Tsay et al., 1993). Chlorate is an analogue of NO3

−which is re-
duced to toxic chlorite by NR (see Section 1.3.1). chl1 showed reduced NO3

−
uptake, particularly when plants were grown in the presence of NH4

+ (Huang
et al., 1996; Touraine & Glass, 1997). The corresponding AtNRT1.1 cDNA
encodes a 590-amino acid protein, containing 12 putative membrane-spanning
domains. When expressed in Xenopus oocytes, this cDNA allowed NO3

− up-
take (Tsay et al., 1993) with biphasic kinetics (Liu et al., 1999). The dual
affinity of the AtNRT1.1 transporter has since been shown to be regulated by
a phosphorylation/de-phosphorylation mechanism (Liu & Tsay, 2003). Further,
three other AtNRT1 genes have since been identified in Arabidopsis, AtNRT1.2,
AtNRT1.3 and AtNRT1.4, which show 36%, 51% and 42% identity, respectively
at the amino acid level withAtNRT1.1. Functional analysis ofAtNRT1.2 inXeno-
pus oocytes showed that it is also a low-affinity (Km= 6 mM) NO3

− transporter
(Liu et al., 1999). The functions of the two other genes are still not known. An-
other member of this family, AtPTR2B, encodes a peptide transporter (Rentsch
et al., 1995; Song et al., 1996). Oligopeptide transport seems to be a feature of
the NRT1 family as BnNRT1.2, which was one of the two cDNAs identified in
Brassica napus, is also able to transport NO3

− and l-histidine when expressed
in oocytes (Zhou et al., 1998). Using AtNRT1.1 as a heterologous probe, Lauter
and colleagues have isolated two cDNAs from a tomato root-hair specific library
(Lauter et al., 1996). Although the corresponding protein shares 65% identity
with AtNRT1.1, their role in NO3

− uptake remains to be demonstrated. Cor-
responding homologous genes have also been identified in N. plumbaginifolia
(Fraisier et al., 2001).
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1.2.5.2 The NRT2 family of transporters
Chlorate has also been used to screen for mutants affected in the HATS, but to
date this has only been successful in fungi. In Aspergillus nidulans, the chlo-
rate resistant crna mutant was shown to be defective in NO3

− uptake. The
CRNA cDNA encodes a transport protein of 507 amino acid containing 12
membrane-spanning domains with two groups of 6 segments separated by a
central loop (Unkles et al., 1991). Two CRNA-related genes have since been
isolated from Chlamydomonas reinhardtii: CrNRT2.1, which encodes a high
affinity NO3

−/NO2
− bi-specific transporter, and CrNRT2.2, which encodes a

high affinity NO3
− specific transporter. The presence of a third protein, Nar2,

was found to be necessary to form an active NO3
− transport system (Quesada

et al., 1994; Galvan & Fernandez, 2001).
In higher plants, the first NRT2 genes were cloned in barley (Trueman et al.,

1996) and N . plumbaginifolia (Quesada et al., 1997) by PCR amplification using
degenerate primers corresponding to conserved motifs found in a subgroup of the
major facilitator superfamily (MSF) transporters. Independently, the AtNRT2.1
gene was subsequently isolated using differential display (Filleur & Daniel-
Vedele, 1999) and PCR amplification (Zhuo et al., 1999) techniques.NRT2genes
have since been identified in many other plants species (Fig. 1.2). The complete
genome sequence ofArabidopsishas revealed the presence of sevenNRT2genes,
distributed across three chromosomes (Orsel et al., 2002a).AtNRT2.1/AtNRT2.2
andAtNRT2.3/AtNRT2.4 are arranged in tandem at the top of chromosome 1 and
the bottom of chromosome 5, respectively, whilst AtNRT2.6 and AtNRT2.7 are
located on chromosomes 3 and 5. Using the amino acid sequence of AtNRT2.1
as a reference, AtNRT2.2, AtNRT2.3, AtNRT2.4, AtNRT2.5, AtNRT2.6 and
AtNRT2.7 proteins exhibit 91%, 77%, 88%, 69%, 77% and 57% similarity,
respectively. A phylogenetic tree (Fig. 1.2) of all Arabidopsis and other higher
plant sequences show that AtNRT2.1, AtNRT2.2, AtNRT2.3, AtNRT2.4 and
AtNRT2.6 proteins are similar, whilst AtNRT2.5 and AtNRT2.7 are closer to
lower eukaryotic (alga or fungi) than to other plant proteins. In contrast toNRT1,
the only NRT2 cDNAs that have been shown to mediate active NO3

− uptake
following injection into Xenopus oocytes are CRNA or CrNRT2. Further, the
co-injection of Nar2 with CrNRT2.1 is required to obtain active NO3

− uptake
(Zhou et al., 2000).

Reverse genetics is a valuable part of the functional genomics toolkit since it
allows the function of specific genes to be disrupted (Bouchez & Hofte, 1998).
In Arabidopsis, extensive populations mutagenised with an insertion element
(transposon or T-DNA) have recently become available (Bouche & Bouchez,
2001). A T-DNA mutant affected in both AtNRT2.1 and AtNRT2.2 genes has
been identified, in which the HATS but not the LATS activities are disrupted
(Filleur et al., 2001). This mutant could be used to determine the function of
NRT2 genes in global NO3

− transport processes in plants. The organ specificity
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Figure 1.2 Unrooted tree of NRT2 proteins. Sequences are from Hansenula polymorpha (YNT1,
NCBI protein number CAA93631), Aspergillus nidulans (Crna, NCBI AAA62125), Escherichia coli
(NarK, NCBI CAA34126), Chlamydomonas reinhardtii (CrNrt2.1, NCBI CAA80925 ; CrNrt2.2, NCBI
CAA80926; CrNrt2.3, NCBI CAA11238), Arabidopsis thaliana (AtNrt2.1, NCBI ACC64170; AtNrt2.2,
NCBI AAC35884; AtNrt2.3, NCBI BAB10099; AtNrt2.4, NCBI BAB10098; AtNrt2.5, NCBI AAF78499;
AtNrt2.6, NCBI CAB89321; AtNrt2.7, NCBI CAB87624), Oryza sativa (OsNrt2, NCBI BAA33382),
Hordeumvulgare (HvNrt2.1, NCBI AAC49531;HvNrt2.2, NCBI AAC49532;HvNrt2.3, NCBI AAD28363;
HvNrt2.4, NCBI AAD28364),Triticumaestivum (TaNrt2, NCBI AAK19519),Glycinemax (GmNrt2, NCBI
AAC09320), Lotus japonicus (LjNrt2.1, NCBI CAC35729), and Nicotiana plumbaginifolia (NpNrt2.1,
NCBI CAA69387).
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of expression also indicates the possible roles of NRT2. In higher plants, most
NRT2 genes isolated thus far are expressed preferentially in roots. In tomato,
LeNRT2 expression is not observed in whole shoots or leaves (Ono et al., 2000)
whilst in N. plumbaginifolia, NpNRT2.1 transcripts are detectable at low levels
in leaves, petioles, buds flowers or seeds (Quesada et al., 1994). In Arabidopsis,
Orsel et al. (2002b) have demonstrated variation in the expression levels between
the seven genes within the NRT2 gene family. However, although most of the
NRT2 genes are expressed more in roots than in shoots, AtNRT2.7 showed a
greater expression in the aerial tissues, which could indicate a role in NO3

−
fluxes within the leaves.

1.2.6 Regulation of nitrate influx and the role of NRT1 and NRT2 genes

The regulation of NO3
− uptake is highly complex and it has been the sub-

ject of several reviews (Crawford & Glass, 1998; Daniel-Vedele et al., 1998;
Forde & Clarkson, 1999; Forde, 2000; Galvan & Fernandez, 2001; Glass et al.,
2001; Williams & Miller, 2001). Both environmental factors and internal signals
control NO3

− uptake mediated by HATS and LATS. As indicated previously,
NO3

− itself is an inducer, which discriminates between constitutive (cHATS
and cLATS) and inducible (iHATS) NO3

− uptake systems (Behl et al., 1988).
As opposed to NO3

−, addition of reduced N sources such as NH4
+ or amino

acids to the culture medium inhibits NO3
− uptake (Muller & Touraine, 1992;

Kronzucker et al., 1999). Nitrate uptake is also regulated by diurnal cycles and
light intensity, which may be due to the transport of photosynthates to the root
(Delhon et al., 1995). Internal signals are thought to match the rate of N acqui-
sition to the demand for N (Glass & Siddiqi, 1995). During N starvation, plants
increase their capacity to absorb NO3

− transiently, which may be a consequence
of de-repression of NO3

− transport due to N metabolites accumulating under
non-limiting conditions. After NO3

− is re-supplied, feedback regulation takes
place (Siddiqi et al., 1989), but the signals responsible for the decrease in NO3

−
influx have not yet been identified.

How does NO3
− influx and gene expression correlate? In Arabidopsis, the

expression of AtNRT2.1 and regulation of NO3
− influx are tightly linked. For

example, AtNRT2.1 is induced by low levels of NO3
− to a transient maximum.

Further, AtNRT2.1 expression transiently induced by N starvation (Filleur &
Daniel-Vedele, 1999; Zhuo et al., 1999) is strictly correlated to the influx during
a day/night cycle and it is inducible by sugars (Lejay et al., 1999). The reg-
ulation of AtNRT2.1 may depend on the C flux from glycolysis (Lejay et al.,
2003). These correlations, together with defects of the regulation of iHATS ac-
tivities (NO3

− inducible, starvation de-repressible and NH4
+ repressible high

affinity uptake) in the atnrt2a mutant (Cerezo et al., 2001) strongly support the
hypothesis that the AtNRT2.1/AtNRT2.2 genes play a major role in the NO3

−
uptake mediated by the iHATS. The role(s) of other AtNRT2 genes remains to


