
Genomics research has made signifi cant advances in recent years. In Genomics: 
Essential Methods, a team of internationally-renowned researchers share the 
most up-to-date information in a fi eld that has in recent years switched emphasis 
from gene identifi cation to functional genomics and the characterization of 
genes and gene products. This volume approaches this complex subject with a 
broad perspective to supply the reader with a vital overview of genomics and its 
derivative fi elds, with a focus on pivotal issues such as data analysis. Expansive 
and current, Genomics: Essential Methods is a comprehensive research guide 
that describes both the key new techniques and more established methods. 
Every chapter discusses the merits and limitations of the various approaches and 
then provides selected tried-and-tested protocols, as well as a plethora of good 
practical advice for immediate use at the bench.

•   Provides a broad introduction to current practices and techniques for lab-
based research in genomics 

•   Explains clearly and precisely how to carry out selected techniques in addition 
to background information on the various approaches

•   Chapters are written by a leading international authorities in the fi eld and 
cover both well-known and new, tried and tested, methods for working in 
genomics

•   Includes troubleshooting guide and reviews of alternative techniques

•   An essential laboratory manual for students and researchers at all levels
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Preface

In 1994, Jerome Vanclay published a comprehensive and definitive text on forest growth

and yield modeling. Since then, significant changes in data availability, computing power,

and statistical techniques have largely changed the state of forest growth and yield

modeling in a rather short time period. This new book attempts to build on the successful

approach of the 1994 book and provide a broad perspective on all aspects of forest growth

and yield modeling.

Most foresters, students, and even researchers treat forest growth and yield models as

incomprehensible and outdated black boxes that are frustrating to use and with predictions

that can be inaccurate. Yet, growth and yield predictions are still central to answering a

variety of practical and research questions on a daily basis, often with little appreciation of

how the models actually operate, their key assumptions, and the difficulty of the task at

hand. As with the previous edition, this book attempts to make growth models more

accessible to a wider audience by exploring their individual components, discussing

aspects of their construction, and, most importantly, describing their limitations. Specific

attention is given to individual tree growth models because they are the tool most

commonly used for practical decisions. For each type of growth model, several example

growth models from different regions of the world are described in detail so that the

differences between modeling approaches are better illustrated and the black-box nature

of specific models is lessened.

The text is intended for practitioners, researchers, and students alike. Given their

relative lack of coverage in other books, two detailed chapters on measuring site

productivity and competition are given, which could be used in several undergraduate

and graduate-level university courses. There are also individual chapters that describe

whole-stand/size-class, individual tree, process-based, and hybrid models. The key

growth model components discussed in detail are increment equations, static equations,

mortality, and regeneration/recruitment. Other chapters include combining models of

different resolutions, modeling silvicultural treatments, and potential future directions.

Finally, chapters on model evaluation, model development, and model use are given to

guide future efforts. The extensive bibliography should serve as a useful guide for specific

references on more advanced topics.



A team of authors with a diverse background and expertise was assembled to

provide a comprehensive and international perspective. The book’s original author,

Dr. Jerome Vanclay, provided expertise on all aspects of growth models, particularly

models developed in the southern hemisphere and for tropical forests. Dr. John Kershaw, a

co-author onWiley’s fourth edition of the Forest Mensuration book, brought a perspective

on growth and yield models used in North America, particularly Canada. Dr. David Hann

has an extensive career working on forest growth and yield models and is the developer

of the ORGANON growth model, which is widely used in the US Pacific Northwest.

Finally, Dr. Aaron Weiskittel has spent time working with process and hybrid models

and is currently developing an individual tree growth model for the northeastern

North America.
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1
Introduction

All models are an abstraction of reality that attempt to conceptualize key relationships of a

system. Models can be both quantitative and conceptual in nature, but all models are

integrators of multiple fields of knowledge. Consequently, models generally have several

important and varied uses. Forest growth and yieldmodels are no different. Foresters often

have a general sense of a stand’s developmental trajectory and what can be done to alter it.

However, it generally takes years of experience to achieve this level of expertise and, even

then, quantifying the predictions can be difficult. Forest growth models attempt to bridge

this gap by providing model users the ability to predict the future condition of the forest.

Ultimately, growth models are the quantitative generalizations on the knowledge of forest

stand development and their response to silvicultural treatments.

Forest growth and yield models have a long, and rapidly expanding, history of

development (Figure 1.1, 1.2). Their development and use has particularly increased in

the last two decades, due in part to the greater availability of personal computers to

perform both data analysis and complex simulations (Figure 1.2). This has resulted in a

wide array of modeling approaches, each with their own advantages and disadvantages. In

particular, models differ in the type of data used and themethod of construction. This book

attempts to provide an overview of the primary concepts involved in forest modeling, the

various techniques used to represent the determinants of growth, and the techniques

needed to both develop and use a growth model properly.

Although the concepts of forest growth and yield have long been a part of forestry, they

have been defined and named in various ways, particularly in the US (Bruce, 1981). In this

book, increment is defined as the difference between tree or stand dimensions from one

time period to the next, while growth is the final dimension from one time period to the

next. In other words, increment is determined by either solving a growth equation or by

observing growth at two points of time (Bruce, 1981).

Forest Growth and Yield Modeling, First Edition. Aaron R. Weiskittel, David W. Hann,

John A. Kershaw, Jr. and Jerome K. Vanclay.
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This book is focused on models that predict the development of a single forest stand

(Figure 1.3). Although a distinction between empirical and mechanistic models is often

made (e.g. Taylor et al., 2009), this is not a useful metric of differentiation, as all models

are on a spectrum of empiricism. Instead, this book groups forest stand development

models into four broad categories: (1) statistical models; (2) process; (3) hybrid; and

(4) gap (Table 1.1; Figure 1.4).

Statistical models rely on the collection and analysis of data that will characterize the

targeted population in a manner that allows statistical variability to be estimated for

parameters. The primary intent of statistical models is for prediction of forest stand

development and yield over time. Process models represent key physiological processes

(e.g. light interception, photosynthesis), often for understanding and exploring system

behavior, which are then combined to characterize both tree and stand development.

Hybrid models merge features of statistical and process models and are used both for

understanding and for prediction. Gap models are designed to explore long-term

ecological processes, generally for understanding interactions that control forest species

succession. Models that integrate the development of multiple forest stands, such as

landscape models, exist (e.g. Mladenoff, 2004), but will not be covered in this book.
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Figure 1.1 Number of publications on growth and yield, by publication year, based on a keyword

search of the CAB Direct database (www.cabdirect.org, accessed December 21, 2010).
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1700s – 1800s 1900 1920 1940 1960 1980 2000

Early European Development 
      of Normal Yield Curves
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  Growth and Yield Plots
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Individual-Tree Distance-Dependent Model
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 indvidual-tree, distance-independent model)
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Crown Competition Factor

Tree Area Ratio

White Pine Volume and Yield
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Application of Diameter Distribution Series

Forest-BGC

3-PG

Parameter Recovery 
     Model

ORGANON

Application of Weibull Distributions

Application of 
    Mixed Models

Height Growth as a Key to Site

Polymorphic Site Index Curves

Compatible Taper/Volume Equations
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Personal Computers

Linear Regression Applied
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Figure 1.2 Key milestones in model development and associated concepts and techniques.
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Within any given model category, models differ in their resolution (both spatial and

temporally), spatial dependence, and degree of determinism. Spatial resolution refers to

the basic unit for predictions, with the simplest being a whole-stand approach (Chapter 4),

and the individual-tree approach is the most detailed (Chapter 5). A size-class model is

a compromise between thewhole-stand and individual-tree approaches (Chapter 4). Some

process models even have a spatial resolution of an individual leaf within a tree crown. In

addition, a significant amount of effort has been made in combining predictions from

models with different spatial resolutions (Chapter 10).

Temporal resolution is the basic time step for model predictions. Several process

models have daily or even hourly time steps, while statistical models generally have 1- to

10-year temporal resolutions. Models also vary in their use of spatial information.

Distance-dependent or spatially explicit models require spatial location information;

often individual-tree x–y coordinates are needed. Distance-independent or spatially

implicit models do not require this information.

Finally, models differ in their use of deterministic approaches, which means that

a particular function will always return the same output return value for any given set of

input values. In contrast, stochastic approaches incorporate some purely random element

and will give different return values in successive runs with any given set of input values.

Stochasticity can be an important element of forest modeling, as some relevant factors like

natural disturbances that ultimately govern the growth and yield of a particular stand

can be random or unpredictable. However, a model with too many stochastic elements can

make interpretation a challenge.

Stochasticity is one approach for addressing the variability that is inherent in all aspects

of modeling. Evenmodels in fundamental sciences like physics and chemistry have purely

random elements. However, biological systems are evenmore variable andmodels need to

Forest Vegetation

Prediction Models

Qualitative

   Models

Quantitative

    Models

Single Pathway

      Models

Multiple Pathway

        Models

Landscape

   Models

Stand

Models

Figure 1.3 Types of forest vegetation prediction models. Adapted from Taylor et al. (2009).
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Table 1.1 Categories of quantitative single stand forest development models and their definition, use, advantages, and disadvantages.

Type of

model

Definition Important uses Advantages Disadvantages Key

references

Statistical Utilize empirical

data and statistical

techniques like regression

to derive quantitative

relationships

Update forest

inventories; compare

forest silvicultural

treatments; estimate

sustainable harvests

Robust; long history

of development; rely on

data generally available;

output geared for

operational decisions;

can represent a wide

range of conditions and

sampling schemes

Require high quality

empirical data; can

extrapolate poorly;

generally insensitive

to climate

Taylor et al.

(2009)

Process Represent key plant

physiological processes

like photosynthesis,

which are then scaled to

the stand-level to estimate

growth

Understand the

underlying

mechanisms

influencing growth;

test hypotheses about

plant behavior; predict

potential forest

productivity

Can theoretically

extrapolate to novel

situations; sensitive

to climate; mechanistic

Dependent on several

difficult-to-measure

parameters; input data not

widely available; high

computational demand;

output often unusable for

operational decisions

M€akel€a et al.

(2000a);

Landsberg

(2003)

Hybrid Combine statistical

and process approaches

in attempt to take

advantage of the strengths

of both approaches

Predict growth using

climatic factors;

prediction of novel

forest silvicultural

treatments

Robust; sensitive to

climate; minimize the

number of required

parameters; can use

traditional forest

inventory data

Accuracy improvements

can be minimal when

compared to a purely

statistical approach;

climate and soils input

data not widely available

Monserud

(2003)

Gap Rely heavily on ecological

theory and interpretation

of species dynamics

relative to both

competition and

environmental conditions

Predict long-term forest

succession; test

ecological theories

Incorporate a variety of

natural disturbance

agents; long time scales

Prediction accuracy is

often low compared to

statistical models; difficult

to initialize with forest

inventory data; several

subjective parameters

Bugmann

(2001);

Shugart

(2002)
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Figure 1.4 Types of forest vegetation prediction models that are focused on the stand-level.
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recognize the important sources. Therefore, the models examined in this book have

a framework that is based upon our current biological knowledge and are parameterized

with the knowledge that the parameters are uncertain.

Forest growthmodels have several components. Atminimum, forest stand development

models must represent growth (Chapter 6) and mortality (Chapter 8). Models must also

have components that relate the traditional tree measurements of diameter and height to

other attributes like total volume or biomass with the use of static equations (Chapter 7).

Comprehensive growth models include components to predict regeneration and ingrowth

(Chapter 9) and representation of silvicultural treatments (Chapter 11). In addition,

understanding the key biological determinants of growth and yield, namely competition

(Chapter 2) and site potential productivity (Chapter 3), is important.

1.1 Model development and validation

As with most fields, forest modeling is both an art and a science. Ideally, the development

of any model involves a comprehensive understanding of the system and an approach for

detecting the crucial relationships. This often means that modelers must be multidisci-

plinary. In addition, model development is often an iterative and collaborative effort

betweenmodelers, fundamental scientists, andmodel users. The process of modeling is an

assessment of current understanding of forests, information needed for management, and

crucial knowledge gaps.

Consequently, research questions can often be generated by assessment of model

strengths and weaknesses. This also illustrates an important modeling distinction, namely

the use of models for prediction versus understanding, which will be further discussed

below. Although there are important general modeling philosophies like Occam’s prin-

ciple of parsimony, which suggests that models should be as simple as possible, but as

complex as necessary (Kimmins et al., 2008), achieving this is often easier said than done.

Regardless of modeling approach, empirical data of one type or another will be required

for either model construction (Chapter 14) or model evaluation (Chapter 15). Data can

often vary greatly in its quality and overall usefulness for modeling. Among others, data

quality is influenced by how well the data represents the population of interest, the

variables collected, and the degree of measurement error, which is often an overlooked yet

important determinant of predictability (e.g. Hasenauer and Monserud, 1997). The

statistical tools used to construct models are continually changing and evolving.

Chapter 14 provides a brief overview of the key statistical techniques in order to give

a better context to statistical forest growth and yield models.

To be useful for a given purpose, a model must be representative of reality to some

degree. Consequently, a variety of methods have been used to verify model predictions

(Chapter 15). This has ranged from simple statistical tests to complex stochastic

simulations. Each has their own merits, but, in general, models must be verified using

1.1 MODEL DEVELOPMENT AND VALIDATION 7



multiple approaches to ensure full reliability. If model predictions are found to be

inadequate, a larger question quickly becomes how to fix or re-calibrate the model. This

can often be a complicated undertaking, but emerging approachesmay simplify the process.

1.2 Important uses

Models are tools designed to be used in a variety of ways (Chapter 16). The key uses of any

well-developed model are prediction and education in its broadest sense (Figure 1.5). In

forestry, some key prediction roles of growth models are (1) update forest inventories;

(2) assess alternative forest silvicultural systems; (3) determine the influence of distur-

bance agents like insects or disease; (4) estimate sustainable yield of forest products; and

(5) generalize regional trends. Growth and yield information is required to make all major

forest management decisions. Some of the basic decisions that require accurate growth

and yield information include: (1) even-aged stand-level decisions; (2) uneven-aged

stand-level decisions; (3) forest- or ownership-level decisions; and (4) regional and

national decisions. The type of information needed from a forest growth and yield model

Resource
Inventory

Environmental
Databases

Experiments and
Dynamic Inventory

Growth Models and
Other Decision Aids

Predictions

Tests

Prescriptions

Policy

feedback

feedback

feedback

Figure 1.5 The role of growth models in decision making, forest management, and the formation

of forest policy. Adapted from Nix and Gillison (1985).
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to make these different decisions depends on the spatial and temporal level at which

information is needed (Table 1.2).

For example, a silviculturist would primarily use a growth and yield model to project

the development of the stand under alternative treatment strategies such thinning or

fertilization regimes. A forest planner would likely use a growth and yield model to

stratify individual stands in a forest into homogeneous units, project the development of

each stratum, and use a harvest scheduler to determine the optimal silvicultural system and

allowable harvest. A policy-maker would generally use a growth and yieldmodel to depict

regional or national trends like carbon sequestration potential or sustainable harvest levels

to set effective policies. In fact, growth models were used in the United States, by the

Chicago Climate Exchange and the California Climate Action Registry, to set standards

for carbon credit trading and greenhouse gas registries at regional and national scales.

Additional uses of models are the visualization of management alternatives and the

assessment of forest stand dynamics on wildlife habitat and streamside conditions for fish

habitat. Consequently, the implications of basing decisions on a growth and yield model at

any level are often quite significant, which both model developers and users need to be

aware of.

There are several complex issues facing the practice of forestry today, like assessing the

effects of climate change, forest carbon neutrality, and long-term sustainability. Answer-

ing these open questions with empirical data is often difficult, requires long-term

investment, or is impossible. Consequently, growth and yield models are widely used

by scientists as research tools to test hypotheses and understand system behavior. For

example, the ORGANON growth and yield model (Hann, 2011) has been widely used by

scientists to answer several research questions on a broad array of topics ranging from

forest management, planning, and economics, to conservation issues (Table 1.3).

Models are good research tools as they allow the construction of what-if scenarios and

experimentation with different parameter settings. In addition, the development and

Table 1.2 Uses of growth and yield models to aid in key forest management decisions.

Type of decision Important factors to consider Reference

Even-aged stand-level Planting density; thinning strategy; fertilization

strategy; species or species mix; rotation length

Hann and

Brodie (1980)

Uneven-aged stand-level Sustainable diameter distribution; cutting cycle

length; species mix; fertilization strategy;

conversion strategy

Hann and

Bare (1979)

Forest or ownership level Schedule of stand treatments; allowable harvest;

wildlife habitat; aesthetics

Bettinger et al.

(2009)

Regional or national level Carbon sequestration potential; allowable harvest;

wildlife habitat

Bettinger et al.

(2005)
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construction of any growth model often leads to new and interesting research questions.

This is because model development largely requires making and testing key assumptions,

assessing patterns, and providing full disclosure, which are all basic tenets of the scientific

method. In other words, developing a model requires the processes or system being

modeled to be conceptualized and understood.

Forest growth and yield models are useful tools for education, a role that ORGANON

has often played (Marshall et al., 1997). This is because models require hands-on

interaction, synthesis of multiple concepts, and critical thinking skills to assess the

Table 1.3 Examples of the applied uses of the ORGANON growth and yield model.

Study Purpose

Forest management

Maguire et al. (1991) Examine the influence of alternative management

on wood quality

Welty et al. (2002) Assess strategies for managing riparian zones

Wilson and Oliver (2000) Strategies for density management to ensure stability

Sessions et al. (2004) Manage the consequences of wildfire

Forest planning

Johnson et al. (2007a) Develop large-scale, long-term plans for usage

of forested landscapes

Sessions et al. (2000) Develop mature forest habitat

Shillinger et al. (2003) Predict future timber supply

Johnson et al. (2007b) Large-scale assessment of socioeconomic effects

on forest structure and timber production

Economics

Birch and Johnson (1992) Determine the economic impact of green tree retention

Fight et al. (1993) Conduct a financial analysis of pruning alternatives

Busby et al. (2007) Evaluate the opportunity cost of forest certification

Latta and Montgomery (2004) Create cost-effective older stand structures

Wildlife

Hayes et al. (1997) Evaluate response of wildlife to thinning

Calkin et al. (2002) Managing for wildlife biodiversity

Lichtenstein and

Montgomery (2003)

Assessing influence of timber management

on wildlife biodiversity

Andrews et al. (2005) Strategies for creating northern spotted owl

nesting sites

Nalle et al. (2004) Strategies for joint management of timber

and wildlife

10 CH 1 INTRODUCTION



Table 1.4 Model name, type, resolution, distance dependence, stochasticity, region, primary species, and reference for example models

considered in the text.

Model

name

Model

type

Resolution Distance

dependent

Stochastic Region/country Primary

speciesa
Reference

Spatial Temporal

3-PG Hybrid Whole stand Monthly No No Several DF, LP, EG, EN,

NS, RP, SP,

SS, WL

Landsberg and

Waring (1997)

BALANCE Process Individual

tree

One year Yes No Germany EB, NS Grote and Pretzsch

(2002)

CABALA Hybrid Whole stand Monthly No No Australia EG Battaglia et al.

(2004)

CenW Process Whole stand Monthly No User’s

choice

Australia ED, RP Kirschbaum

(1999)

DFSIM Statistical Whole stand Five year No No Pacific Northwest,

United States

DF Curtis et al. (1981)

FIBER Statistical Size class No No Northeast, United

States

AB, BF, RS, BS,

WS, EH, NC,

SM, RM, YB,

PB, QA, RO, TA,

WA, WP

Solomon et al.

(1995)

Forest-

BGC

Process Whole stand Daily No No Several — Running and

Coughlan

(1988); Running

and Gower

(1991)

(continued )
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Table 1.4 (Continued )

Model

name

Model

type

Resolution Distance

dependent

Stochastic Region/country Primary

speciesa
Reference

Spatial Temporal

JABOWA Gap Individual

tree

One year No Yes Northeast, United

States

AE, AB, BC, BF,

BP, BW, BT, BN,

RS, BS,WS, EH,

NC, SM, RM,

YB, PB, QA,

RO, TA, WA,

WO, WP

Botkin et al.

(1972a, b)

ORGANON Statistical Individual

tree

Five year,

One year

No User’s

choice

Pacific Northwest,

United States

PM, BM, BO, LO,

GC, OO, DF,

RA, TO, WL,

GF, IC, PY, PP,

PL, WH, WF

Hann (2011)

CROBAS Hybrid Size class One year No No Finland; Quebec JP, SP, NS M€akel€a (1997)

PROGNAUS Statistical Individual

tree

Five year No User’s

choice

Austria NS, WF, EL, TP,

SP, EB

Monserud et al.

(1997)

Scube Statistical Whole stand One year No No British Columbia,

Canada

WS, ES Garc�ıa (2011)

SILVA Statistical Individual

tree

Five year Yes Yes Germany BP, NS, WF, EB,

SP, SO

Pretzsch et al.

(2002)

SORTIE Gap Individual

tree

One year Yes Yes Northeast, United

States; Quebec

and British

Columbia, Canada

AB, EH, JP, LP,

SM, RM, TA,

WA, WP, WH,

YB

Pacala et al.

(1993; 1996);

Coates et al.

(2003)

TASS Statistical Individual tree One year Yes Yes Pacific Northwest,

Canada

DF, WS Mitchell

(1969; 1975)

aSee Appendix 1 for species codes.
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appropriateness of output. In addition, combining model prediction with visualization

tools (Chapter 16) allows visual demonstration of key concepts like stand structure and

stratification, which can be difficult to achieve with just words or in the field.

1.3 Overview of the book

Forest growth modeling is an evolving and comprehensive field that can be difficult

to describe fully. Previous books on forest growth modeling have either become outdated

(e.g. Vanclay, 1994), focused primarily on one geographic region (e.g. Hasenauer, 2006),

or are specific to a particular modeling approach (e.g. Landsberg and Sands, 2011). This

book attempts to provide a comprehensive overview of forest models from multiple

perspectives in order to be useful to model developers, scientists, students, and model

users alike.

The book is divided into 17 individual chapters that give an overview of the key

concepts determining growth and yield (Chapters 2, 3), the different types of modeling

approaches (Chapters 4, 5, 12, 13), and the various dimensions of developing, validating,

and using a growthmodel (Chapter 14, 15, 16). Examplemodels are described in detail for

each modeling approach to illustrate key differences and provide information on some of

the more widely used models (Table 1.4).

In particular, the components of statistical, distance-independent, individual-tree

models are discussed in detail (Chapters 6, 7). Attention is given to this type of modeling

approach because it has been widely adopted and extensively used for operational

management planning. For example, statistical, distance-independent, individual-tree

models are currently available and used throughout the United States (Crookston

and Dixon, 2005), western Canada (e.g. Temesgen and LeMay, 1999), central Canada

(e.g. Bokalo et al., in review), eastern Canada (e.g. Woods and Penner, 2007), central

Europe (e.g. Monserud et al., 1997), and northern Europe (e.g. Hynynen et al., 2002). The

approach has been preferred because it can be used in a wide range of stand structures,

particularly in uneven-aged (Peng, 2000) and mixed species stands (Port�e and Bartelink,

2002). Throughout the book, specific attention is given to the ORGANON growth and

yield model of the United States Pacific Northwest (Hann, 2011), as it has a long history of

continuous development, is applicable to a large number of conifer and hardwood species

in a wide array of stand conditions, and has been rigorously tested.

It is our hope that the book can help promote a more comprehensive understanding of

forest models, and guide future modeling efforts.
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