

SYSTEM HEALTH MANAGEMENT

with Aerospace Applications

Editors

STEPHEN B. JOHNSON • THOMAS GORMLEY SETH S. KESSLER • CHARLES MOTT • ANN PATTERSON-HINE KARL REICHARD • PHILIP A. SCANDURA Jr.

SYSTEM HEALTH MANAGEMENT

SYSTEM HEALTH MANAGEMENT with aerospace applications

Edited by

Stephen B. Johnson NASA Marshall Space Flight Center and University of Colorado at Colorado Springs, USA

Thomas J. Gormley *Gormley & Associates, USA*

Seth S. Kessler Metis Design Corporation, USA

Charles D. Mott Complete Data Management, USA

Ann Patterson-Hine NASA Ames Research Center, USA

Karl M. Reichard Pennsylvania State University, USA

Philip A. Scandura, Jr. Honeywell International, USA

This edition first published 2011 © 2011, John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The rights of the authors to be identified as the authors of this work have been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloguing-in-Publication Data

System health management: with aerospace applications / edited by Stephen B Johnson ... [et al.]. p. cm.

Includes bibliographical references and index. ISBN 978-0-470-74133-7 (hardback)

1. Aeronautics - Systems engineering - Quality control. 2. Astronautics - Systems engineering - Quality control. I. Johnson, Stephen B., 1959-

TL501.S97 2011

629.1-dc22

2011005628

A catalogue record for this book is available from the British Library.

Print ISBN: 978-0-470-74133-7 ePDF ISBN: 978-1-119-99404-6 Obook ISBN: 978-1-119-99405-3 ePub ISBN: 978-1-119-99873-0 Mobi ISBN: 978-1-119-99874-7

Typeset in 9/11pt Times by Laserwords Private Limited, Chennai, India

This book is dedicated to Joan Pallix, a pioneer in our field. Joan's ingenuity brought many of us together to develop early demonstrations of system health management technologies for the Space Shuttle Thermal Protection System, and her trailblazing approach provided a key foundation of the System Health Management process that we describe herein. Her dedication, originality, and technical expertise earned the respect of the System Health Management community.

Contents

Abou	t the Edi	itors	xxiii	
List o	f Contri	butors	XXV	
Forev	vord		xxix	
Prefa	ce		xxxiii	
Part (N	THE SOCIO-TECHNICAL CONTEXT OF SYSTEM HEALTH IANAGEMENT Tharles D. Mott		
1		neory of System Health Management	3	
1.1	Stephen Overvie Introdu		3 3	
1.2		ons, Off-Nominal States, and Causation	7	
1.3	1	exity and Knowledge Limitations	10	
1.4		Aitigation Strategies	11	
1.5	<i>1.5.1</i>	onal Fault Management Functions Detection Functions and Model Adjustment	12 14	
	1.5.1	Fault Diagnosis	14	
			10	
	1.5.3 1.5.4	Failure Response Determination	17	
	1.5.5	Failure Response	17	
	1.5.6	Fault and Failure Containment	19	
1.6	Mechar		19	
	1.6.1	Fault Tolerance	19	
	1.6.2	Redundancy	20	
1.7	Summa	ry of Principles	22	
1.8		mplementation	23	
1.9	Some I	mplications	24	
	1.9.1	Detecting Unpredicted Off-nominal States	24	
	1.9.2	Impossibility of Complete Knowledge Independence	24	
	1.9.3	The Need for, and Danger of, Bureaucracy	25	
	1.9.4	"Clean" Interfaces	25	
	1.9.5	Requirements, Models, and Islands of Rigor	26	
1.10	Conclus	sion	26 26	
	Bibliography			

2	Multimodal Communication Beverly A. Sauer	29
	Overview	20
2.1	Multimodal Communication in SHM	29 31
2.1	Communication Channels	34
2.2		34
	Learning from Disaster	
2.4	Current Communication in the Aerospace Industry	37 37
2.5 2.6	The Problem of Sense-making in SHM Communication	37
2.0	The Costs of Faulty Communication	38 39
2.7	Implications Conclusion	39 41
2.0	Acknowledgments	41
	Bibliography	43
3	Highly Reliable Organizations	49
U	Andrew Wiedlea	
	Overview	49
3.1	The Study of HROs and Design for Dependability	49 49
3.2	Lessons from the Field: HRO Patterns of Behavior	49 52
5.2	3.2.1 Inseparability of Systemic Equipment and Anthropologic Hazards	53
	3.2.2 Dynamic Management of System Risks	54
	3.2.3 Social Perceptions of Benefits and Hazards	56
3.3	Dependable Design, Organizational Behavior, and Connections to the HRO Project	57
3.4	Conclusion	60
5.1	Bibliography	61
4	Knowledge Management	65
	Edward W. Rogers	
	Overview	65
4.1	Systems as Embedded Knowledge	66
4.2	KM and Information Technology	66
4.3	Reliability and Sustainability of Organizational Systems	67
4.4	Case Study of Building a Learning Organization: Goddard Space Flight Center	69
	4.4.1 Practice 1: Pause and Learn (PaL)	69
	4.4.2 Practice 2: Knowledge Sharing Workshops	71
	4.4.3 Practice 3: Case Studies	72
	4.4.4 Practice 4: Review Processes and Common Lessons Learned	73
	4.4.5 Practice 5: Goddard Design Rules	73
	4.4.6 Practice 6: Case-Based Management Training	74
4.5	Conclusion	75
	Bibliography	75
5	The Business Case for SHM	77
	Kirby Keller and James Poblete	
	Overview	77
5.1	Business Case Processes and Tools	78
5.2	Metrics to Support the Decision Process	80
	5.2.1 Availability	81
	5.2.2 Schedule Reliability	81
	5.2.3 Maintenance Resource Utilization	81

6.7.6

6.8.1

6.8.2

6.8.3

Conclusion

Bibliography

Acknowledgments

6.8

6.9

HM System Maturation

SHM Analysis Models and Tools

Safety Models

Reliability Models

Diagnostic Models

	5.2.4	DOI	0.1
	5.2.4	ROI	81
	5.2.5	NPV	82
5 0	5.2.6	Cash Flow	82
5.3		to Consider in Developing an Enterprise Model	82
	5.3.1	Operational Model	83
- 1	5.3.2	Financial Analysis	85
5.4		tion of Alternatives	86
5.5		cations in Selected Baseline Model	86
	5.5.1	Additions and Changes in Technology on Fleet Platforms	86
	5.5.2	8 8 8 8	87
	5.5.3	Changes in Policies and Procedures	87
5.6		ng Risk and Uncertainty	87
5.7		Verification and Validation	88
5.8		tion Results	88
5.9	Conclu		90
	Bibliog	graphy	91
	S	eth S. Kessler	
6	Health	Management Systems Engineering and Integration	95
	Timoth	y J. Wilmering and Charles D. Mott	
	Overvi	ew	95
6.1	Introdu	ction	95
6.2	System	s Thinking	96
6.3	Knowle	edge Management	97
6.4	System	s Engineering	98
6.5	System	s Engineering Lifecycle Stages	99
6.6	System	s Engineering, Dependability, and Health Management	100
6.7	SHM I	Lifecycle Stages	103
	6.7.1	Research Stage	103
	6.7.2	Requirements Development Stage	104
	6.7.3	System/Functional Analysis	105
	6.7.4	Design Synthesis and Integration	106
	6.7.5	System Test and Evaluation	107

7	Architecture Ryan W. Deal and Seth S. Kessler	115
	Overview	115
7.1	Introduction	115

109

110

110

111

112

112

112

112

7.2	SHM System Architecture Components	117
	7.2.1 Power Consumption	117
	7.2.2 Data Communications	118
7.3	Examples of Power and Data Considerations	119
7.4	SHM System Architecture Characteristics	120
	7.4.1 Processing	120
	7.4.2 Operational Duration	121
	7.4.3 Fault Tolerance and Failure Management	121
	7.4.4 Reliability	122
	7.4.5 Asset Availability	123
	7.4.6 Compatibility	123
	7.4.7 Maintainability	124
	7.4.8 Extensibility	125
	7.4.9 Centralized versus Distributed SHM	125
7.5	SHM System Architecture Advanced Concepts	126
	7.5.1 Systems-of-Systems	126
	7.5.2 Network-centric Operations	126
7.6	Conclusion	126
	Bibliography	127
8	System Design and Analysis Methods	129
	Irem Y. Tumer	
	Overview	129
8.1	Introduction	129
8.2	Lifecycle Considerations	130
8.3	Design Methods and Practices for Effective SHM	132
0.0	8.3.1 Reliability Analysis Methods	132
	8.3.2 Formal Design Methods	133
	8.3.3 Function-Based Design Methods	134
	8.3.4 Function-Based Failure and Risk Analysis Methods	135
	8.3.5 Design for Testability Methods	133
	8.3.6 System Analysis and Optimization Methods	137
8.4	Conclusion	141
0.1	Acknowledgments	142
	Bibliography	142
	Diolography	142
9	Assessing and Maturing Technology Readiness Levels	145
,	Ryan M. Mackey	145
	Overview	145
9.1	Introduction	145
9.2	Motivating Maturity Assessment	146
9.3	Review of Technology Readiness Levels	147
9.4	Special Needs of SHM	149
9. 4 9.5	Mitigation Approaches	149
9.6	TRLs for SHM	151
9.0 9.7	A Sample Maturation Effort	155
9.7 9.8	Conclusion	154
1.0	Bibliography	150
	Dionography	157

10	Verifica	tion and Validation	159
	Lawrend	ce Z. Markosian, Martin S. Feather and David E. Brinza	
	Overvie	W	159
10.1	Introduc	ction	159
10.2	Existing	s Software V&V	160
	10.2.1	Avionics V&V	160
	10.2.2	NASA Requirements, Policies, Standards, and Procedures Relevant	
		to Software	162
	10.2.3	V&V for Spacecraft Fault Protection	163
	10.2.4	Example of Industry V&V Current Practice: Space Shuttle Main Engine	
		Controller	164
10.3		ity and Sufficiency of Existing Software V&V Practices for SHM	165
	10.3.1	Feasibility	165
	10.3.2	Sufficiency	166
10.4		nities for Emerging V&V Techniques Suited to SHM	167
	10.4.1	SHM Architecture	168
	10.4.2	Models Used in SHM	168
	10.4.3	8 2	169
10.5	10.4.4	SHM of Software Systems	169
10.5		onsiderations for SHM Sensors and Avionics	170
	10.5.1	Flight Hardware V&V	170
10.6	10.5.2	Sensor Data V&V	170
10.6	10.6.1	lanning for a Specific SHM Application	171
		Application Description	173
	10.6.2 10.6.3	Data-Driven Anomaly Detection Using IMS	173 177
	10.6.3 10.6.4	Model-Based Fault Diagnosis Using TEAMS	177
10.7		Rule-Driven Failure Recovery Using SHINE ms Engineering Perspective on V&V of SHM	178
10.7	Conclus		180
10.0		ledgments	181
	Bibliog	6	181
	Dioliogi	upiy	101
11	Certifvi	ing Vehicle Health Monitoring Systems	185
	-	Kessler, Thomas Brotherton and Grant A. Gordon	
	Overvie	W	185
11.1	Introduc		185
11.2		ity for VHM Systems	186
11.3		ical Design for Structural Health Monitoring Systems	189
11.4		ity and Longevity of VHM Systems	190
11.5		e and Hardware Certification	190
11.6	Airwort	hiness Certification	191
11.7	Health a	and Usage Monitoring System Certification Example	191
11.8	Conclus		194
	Acknow	ledgments	194
	Bibliog	raphy	194

Part Three ANALYTICAL METHODS

Ann Patterson-Hine

12	Physics of Failure	199
	Kumar V. Jata and Triplicane A. Parthasarathy	
	Overview	199
12.1	Introduction	200
12.2	Physics of Failure of Metals	201
	12.2.1 High-Level Classification	201
	12.2.2 Second-Level Classification	203
12.3	Physics of Failure of CMCs	212
	12.3.1 Fracture	214
	12.3.2 Material Loss	215
12.4	Conclusion	216
	Bibliography	216
13	Failure Assessment	219
	Robyn Lutz and Allen Nikora	
	Overview	219
13.1	Introduction	219
13.2	FMEA	220
13.3	SFMEA	221
13.4	FTA	222
13.5	SFTA	222
13.6	BDSA	223 225
13.7	5 5	
13.8		
13.9	Tools and Automation	228
	Future Directions	229
15.11	Conclusion	229
	Acknowledgments Bibliography	230 230
	ыоподгарну	230
14	Reliability	233
	William Q. Meeker and Luis A. Escobar	
	Overview	233
14.1	Time-to-Failure Model Concepts and Two Useful Distributions	233
	14.1.1 Other Quantities of Interest in Reliability Analysis	234
	14.1.2 Important Probability Distributions	234
14.2	Introduction to System Reliability	236
	14.2.1 System Reliability Concepts	236
	14.2.2 Metrics for System Reliability	236
	14.2.3 Time Dependency of System Reliability	237
	14.2.4 Systems with Simple Structures	237
	14.2.5 Importance of Part Count in Product Design	238
14.3	Analysis of Censored Life Data	239
	14.3.1 Analysis of Multiply Right-Censored Data	239
	14.3.2 Probability Plotting	239
	14.3.3 Maximum Likelihood Estimation	241
	14.3.4 Extensions to Data with Other Types of Censoring and Truncation	243

14.4	Accelerated Life Testing	243
14.5	Analysis of Degradation Data	244
	14.5.1 A Simple Method of Degradation Data Analysis	245
	14.5.2 Comments on the Approximate Degradation Analysis	245
14.6	Analysis of Recurrence Data	246
	14.6.1 Mean Cumulative Function and Recurrence Rate	247
	14.6.2 Non-parametric Estimation of the MCF	248
14.7	Software for Statistical Analysis of Reliability Data	249
	Acknowledgments	250
	Bibliography	250
15	Probabilistic Risk Assessment	253
	William E. Vesely	
	Overview	253
15.1	Introduction	253
15.2	The Space Shuttle PRA	254
15.3	Assessing Cumulative Risks to Assist Project Risk Management	254
15.4	Quantification of Software Reliability	257
15.5	Description of the Techniques Used in the Space Shuttle PRA	260
	15.5.1 The IE-MLD	261
	15.5.2 The Mission Event Tree	261
	15.5.3 Fault Trees	261
	15.5.4 Linking the Fault Trees to the Event Trees	263
15.6	Conclusion	263
	Bibliography	263
16	Diagnosis	265
	Ann Patterson-Hine, Gordon B. Aaseng, Gautam Biswas, Sriram Narashimhan	
	and Krishna Pattipati	
	Overview	265
16.1	Introduction	266
16.2	General Diagnosis Problem	267
16.3	Failure Effect Propagation and Impact	267
16.4	Testability Analysis	268
16.5	Diagnosis Techniques	268
	16.5.1 Rule-Based Expert Systems	268
	16.5.2 Case-Based Reasoning Systems	269
	16.5.3 Learning System	270
	16.5.4 Model-Based Reasoning	273
16.6	Automation Considerations for Diagnostic Systems	276
16.7	Conclusion	277
	Acknowledgments	277
	Bibliography	277
17	Prognostics	281
	Michael J. Roemer, Carl S. Byington, Gregory J. Kacprzynski, George	
	Vachtsevanos and Kai Goebel	
	Overview	281
17.1	Background	282

17.2	Prognostic Algorithm Appr	oaches	282
	17.2.1 Statistical Reliable	lity and Usage-Based Approaches	283
	17.2.2 Trend-Based Evol	utionary Approaches	284
	17.2.3 Data-Driven App	roaches	284
	17.2.4 Particle Filtering		285
	17.2.5 Physics-Based Me	odeling Approaches	286
17.3	Prognosis RUL Probability	Density Function	287
17.4	Adaptive Prognosis		287
17.5	Performance Metrics		289
	17.5.1 Accuracy		289
	17.5.2 Precision		290
	17.5.3 Convergence		291
17.6	Distributed Prognosis Syste	m Architecture	292
17.7	Conclusion		292
	Bibliography		293

Part Four OPERATIONS

Karl M. Reichard

18	Quality Assurance Brian K. Hughitt	299
	Overview	299
18.1	NASA QA Policy Requirements	300
18.2	Quality System Criteria	302
18.3	Quality Clauses	303
18.4	Workmanship Standards	304
18.5	Government Contract Quality Assurance	304
18.6	Government Mandatory Inspection Points	305
18.7	Quality System Audit	306
18.8	Conclusion	307
	Bibliography	308
19	Maintainability: Theory and Practice	309
	Gary O'Neill	
	Overview	309
19.1	Definitions of Reliability and Maintainability	310
19.2	Reliability and Maintainability Engineering	311
19.3	The Practice of Maintainability	314
19.4	Improving R&M Measures	315
19.5	Conclusion	316
	Bibliography	317
20	Human Factors	319
	Robert S. McCann and Lilly Spirkovska	
	Overview	319
20.1	Background	320
20.2	Fault Management on Next-Generation Spacecraft	323
20.3	Integrated Fault Management Automation Today	325

20.4	Human–Automation Teaming for Real-Time FM	328
	20.4.1 Human–Machine Functional Allocation	328
	20.4.2 Ensuring Crew Visibility in Automated Activities	328
	20.4.3 Providing Crew Insight on System Summary Displays	329
20.5	Operations Concepts for Crew-Automation Teaming	330
20.6	Empirical Testing and Evaluation	333
20.7	Future Steps	334
20.8	Conclusion	336
	Bibliography	336
21	Launch Operations	339
	Robert D. Waterman, Patricia E. Nicoli, Alan J. Zide, Susan J. Waterman,	
	Jose M. Perotti, Robert A. Ferrell and Barbara L. Brown	
	Overview	339
21.1	Introduction to Launch Site Operations	339
21.2	Human-Centered Health Management	340
	21.2.1 Space Shuttle Turnaround Operations	340
	21.2.2 International Space Station (ISS) Element Integrated Testing	342
	21.2.3 Launch Pad Operations	344
	21.2.4 Launch Countdown	344
	21.2.5 Expendable Launch Vehicle Processing	345
21.3	SHM	346
	21.3.1 Sensing	346
	21.3.2 Integrated Data Environment	346
	21.3.3 Configuration Data Automation	347
21.4	LS Abort and Emergency Egress	347
21.5	Future Trends Post Space Shuttle	348
21.6	Conclusion	349
	Bibliography	349
22	Fault Management Techniques in Human Spaceflight Operations Brian O'Hagan and Alan Crocker	351
	Overview	351
22.1	The Flight Operations Team	352
22.2	System Architecture Implications	353
22.3	Operations Products, Processes and Techniques	358
22.4	Lessons Learned from Space Shuttle and ISS Experience	364
22.5	Conclusion	366
	Bibliography	367
23	Military Logistics	369
	Eddie C. Crow and Karl M. Reichard	
	Overview	369
23.1	Focused Logistics	371
23.2	USMC AL	373
23.3	Benefits and Impact of SHM on Military Operations and Logistics	378
23.4	Demonstrating the Value of SHM in Military Operations and Logistics	381
23.5	Conclusion	385
	Bibliography	386

Part I	Five SU	JBSYSTEM HEALTH MANAGEMENT	
	Ph	ilip A. Scandura, Jr.	
24	Aircraft	Propulsion Health Management	389
	Al Volpo	ni and Bruce Wood	
	Overview	W	389
24.1	Introduc	tion	389
24.2	Basic Pr	-	390
	24.2.1	Module Performance Analysis	390
	24.2.2	Engine Health Tracking	391
24.3	-	Hosted Health Management	393
	24.3.1	Sensors	393
	24.3.2	Engine Gas Path	394
24.4	-	g Conditions	394
	24.4.1	Actuation	394
	24.4.2		394
	24.4.3		394
	24.4.4		395
		Turbo-machinery	395
	24.4.6		395
	24.4.7	Future	395
24.5	Computi	-	395
24.6	Software		396
		FADEC Codes	396
		Anomaly Detection	396
	24.6.3	Information Fusion	397
	24.6.4	Fault Isolation	397
24.7		d Models	398
24.8	-	ent Life Usage Estimation	398
	24.8.1	Traditional Component Lifing Methods	398
	24.8.2	Advanced Component Life Usage Tracking	398
24.9		of an Engine Health Management System	399
	24.9.1	Safety	399
	24.9.2	Lifecycle Cost	399
		ng a Layered Approach	401
24.11	Conclusi		401
	Bibliogr	aphy	402
25	Intellige	ent Sensors for Health Management	405
		Hunter, Lawrence G. Oberle, George Y. Baaklini, Jose M. Perotti	
	and Tode		
	Overview	-	405
25.1	Introduc		406
25.2		Fechnology Approaches	407
	25.2.1	Ease of Application	408
	25.2.2	Reliability	408
	25.2.3	Redundancy and Cross-correlation	408
	25.2.4	Orthogonality	408

25.3	Sensor System Development	409
	25.3.1 Smart Sensors	409
	25.3.2 "Lick and Stick" Leak Sensor Technology	411
25.4	Supporting Technologies: High-Temperature Applications Example	412
25.5	Test Instrumentation and Non-destructive Evaluation (NDE)	413
25.6	Transition of Sensor Systems to Flight	414
	25.6.1 Performance Considerations	414
	25.6.2 Physical Considerations	414
	25.6.3 Environmental Considerations	414
	25.6.4 Safety and Reliability Considerations	415
25.7	Supporting a Layered Approach	415
25.8	Conclusion	416
	Acknowledgments	417
	Bibliography	417
26	Structural Health Monitoring	419
	Fu-Kuo Chang, Johannes F.C. Markmiller, Jinkyu Yang and Yujun Kim	
	Overview	419
26.1	Introduction	419
26.2	Proposed Framework	421
	26.2.1 Impact Monitoring	421
	26.2.2 Detection of Bolt Loosening in the TPS	422
26.2	26.2.3 Design of Built-In Structural Health Monitoring System	425
26.3	Supporting a Layered Approach	427
26.4	Conclusion	427
	Acknowledgments	427
	Bibliography	427
27	Electrical Power Health Management	429
	Robert M. Button and Amy Chicatelli	
	Overview	429
27.1	Introduction	429
27.2	Summary of Major EPS Components and their Failure Modes	431
	27.2.1 Solar Arrays	431
	27.2.2 Fuel Cells	431
	27.2.3 Batteries	433
	27.2.4 Flywheel Energy Storage	434
	27.2.5 PMAD	436
27.3	Review of Current Power System HM	437
	27.3.1 Hubble Space Telescope (HST)	438
	27.3.2 International Space Station (ISS)	439
	27.3.3 Space Shuttle	440
27.4	27.3.4 Aeronautics	440
27.4	Future Power SHM	440
27.5	27.4.1 Design Considerations Supporting a Layered Approach	441
27.5 27.6	Conclusion	441 442
27.6	Bibliography	442 442
	Biolography	442

28	Avionics Health Management Michael D. Watson, Kosta Varnavas, Clint Patrick, Ron Hodge, Carl S. Byington, Savio Chau and Edmund C. Baroth	445
	Overview	445
28.1	Avionics Description	445
2011	28.1.1 Avionics Components	446
	28.1.2 Avionics Architectures	447
	28.1.3 Avionics Technology	448
28.2	Electrical, Electronic and Electromechanical (EEE) Parts Qualification	448
	28.2.1 Commercial Grade	449
	28.2.2 Industrial Grade	449
	28.2.3 Military Grade	449
	28.2.4 Space Grade	450
28.3	Environments	450
	28.3.1 Environmental Parameters	450
28.4	Failure Sources	453
	28.4.1 Design Faults	453
	28.4.2 Material Defects	453
	28.4.3 Fabrication Faults	453
28.5	Current Avionics Health Management Techniques	453
	28.5.1 Scan Design/Built-In Self-test (BIST)	454
	28.5.2 Error Detection and Correction (EDAC)	455
	28.5.3 Boundary Scan	455
	28.5.4 Voting	457
	28.5.5 Idle Data Pattern Diagnosis	457
	28.5.6 Input Protection	457
	28.5.7 Module Test and Maintenance (MTM) Bus	458
	28.5.8 Intelligent Sensors and Actuators	459
	28.5.9 Avionics Systems	460
28.6	Avionics Health Management Requirements	460
	28.6.1 Prognostic Health Management and Recovery	461
	28.6.2 Anomaly and Failure Detection	461
	28.6.3 Recovery	462
28.7	Supporting a Layered Approach	464
28.8	Conclusion	464
	Bibliography	464
29	Failure-Tolerant Architectures for Health Management Daniel P. Siewiorek and Priya Narasimhan	467
	Overview	467
29.1	Introduction	467
29.2	System Failure Response Stages	468
29.3	System-Level Approaches to Reliability	469
29.4	Failure-Tolerant Software Architectures for Space Missions	470
	29.4.1 Generic Spacecraft	471
	29.4.2 Defense Meteorological Satellite Program (DMSP)	471
	29.4.3 Mars Pathfinder	473
29.5	Failure-Tolerant Software Architectures for Commercial Aviation Systems	475
	29.5.1 Generic Aviation System	475

	29.5.2 Airbus A330/A340/A380	476
	29.5.3 Boeing 777	476
29.6	Observations and Trends	477
	29.6.1 Commercial Off-the-Shelf Components	477
	29.6.2 "By-Wire" Software Control and Autonomy	477
	29.6.3 Escalating Fault Sources and Evolving Redundancy	478
	29.6.4 Domain-Specific Observations	480
29.7	Supporting a Layered Approach	480
29.8	Conclusion	480
	Acknowledgments	481
	Bibliography	481
30	Flight Control Health Management	483
	Douglas J. Zimpfer	
	Overview	483
30.1	A FC Perspective on System Health Management	483
	30.1.1 Commercial Passenger Aircraft	484
	30.1.2 Unmanned Aerial Vehicle	484
	30.1.3 Spacecraft	484
	30.1.4 Reusable Space Exploration Vehicle	484
30.2	Elements of the FC System	485
30.3	FC Sensor and Actuator HM	485
	30.3.1 Sensor HM	487
	30.3.2 Actuator HM	489
30.4	FC/Flight Dynamics HM	490
	30.4.1 Navigation HM	492
	30.4.2 Guidance HM	492
	30.4.3 Control HM	493
30.5	FC HM Benefits	493
30.6	Supporting a Layered Approach	493
30.7	Conclusion	493
	Bibliography	494
31	Life Support Health Management	497
	David Kortenkamp, Gautam Biswas and Eric-Jan Manders	
	Overview	497
31.1	Introduction	497
	31.1.1 Life Support Systems	499
31.2	Modeling	501
	31.2.1 Physics-Based Modeling	501
	31.2.2 Resource-Based Modeling	503
31.3	System Architecture	504
	31.3.1 Behavior Monitors and Diagnoser	504
	31.3.2 Failure-Adaptive Controller	506
	31.3.3 Supervisory Controller	507
	31.3.4 Resource Monitors	509
	31.3.5 Planner and Scheduler	509
31.4	Future NASA Life Support Applications	509
	31.4.1 Crew Exploration Vehicle	509

	31.4.2 Lunar Habitats	509
	31.4.3 Martian Habitats	510
31.5	Supporting a Layered Approach	510
31.6	Conclusion	510
	Bibliography	510
32	Software	513
	Philip A. Scandura, Jr.	
	Overview	513
32.1	Sampling of Accidents Attributed to Software Failures	513
32.2	Current Practice	514
	32.2.1 Multi-Version Software	515
	32.2.2 Recovery Block	515
	32.2.3 Exception Handling	516
	32.2.4 Data Capture Methods	517
32.3	Challenges	517
32.4	Supporting a Layered Approach	518
32.5	Conclusion	518
	Bibliography	518

Part Six SYSTEM APPLICATIONS

Thomas J. Gormley

33	Launch Vehicle Health Management	523
	Edward N. Brown, Anthony R. Kelley and Thomas J. Gormley	
	Overview	523
33.1	Introduction	523
33.2	LVSHM Functionality and Scope	524
33.3	LV Terminology and Operations	526
33.4	LV Reliability Lessons Learned	527
33.5	LV Segment Requirements and Architecture	528
33.6	LVSHM Analysis and Design	529
	33.6.1 LVSHM Analysis Process Overview	529
	33.6.2 On-Vehicle LVSHM Design	531
	33.6.3 On-Ground LVSHM Design	533
33.7	LV LVSHM System Descriptions	534
	33.7.1 Evolved Expendable Launch Vehicle LVSHM	535
	33.7.2 NASA Space Transportation System LVSHM	535
	33.7.3 Advanced Reusable Launch Vehicle LVSHM Test Programs	536
33.8	LVSHM Future System Requirements	537
	33.8.1 RLVs and Operationally Responsive Spacelift	537
	33.8.2 Human-Rated Launch Vehicles	538
	33.8.3 Allocation of LVSHM Functionality	539
	33.8.4 Redundancy, Fault Tolerance, and Human Rating	540
33.9	Conclusion	540
	Bibliography	541

34	Robotic Spacecraft Health Management <i>Paula S. Morgan</i>	543
	Overview	543
34.1	Introduction	544
34.2	Spacecraft Health and Integrity Concerns for Deep-Space Missions	544
34.3	Spacecraft SHM Implementation Approaches	546
34.4	Standard FP Implementation	546
34.5	Robotic Spacecraft SHM Allocations	547
34.6	Spacecraft SHM Ground Rules and Requirements	548
34.7	SFP and SIFP Architectures	550
	34.7.1 FP Monitor Structure 34.7.2 Example of Standard FP Application: Command Loss	550
	I J II	551 551
34.8	34.7.3 Example of Standard FP Application: Under-voltage Trip Conclusion	554
34.0	Bibliography	554
35	Tactical Missile Health Management	555
	Abdul J. Kudiya and Stephen A. Marotta	
	Overview	555
35.1	Introduction	555
35.2	Stockpile Surveillance Findings	556
35.3	Probabilistic Prognostics Modeling	557
	35.3.1 Stress and Strength Interference Method	559
	35.3.2 Cumulative Damage Function Method	559
	35.3.3 Weibull Service Life Prediction Method	562
35.4	Conclusion	563
	Bibliography	564
36	Strategic Missile Health Management Gregory A. Ruderman	565
	Overview	565
36.1	Introduction	565
36.2	Fundamentals of Solid Rocket Motors	566
36.3	Motor Components	567
	36.3.1 Cases	567
	36.3.2 Propellant–Liner–Insulator System	567
36.4	Challenges for Strategic Rocket Health Management	568
	36.4.1 Material Property Variation	568
	36.4.2 Material Aging	569
	36.4.3 Defects	569
36.5	State of the Art for Solid Rocket System Health Management (SHM)	570
	36.5.1 State of the Art for Deployed SHM Systems	570
	36.5.2 State of the Art in Laboratory SHM Demonstrations	571
36.6	Current Challenges Facing SRM SHM	572
	36.6.1 SRM SHM Data Acquisition, Storage and Analysis	572
	36.6.2 System Longevity and Reliability	573
	36.6.3 Lack of Service Life Sensors	573
	36.6.4 Business Case	574

36.7	Conclusion Bibliography	574 574
37	Rotorcraft Health Management	577
	Paula J. Dempsey and James J. Zakrajsek	
27.1	Overview	577
37.1	Introduction	577 579
37.2 37.3	Rotorcraft System Health Management Standard Practices New Practices	579
37.3 37.4	Lessons Learned	583
37.4	Future Challenges	584
37.6	Conclusion	585
57.0	Bibliography	585
38	Commercial Aviation Health Management	589
	Philip A. Scandura, Jr., Michael Christensen, Daniel Lutz and Gary Bird	
	Overview	589
38.1	Commercial Aviation Challenge	590
38.2	Layered Approach to SHM	590
38.3	Evolution of Commercial Aviation SHM	591
	38.3.1 First-Generation Systems	591
	38.3.2 Second-Generation Systems	591
	38.3.3 Third-Generation Systems	592
	38.3.4 Fourth-Generation Systems	592
38.4	Commercial State of the Art	593
	38.4.1 Primus Epic CMC	593
	38.4.2 Boeing 787 Crew Information System/Maintenance System	597
38.5	The Next Generation: Intelligent Vehicles/Sense and Respond	600
	38.5.1 Enabling the Shift to Sense and Respond Network-centric Operations	601
	38.5.2 Barriers to Adoption	602
	38.5.3 Next Steps	602
38.6	Conclusion	603
	Bibliography	603
Gloss	ary	605
Acror	nyms	607
Index		617

About the Editors

Stephen B. Johnson has been active in the field of system health management since the mid-1980s. His experience includes the development of fault protection algorithms for deep-space probes, research into SHM processes within systems engineering, the development of SHM theory, the psychological, communicative, and social aspects of system failure, and the application of directed graph methods for assessment of testability, failure effect propagation timing, and diagnostic systems. He is the author of *The Secret of Apollo: Systems Management in American and European Space Programs* (2002) and *The United States Air Force and the Culture of Innovation 1945–1965* (2002), the general editor of *Space Exploration and Humanity: A Historical Encyclopedia* (2010), and has written many articles on SHM and space history. He has a BA in Physics from Whitman College and PhD in the History of Science and Technology from the University of Minnesota. He currently is an associate research professor at the University of Colorado at Colorado Springs, and a health management systems engineer at NASA Marshall Space Flight Center.

Thomas J. Gormley has been involved in the aerospace industry for 24 years and brings a systems engineering and implementation perspective to this SHM textbook. He was the Integrated Vehicle Health Management Project leader for Rockwell Space Systems during the early 1990s and was the developer of the Propulsion Checkout and Control System that was successfully demonstrated on the next generation reusable launch system testbed. Mr. Gormley transferred to Lockheed-Martin Telecommunication Systems where he focused his efforts on fault protection systems for commercial telecommunications. In 2000 he formed Gormley & Associates and has been a consultant for NASA on several SHM projects. He is presently supporting NASA's Constellation Program Information Systems Office and is applying his systems engineering and health management expertise to NASA's Space Exploration Program. Mr. Gormley has published several technical papers on SHM and is a member of the American Institute of Aeronautics and Astronautics.

Seth S. Kessler is the president and CEO of the Metis Design Corporation, a small consulting firm that has specialized in structural health monitoring technologies for a decade. He has experience from managing more than three-dozen government-funded BAA, SBIR, and STTR contracts. His research interests have included distributed sensor network architectures, analytical modeling of guided waves, diagnostic algorithms for composite materials, and carbon nanotube (CNT) based multifunctional structures. In 1998 he received his SB in aerospace engineering at the Massachusetts Institute of Technology (MIT) studying the effects of a cryogenic environment on composite materials. In 1999, he received his SM from that same department, creating and experimentally validating a design tool to analyze composite structures subjected to extreme inertial loading. Dr. Kessler completed his PhD from MIT in 2002, researching structural health monitoring piezoelectric-based techniques for damage detection in composite laminates as part of the DARPA-funded, Boeing-led Accelerated Insertion of Materials Program. Dr. Kessler was a Draper Fellow working on the DARPA seedling WASP Program, and at the Lockheed Martin Skunk Works was an advanced concepts engineer on the X33/VentureStar

Program. In 1998, he received the Admiral Luis De Florez Award for Ingenuity and Creativity in Design, in 2001 was awarded the American Society for Composites PhD Research Scholarship, and was awarded Best Paper by ASC in 2002 and the PHM Society in 2009. Dr. Kessler has more than three-dozen technical publications and holds 10 patents in his areas of expertise.

Charles D. Mott brings expertise in the social and economic aspects of large-scale technological projects. He has experience in business process improvement, systems analysis and design, financial system design and implementation, and organizational management. He has worked at Bank One, Patriot Management Corporation, Don Breazeale and Associates, Dow Chemical, and NASA. He has a bachelor's degree in management information systems from Michigan Technological University and a masters in space studies from the University of North Dakota. He is a member of the Prognostics and Health Management Society.

Ann Patterson-Hine, PE, has worked at NASA Ames Research Center since 1988. She is the branch chief for Discovery and Systems Health in the Intelligent Systems Division. She has been the project leader for advanced technology demonstrations under the Next Generation Launch Technology Program and many of the program's predecessors including the Reusable Launch Vehicle and Space Launch Initiative Programs. She participated on the Shuttle Independent Assessment Team and Wire Integrity Pilot Study at Ames. She was Principal Investigator for NASA's Exploration Technology Development Program's Integrated Systems Health Management project. Her research has focused on the use of engineering models for model-based reasoning in advanced monitoring and diagnostic systems. She received a BS degree in mechanical engineering from The University of Alabama and a doctorate in mechanical engineering from The University of Texas at Austin, and is a member of the American Institute of Aeronautics and Astronautics and a senior member of the IEEE.

Karl M. Reichard is the a research associate at the Pennsylvania State University Applied Research Laboratory and assistant professor of acoustics. He is the head of the Applied Research Laboratory's Embedded Hardware/Software Systems and Applications Department and teaches and advises graduate students in The Pennsylvania State University Graduate Program in Acoustics and the Department of Electrical Engineering. He has over 25 years of experience in the design and implementation of signal processing, control, and embedded diagnostics/prognostics systems. He has developed unattended remote sensing, active control, and health monitoring systems for land- and sea-based platforms. He earned BS, MS, and PhD degrees in electrical engineering from Virginia Tech.

Philip A. Scandura, Jr. has over 25 years of experience in the system definition and implementation of real-time embedded systems, for use in safety-critical and mission-critical applications. Mr. Scandura joined Honeywell in 1984 where he is currently employed as a staff scientist in its Advanced Technology Organization. During his tenure at Honeywell, he has specified, designed, and tested avionics systems for use in commercial, regional, business, and commuter aircraft, as well as human-rated space vehicles. He served as system architect, contributing to the development of several integrated modular avionics (IMA) and integrated vehicle health management (IVHM) systems, including those used on the Boeing 777 aircraft family. Mr. Scandura served for eight years as a certified FAA Designated Engineering Representative (DER), specializing in the certification of critical systems and equipment for aircraft. He is the author of Chapter 22, "Vehicle Health Management Systems," in *The Avionics Handbook, Second Edition*, edited by Cary R. Spitzer (CRC Press, 2006), and has written many papers on vehicle health management concepts. Mr. Scandura holds a BS degree in electrical engineering from the University of Missouri–Rolla and a MBA in technical management from the University of Phoenix.

List of Contributors

Gordon B. Aaseng, NASA Ames Research Center, USA George Y. Baaklini, NASA Glenn Research Center, USA Edmund C. Baroth, NASA Jet Propulsion Laboratory, California Institute of Technology, USA Gary Bird, Microsoft Corporation, USA Gautam Biswas, Vanderbilt University, USA David E. Brinza, NASA Jet Propulsion Laboratory, California Institute of Technology, USA Thomas Brotherton, Brotherton & Associates, USA Barbara L. Brown, NASA Ames Research Center, USA Edward N. Brown, The Boeing Company, USA Robert M. Button, NASA Glenn Research Center, USA Carl S. Byington, Impact Technologies, USA Fu-Kuo Chang, Stanford University, USA Savio Chau, NASA Jet Propulsion Laboratory, California Institute of Technology, USA Amy Chicatelli, Qinetiq North America at NASA Glenn Research Center, USA Michael Christensen, Honeywell International, USA Alan Crocker, NASA Johnson Space Center, USA Eddie C. Crow, Pennsylvania State University, Applied Research Laboratory, USA Ryan W. Deal, NASA Marshall Space Flight Center and Miltec, a Ducommen Company, USA Paula J. Dempsey, NASA Glenn Research Center, USA Luis A. Escobar, Louisiana State University, USA Martin S. Feather, NASA Jet Propulsion Laboratory, California Institute of Technology, USA Robert A. Ferrell, NASA Kennedy Space Center, USA Kai Goebel, NASA Ames Research Center, USA Grant A. Gordon, Honeywell International, USA Thomas J. Gormley, Gormley & Associates, USA Ron Hodge, NASA Marshall Space Flight Center, USA Todd Hong, NASA Johnson Space Center, USA Brian K. Hughitt, NASA Headquarters, USA Gary W. Hunter, NASA Glenn Research Center, USA Kumar V. Jata, Air Force Research Laboratory, USA Stephen B. Johnson, NASA Marshall Space Flight Center and University of Colorado at Colorado Springs, USA Gregory J. Kacprzynski, Impact Technologies, USA Kirby Keller, Boeing Research & Technology, USA Anthony R. Kelley, NASA Marshall Space Flight Center, USA Seth S. Kessler, Metis Design Corporation, USA Yujun Kim, Stanford University, USA David Kortenkamp, TRACLabs Inc., USA

Abdul J. Kudiya, United States Army Aviation and Missile Research, Development and Engineering Center, USA Daniel Lutz, Honeywell International, USA Robyn Lutz, NASA Jet Propulsion Laboratory, California Institute of Technology and Iowa State University, USA Ryan M. Mackey, NASA Jet Propulsion Laboratory, California Institute of Technology, USA Eric-Jan Manders, Vanderbilt University, USA Johannes F.C. Markmiller, McKinsey & Company, Inc., Germany Lawrence Z. Markosian, Stinger Ghaffarian Technologies at NASA Ames Research Center, USA Stephen A. Marotta, United States Army Aviation and Missile Research, Development and Engineering Center, USA Robert S. McCann, NASA Ames Research Center, USA William O. Meeker, Iowa State University, USA Paula S. Morgan, NASA Jet Propulsion Laboratory, California Institute of Technology, USA Charles D. Mott, Complete Data Management, USA Priva Narasimhan, Carnegie Mellon University, USA Sriram Narashimhan, University of California at NASA Ames Research Center, USA Patricia E. Nicoli, NASA Kennedy Space Center, USA Allen Nikora, NASA Jet Propulsion Laboratory, California Institute of Technology, USA Lawrence G. Oberle, NASA Glenn Research Center, USA Brian O'Hagan, NASA Johnson Space Center, USA Gary O'Neill, Georgia Tech Research Institute, USA Triplicane A. Parthasarathy, UES, Inc., USA Clint Patrick, US Army Integrated Air and Missile Defense, USA Ann Patterson-Hine, NASA Ames Research Center, USA Krishna Pattipati, University of Connecticut, USA Jose M. Perotti, NASA Kennedy Space Center, USA James Poblete, Boeing Research & Technology, USA Karl M. Reichard, Pennsylvania State University, Applied Research Laboratory, USA Michael J. Roemer, Impact Technologies, USA Edward W. Rogers, NASA Goddard Space Flight Center, USA Gregory A. Ruderman, Air Force Research Laboratory, Edwards Air Force Base, USA Beverly A. Sauer, BAS Consultants Inc., and NASA Goddard Space Flight Center, USA Philip A. Scandura, Jr., Honeywell International, USA Daniel P. Siewiorek, Carnegie Mellon University, USA Lilly Spirkovska, NASA Ames Research Center, USA Irem Y. Tumer, School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, USA George Vachtsevanos, Impact Technologies, USA Kosta Varnavas, NASA Marshall Space Flight Center, USA William E. Vesely, NASA Headquarters, USA Al Volponi, Pratt & Whitney, USA

- Robert D. Waterman, NASA Kennedy Space Center, USA
- Susan J. Waterman, NASA Kennedy Space Center, USA
- Michael D. Watson, NASA Marshall Space Flight Center, USA
- Andrew Wiedlea, Los Alamos National Laboratory, USA
- Timothy J. Wilmering, Boeing Research & Technology, USA

Bruce Wood, Pratt & Whitney, USA Jinkyu Yang, California Institute of Technology, USA James J. Zakrajsek, NASA Glenn Research Center, USA Alan J. Zide, NASA Kennedy Space Center, USA Douglas J. Zimpfer, Charles Stark Draper Laboratory, USA