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This book is dedicated to the memory of Cole W. Litton who was

the driving force behind it and the lead editor. Cole passed

away before its completion.





In Memoriam: Cole Litton

Cole W. Litton, the editor and compiler of Zinc Oxide Materials for Electronic and

Optoelectronic Device Applications, died of a heart attack on Tuesday, January 26, 2010,

while attending the SPIE Photonics West Conference in San Francisco.

Cole was a native of Memphis, Tennessee, born in 1930, and he attended the

University of Tennessee graduating with a bachelor’s degree. He served for four years

as an officer in the US Air Force and then joined the Air Force Research Laboratory as a

civilian scientist at Wright Patterson Air Force Base in Dayton, Ohio. There he worked

on the solid-state physics team of Don Reynolds, Tom Collins, and later David Look,

and was the principal designer of what became the world’s highest resolution optical

spectrometer. He spent 50 years with the Air Force during which time he studied at

several other universities in the United States and Europe. Litton was acknowledged as

a world leader in research in solid-state and semiconductor physics and crystal growth,

particularly in the optical, electrical, and structural properties of compound semicon-

ductor materials and devices. In 1971 Cole was elected a fellow of the American



Physical Society. He has been a long-time devoted member of SPIE, where he was a

founder and current co-chair of the Gallium Nitride Materials and Devices Conference and

also the Oxide-Based Materials and Devices Conference, two of the most successful

conferences at Photonics West since their inception. In memory of Litton, the Gallium

Nitride Materials and Devices Conference will now bear his name, recognizing his many

contributions not only to SPIE but to advancing optics- and photonics-based research

as well.

Cole Litton retired in 2006 as Senior Scientist from the Air Force Research

Laboratory, but he continued to enjoy an active role in scientific workshops and

symposia. At the time of his death, he had authored or co-authored about 200

scientific/technical research papers published in physics and engineering journals. He

was committed to discovery and was passionate about the future of science and

technology. Cole died fully engaged in the activity he most enjoyed: participating in

scientific meetings. He was a unique individual with a great love of life, and he will be

remembered by all who knew him.

David F. Bliss

US Air Force Laboratory

Hanscom Research Site

MA, USA
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Series Preface

WILEY SERIES IN MATERIALS FOR ELECTRONIC
AND OPTOELECTRONIC APPLICATIONS

This book series is devoted to the rapidly developing class of materials used for electronic

and optoelectronic applications. It is designed to provide much-needed information on the

fundamental scientific principles of these materials, together with how these are employed

in technological applications. The books are aimed at (postgraduate) students, researchers

and technologists, engaged in research, development and the study of materials in

electronics and photonics, and industrial scientists developing new materials, devices

and circuits for the electronic, optoelectronic and communications industries.

The development of new electronic and optoelectronic materials depends not only on

materials engineering at a practical level, but also on a clear understanding of the

properties of materials, and the fundamental science behind these properties. It is the

properties of a material that eventually determine its usefulness in an application. The

series therefore also includes such titles as electrical conduction in solids, optical

properties, thermal properties, and so on, all with applications and examples of materials

in electronics and optoelectronics. The characterization of materials is also covered within

the series in as much as it is impossible to develop new materials without the proper

characterization of their structure and properties. Structure–property relationships have

always been fundamentally and intrinsically important to materials science and

engineering.

Materials science is well known for being one of the most interdisciplinary sciences. It

is the interdisciplinary aspect of materials science that has led to many exciting

discoveries, new materials and new applications. It is not unusual to find scientists with

a chemical engineering background working on materials projects with applications in

electronics. In selecting titles for the series, we have tried to maintain the interdisciplinary

aspect of the field, and hence its excitement to researchers in this field.

Peter Capper

Safa Kasap

Arthur Willoughby





Preface

Zinc oxide (ZnO) powder has been widely used as a major white paint pigment and

industrial processing chemical for nearly 150 years. Indeed, interest in this fascinating

chemical compound dates back even to antiquity. ZnO, the first man-made zinc compound,

originated many centuries ago as an impure by-product of copper smelting. The ancients

discovered and put to use some of its unusual properties, which included production of the

first brass metal, development of a purified ZnO for medical purposes, and the early

alchemists even attempted to make gold with it. Beginning in the early 1900s, white,

polycrystalline ZnO powder found extensive application in medical technology, in

particular the cosmetics and pharmaceutical industries, where it is today used in facial

and body powders, sun screen preparation, antibiotic lotions and salves and in dental

technology for dental cements.

A modern rediscovery of ZnO and its potential applications began in the mid 1950s.

At that time, science and industry alike, mostly in the US and Europe, began to realize that

ZnO had many interesting novel properties that were worthy of further investigation and

exploration. These novel properties included its semiconductor, piezoelectric, lumines-

cent, ultraviolet (UV) absorption, catalytic, ferrite, photoconductive and photochemical

properties. Although study of the photoluminescence and electroluminescence properties

of ZnO began as early as the mid 1930s, extensive investigation of its semiconductor

properties did not begin until the mid to late 1950s, once good single crystals became

available, either from natural sources, or grown synthetically by vapor transport and

various other techniques, for study of the optical, electrical and structural properties of

semiconducting ZnO. These early ZnO single crystals, mostly needles, platelets and

prisms, were, however, small and limited in size to a few millimeters. ZnO single crystals

typically crystallize in the wurtzitic, hexagonal modification, are visibly transparent and

have a wide, direct band gap in the near UVat 3.437 eV (at 2K). During this same period,

the late 1950s to early 1960s, it was also recognized that ZnO had very high piezoelectric

coefficients which led to the development of ZnO-based piezoelectric transducers, such as

sensitive strain gauges and pressure sensors, a technology which continues today.

Throughout the 1960s, extensive investigations of the fundamental semiconductor prop-

erties of ZnO were made, including study of its energy band structure, band gaps, excitonic

properties, electron and hole effective masses, phonon properties and the electrical

transport properties of the intrinsic (undoped) material. At this time (the mid to late

1960s) it was also recognized that ZnO, like the other wide band gap II–VI materials,

would be difficult to dope controllably with high concentrations of shallow donor and

acceptor impurities in order to demonstrate n- and p-type conductivity and p-n junctions,

which would be necessary in order to realize the full potential of ZnO in devices, such as

UV diode emitters, detectors and transistors. At that time, modern epitaxial growth and

doping techniques, such as molecular beam epitaxy (MBE) and metal organic chemical



vapor deposition (MOCVD), had not yet been developed, and p-type doping of both

epitaxial films and bulk substrates did not exist; moreover, lack of large, bulk single

crystals of ZnO also hampered progress in the development of ZnO-based electronic and

optoelectronic devices. Nevertheless, much progress has been made over the past four

decades (1970 to present) on the development of ZnO-based transducers, varistors, white-

light-emitting cathodoluminescent phosphors (in conjunction with ZnS), optically trans-

parent electrically conducting films, optically pumped lasing, MSM-type UV detectors,

based on both ZnO (near UV) and MgZnO/ZnO heterostructures (deeper UV), and surface

acoustic wave devices, none of which require the use of p-type ZnO.

Demonstration of the first InGaN/GaN-based, long-lived, room-temperature, continu-

ous wave (CW) blue light-emitting diodes (LEDs) and diode lasers in Japan in the mid

1990s, led several ZnO investigators to consider the possibility of using isomorphic, nearly

lattice-matched, c-plane bulk ZnO as a substrate for GaN device epitaxy (�2% mismatch

to GaN), since bulk GaN substrates did not exist, and it was clear that the large threading

dislocations resulting from growth of InGaN/GaN laser device structures on lattice

mismatched c-plane sapphire (�14% lattice mismatch) were degrading both the perfor-

mance and lifetimes of the blue laser diodes, particularly in CW, single mode operation.

Earlier a US nitride research group had already demonstrated that GaN device epitaxy

could be grown by MBE on small, c-plane ZnO substrates with as much as two to three

orders of magnitude reduction in threading dislocation densities within the GaN device

epitaxy, in comparison with growth on highly lattice mismatched sapphire substrates. Over

the past decade, this achievement led another group to successfully grow and market large

(40mm diameter), high-quality, single-crystal ZnO substrates by vapor transport techni-

ques specifically for this purpose and more recently still another group has also developed

large diameter, bulk ZnO substrates by the Pressure-Melt technique for this purpose. Work

is presently underway to demonstrate the MBE growth of AlGaN/GaN-based microwave

power field-effect transistor (FET) device structures, where the relatively cheap ZnO

substrate will be etched away and a high thermal conductivity substrate substituted by

wafer bonding techniques to improve heat dissipation from the device.

Over the past decade, a number of groups have proposed that ZnO might be a good

optoelectronic device material in its own right, owing to the many similarities between the

optical, electrical and structural properties of ZnO and GaN, including their band gaps

(3.437 eV for ZnO and 3.50 eV for GaN at 2K) and their lattice constants. In addition, still

others have noted that ZnO has a free exciton binding energy of 60meV, approximately

twice that of GaN, which could lead to highly efficient, ZnO- and MgZnO-based, UV

injection lasers (UV laser diodes and detectors) at room temperature, provided that

efficient p-doping and good p-n junctions and heterojunctions can be demonstrated in

these materials. p-type doping of hetero-epitaxial ZnO on sapphire has been reported by

several Japanese and US groups, using N acceptor doping and several different growth

techniques, with varying degrees of success, but a major breakthrough was achieved by a

US group recently which reported the first MBE growth of homo-epitaxial, N-doped,

p-type ZnO on high-resistivity, Li-diffused ZnO substrates. Although the temperature-

dependent Hall conductivity of these p-type layers is not yet fully understood, this

approach could lead rapidly to p-doping at higher hole mobilities and carrier concentration

and to the formation of good p-n junctions, provided that we can achieve a better

understanding of both the shallow and deep donor/acceptor compensation mechanisms

xviii Preface



in ZnO. It is important to address the questions of donor and acceptor impurity

incorporation together with the likely formation of native point defect donors and

acceptors in ZnO and their possible compensation mechanisms; and look into the question

of possible hydrogen donor incorporation in ZnO which must be better understood if rapid

progress is to be made in the p-doping of ZnO.

This book comprises some 12 chapters that are written by experts in various aspects of

ZnO materials and device technology. The topics included and discussed in these chapters

range from our latest understanding of the energy band structure and spintronics (Chapter

1) to our most recent understanding of the fundamental optical and electrical properties of

ZnO (Chapters 2 and 3). With the generation of new devices, one has to understand and

control the electronic contacts of ZnO. This is covered in Chapter 4. The latest advances in

our understanding of the formation of native point defect donors and acceptors in ZnO are

discussed and summarized in Chapter 5. The following chapter (Chapter 6) investigates

both the intrinsic and extrinsic defects that are found in ZnO. The growth of the ZnO

crystals and substrates are discussed in the next three chapters (Chapters 7, 8 and 9) along

with hybrid devices, Chapter 10 reports on some recent advances in optically pumped

lasing and room temperature stimulated emission from ZnO-based materials. Chapter 11

reviews the progress of UV photodetectors and points out the promise for unique

applications such as single-photon detection. The final chapter (Chapter 12) presents a

review of optical properties of ZnO quantum wells in which strong stimulation was

observed in ZnO/ZnMgO multiple quantum wells from 5 �C to room temperature.

Cole W. Litton

Donald C. Reynolds

Thomas C. Collins
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Fundamental Properties of ZnO

T. C. Collins and R. J. Hauenstein

Department of Physics, Oklahoma State University, Stillwater, OK, USA

1.1 Introduction

1.1.1 Overview

Wurtzitic ZnO is a wide band gap semiconductor (Eg¼ 3.437 eV at 2K) that has many

applications, including piezoelectric transducers, varistors, phosphors, and transparent

conduction films. Most of these applications only require polycrystalline materials;

however, recent successes in producing large-area single crystals make possible the

production of blue and UV light emitters and high temperature, high power transistors.

The main advantage of ZnO as a light emitter is its large exciton binding energy

(Eb¼ 60meV). This binding energy is three times larger than that of the 20meV exciton

of GaN, which permits excitonic recombination to dominate in ZnO at room temperature

(and even above). Excitonic recombination is preferable because the exciton, being an

already bound system, radiatively recombines with high efficiency without requiring traps

to localize carriers, as in the case in radiative recombination of electron–hole plasmas.

Secondly, the deeper exciton of ZnO is more stable against field ionization due to

piezoelectrically induced fields. Such piezoelectric effects are expected to increase with

increasing dopant concentration for both ZnO and GaN.

For electronic applications, the attractiveness of ZnO lies in having high breakdown

strength and high saturation velocity. ZnO also affords superior radiation hardness

compared with other common semiconductor materials, such as Si, GaAs, CdS, and

even GaN, enhancing the usefulness of ZnO for space applications. Optically pumped UV

laser action in ZnO has already been demonstrated at both low and high temperatures
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although efficient electrically induced lasing awaits further improvements in the experi-

mental ability to grow high quality p-type ZnO material. Nonetheless, over the past

decade, researchers world-wide have made substantial theoretical and experimental

progress concerning the p-type dopability of ZnO, with 1017 cm�3 range hole concentra-

tions now plausibly achieved with material stability persisting for over 1 year, and with

isolated (though often controversial) reports of hole concentrations as high as �1019 cm�3

even being reported from time to time. Finally, ZnO structures can be doped with transition

metal (TM) ions to form dilute magnetic materials, denoted (Zn,TM)O, which can form a

ferromagnetic state, an antiferromagnetic state as well as a general spin glass. The

important point is that the Curie temperature (TC) can be above room temperature. Such

above-room-temperature anti- and ferromagnetic states form the basis for novel charge-

based, spin-based, or even mixed spin- and charge-based devices which, collectively, are

known as “spintronic” devices.

1.1.2 Organization of Chapter

Theremainderof this chapter isorganizedas follows. InSection1.2, a theoretical overviewof

the fundamental band structure of ZnO near the zone center is presented. The discussion

includes the long-standing controversy over the symmetry-ordering of the valence bands at

the G point. Next, in Section 1.3, the optical properties of intrinsic ZnO are reviewed, with

particularemphasison theexcitons.Alsopresented in this samesectionareadiscussionof the

interaction of light, magnetic field, and strain field, as three examples of the general types of

calculations done for excitons in ZnO, aswell as a discussion of spatial resonance dispersion

(Section1.3.4) inwhich thepolariton, a combined state arisingoutof themixingof anexciton

and light, plays a particularly important role. The electrical properties of ZnOare considered

next in Section 1.4, including a discussion of intrinsic along with n-type and p-type ZnO. In

particular, the important question of p-type dopability is discussed in detail in Section 1.4.3.

For the implementationof optoelectronic devices, onewill needSchottkybarriers andohmic

contracts; recent progress in these areas is presented in Section 1.4.4. For heterojunction-

based devices, band gap engineering will be required and this is considered in Section 1.5.

Finally, presented in Section 1.6 is the theoretical basis for the ZnO spintronic device. The

different models are based on the Heisenberg Spin Hamiltonian to describe the dilute

magnetic system (Zn,TM)O. One can investigate both the interaction of the carriers with

the magnetic moment of the TM as well as the TM–TM interactions. It is found that the

resulting Curie temperature can be above room temperature. Spintronic devices made of

(Zn,TM)Oareexpected tobe faster and toconsume lesspower sinceflipping the spin requires

10–50 times less power, and occurs roughly an order of magnitude faster, than does

transporting an electron through the channel of traditional field-effect transistors (FETs).

1.2 Band Structure

1.2.1 Valence and Conduction Bands

The general electronic structure of binary III–V and II–VI compounds form semiconduc-

tors with the valence band mostly derived from the covalent bonding orbitals (s and p).
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While the conduction band consists of antibonding orbitals, as one moves further outward

from column IVof the periodic table, the binary compound semiconductors acquire a more

ionic character. These compounds form cubic (zinc blende) and hexagonal (wurtzite)

crystal structures, with ZnO crystallized in the wurtzite structure. The difference between

the zinc blende and wurtzite structures is that the zinc blende is cubic while the wurtzite is

a distortion of the cube in the [111] direction generally taken to be the z direction in the

wurtzite.

The ionicity effect puts more electrons on the group V or group VI atoms giving the

charge density more s and p characteristics of these elements in the valence band. It also

causes gaps at the edge of the Brillouin zone compared with just covalent bonding

materials. This translates into flatter bands across the Brillouin zone.

ZnO is a direct band gap semiconductor with valence-band maximum and conduction-

band minimum occurring at the G point. The conduction band is s-like from Zn at G and is

spin degenerate. The top three valence bands are p-like in character. They are split by the

spin-orbit interaction in both the zinc blende and wurtzite symmetry, while wurtzite

symmetry also has a crystal field splitting.

Figure 1.1 shows[1] the Quasi-cubic model[2–4] of the bottom of the con-duction band

and the top of the valence band. Assuming that one has both zinc blende and wurtzite and

that Hso ¼ DL � S, one can write matrices of the form:

D 0 0

0 D 0

0 0 �2D

0
@

1
A ð1:1Þ

for zinc blende, using j¼ 3/2 and j¼ 1/2 eigenstates. For wurtzite the basis is rotated as

stated above, so that one has Sþa, S�b,�S�a, Sþb, Sza, and Szb. This basis gives matrices

(including crystal field effects d) of the form

D 0 0

0 �D �i
ffiffiffiffiffiffi
2D

p
0 i

ffiffiffi
2

p
D �d

0
@

1
A: ð1:2Þ

Zincblende

Double Group Single Group

Wurtzite

Single Group Double Group

7cΓ

8vΓ

6cΓ 1cΓ 1cΓ Electron Conduction

Band

A

Hole

B

Hole
7vΓ

4vΓ

5vΓ

1vΓ
spin
orbit

crystal
field 7vΓ

A Hole

B Hole

C Hole

7vΓ

9vΓ

spin
orbit

Figure 1.1 Structure and symmetries of the lowest conduction band and upmost valence
bands in ZnO compounds at the G point

Band Structure 3



UsingthevaluesobtainedbyThomas,[5]adifficultyarises.AscanbeseeninEquation(1.3),

there are values of energy difference which can give a complex number for d:

d ¼ 1

2
ð2E1 þE2Þþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2�2E1ðE1 þE2Þ

q
ð1:3Þ

where E1 is the energy difference between the G9 excitons and G7 exciton and E2 is the

energy difference between the two G7 excitons. In fact, using Thomas[5] numbers, d is a

complex number with G9 being the top valence band. This difficulty can be surmounted

by assuming a negative spin-orbit splitting, which is different from all the other II–VI

compounds and GaN. The physical mechanism that could produce a negative spin-

orbit splitting was investigated by Cardona[6] for CuCl. In this zinc blende material, it was

postulated that the valence band was formed from Cl wave functions, with a large

proportion of Cu wave functions (Cu 4s3d). The inverted nature of the CuCl indicates

that the Cu contributes a negative term to the spin-orbit splitting, since for this material

the anion splitting is small and negative. Cardona6 estimated the “fraction” of the metal

wave function in the valence band states by writing the spin-orbit splitting of the

compound as:

D ¼ 3

2
aDhal�ð1�aÞDmet½ �; ð1:4Þ

where a is the proportion of halogen in the wave function, Dhal is the one-electron atomic

spin-orbit splitting parameter of the halogen and Dmet is one of the d-electrons of the metal.

This gave a¼ 0.25 for CuCl. It was also presented that the energy interval between the

ground state of the Cuþ ion (3d10) and the first excited state (3d9, 4s) is 2.75 eV.

Returning to ZnO, one finds the Zn d-bands below the uppermost p-like valence bands to

be greater than 7 eV.[7–9] This makes it very unlikely that one has much mixing at all.

Further, the d-band appeared to be relatively flat, noting again very little mixing. Also, the

availability of ZnO crystals in which intrinsic exciton transitions[10] are observed in

emission and their splitting in a magnetic field have led to a positive spin-orbit splitting of

16meV. With this interpretation, the Quasi-cubic model[2–4] gives results in line with the

other II–VI compounds.

In order to investigate the valence band ordering of ZnO further, Lambrecht et al.[11]

calculated the band structure of ZnO using a linear muffin-tin potential and a Kohn–Sham

local density approximation. The band gap at G was 1.8 eV compared with experiment of

3.4 eV and the Zn d-band was approximately 5 eV below the top of the valence band at G.
To correct for the band gap Reynolds et al.[10] rigidly shifted the conduction band up to

match the experimental G-point gap (a shift of 1.624 eV).

As is seen from above in the Quasi-cubic model,[2–4] the spin-orbit magnitude and sign

are a function of the energy difference between the top of the valence and the 3d band of

Zn. It is found to be greater than 7 eV.[7–9] In Reynolds et al.,[10] the d-band was adjusted to

where the spin-orbit gave the right energy difference with the G7 above the G9. The d band

was put at 6.25 eV below the top of the valence band. This led to a negative g-value and of

course a negative spin-orbit parameter. This in turn matched the experimental data given in

Hong et al.[9] but with a different interpretation of the splitting of the exciton lines. Thus,

there is no agreement of the spin-orbit value for ZnO. In first principle electron structure
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calculations, one has an accuracy only on the order of �100meV whereas the splittings of

the levels in the top valence band are on the order of �10meV!

1.3 Optical Properties

1.3.1 Free and Bound Excitons

The optical absorption (emission) of electromagnetic radiation in a ZnO crystal is

dependent on the matrix element Z
Y*

fHintYidt ð1:5Þ

where

Hint ¼ e�h

imc
A � r: ð1:6Þ

Here, A is the vector potential of the radiation field and has the form

A ¼ n̂jA0jeiðq � r�vtÞ;

e is the electronic charge,m is the electron mass, c is the velocity of light, n̂ is a unit vector

in the direction of polarization, and q is the wave vector. Expanding the spatial part of A in

a series gives

Hint �
X¥
j¼0

Hj
int ð1:7Þ

where

Hj
int ¼ ðq � rÞj n̂ � r ð1:8Þ

and the dipole term is then the first term (i¼ 0). The matrix element in Equation (1.5)

transforms under rotation like the triple direct product

Gf � Gj
r � Gi: ð1:9Þ

The selection rules are then determined by which of the triple-direct-product matrix

elements in question do not vanish, where Gj
r is the symmetry of the expansion termHj

int in

Equation (1.8).

The dipole moment operator for electric dipole radiation transforms like x, y, or z

dependent on the polarization. When the electric field vector E of the incident light is

parallel to the crystal axis of ZnO, the operator corresponds to the G1 representation. When

it is perpendicular to the crystal axis, the operator corresponds to the G5 representation.

Since the crystal has a principal axis, the crystal field removes part of the degeneracy of the

p-levels as seen in Figure 1.1. Including spin in the problem doubles the number of levels.

Since the conduction band at k¼ 0 is the Zn (4s) level[4,5] it transforms as G7 while the

k¼ 0 at top of the valence band is made up of the O(2p) level and it splits into (px, py)G5
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and (pz)G1. When crossed with the spin one has

G5 � D1=2 !G7 þG9 ð1:10Þ

G1 � D1=2 !G7 ð1:11Þ

as shown in Figure 1.1.

One of the light absorption (emission) intrinsic states is an exciton, which is made up of

a hole from the top of the valence band and an electron from the bottom of the conduction

band. These are excitations of the N-particle system whereas electron structure calcula-

tions are of the (N� 1)-particle system. All solutions to the one-body calculations such as

the one-particle Green’s functions method do not contain the interaction of the excited

“particle” with the other “particles.” The more localized the excitation the more important

it is to include this interaction. The more localized the excitation is, the flatter the one-

electron bands, leading to heavier effective masses. This is turn leads to increased binding

energy of the electron–hole pair. In ZnO, the binding energy of the ground state exciton is

60meV. Adding in the Coulomb term of the electron–hole pair gives a hydrogenically

bound pair. For the G9 hole and G7 electron one has

G9 � G7 !G5 þG6; ð1:12Þ
and for the G7 hole and G7 electron one has

G7 � G7 !G5 þG1 þG2: ð1:13Þ
The G5 and G6 are doubly degenerate and the G1 and G2 are nondegenerate. The

Hamiltonian for the exciton becomes:

H ¼ He þHh þHint; ð1:14Þ
where He and Hh are the Hamiltonian for the electron and the hole and Hint is the

interaction between the electron and hole including Coulomb, exchange and correlation.

To first approximation one generally includes just the Coulomb term as noted above.

Equation (1.14) gives what are referred to as the “free” excitons.

Thereare several extrinsic effectswhichmodify theexcitons.Mostnotableof these inZnO

are the bound complexes. One can have the exciton bound to an ionized donor or a neutral

donor. In the case of the ionized donor, one has the molecular attraction of the exciton to the

donorplus central cell corrections.For theneutral donor, onehasagain themolecular binding

energy plus the ability of the neutral donor to be left in an excited state. Similar results are

obtained with the ionized acceptor or neutral acceptor. The method of calculating these

systems is to treat the system as a molecular system in the field of the crystal.

1.3.2 Effects of External Magnetic Field on ZnO Excitons

The case of an applied uniform magnetic field was developed by Wheeler and Dim-

mock[12] for the exciton in ZnO. It was assumed the electron bands are isotropic at least to

second order in k with only double spin degeneracy. The exciton equation is a simple
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