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Preface

Design of experiments is a powerful tool for understanding

systems and processes. In practice, this understanding often

leads immediately to improvements. We present optimal

design of experiments as a general and flexible method for

applying design of experiments. Our view is that optimal

design of experiments is an appropriate tool in virtually any

situation that suggests the possible use of design of

experiments.

Books on application areas in statistics or applied

mathematics, such as design of experiments, can present

daunting obstacles to the nonexpert. We wanted to write a

book on the practical application of design of experiments

that would appeal to new practitioners and experts alike.

This is clearly an ambitious goal and we have addressed it

by writing a different kind of book.

Each chapter of the book contains a case study. The

presentation of the case study is in the form of a play where

two consultants, Brad and Peter, of the (fictitious) Intrepid

Stats consulting firm, help clients in various industries solve

practical problems. We chose this style to make the

presentation of the core concepts of each chapter both

informal and accessible.

This style is by no means unique. The use of dialogs dates

all the way back to the Greek philosopher Plato. More

recently, Galileo made use of this style to introduce

scientific ideas. His three characters were: the teacher, the

experienced student, and the novice.

Though our case studies involve scripted consulting

sessions, we advise readers not to copy our consulting style

when collaborating on their own design problems. In the

interest of a compact exposition of the key points of each

case, we skip much of the necessary information gathering



involved in competent statistical consulting and problem

solving.

We chose our case studies to show just how general and

flexible the optimal design of experiments approach is. We

start off by a chapter dealing with a simple comparative

experiment. The next two chapters deal with a screening

experiment and a follow-up experiment in a biotechnology

firm. In Chapter 4, we show how a designed response

surface experiment contributes to the development of a

robust production process in food packaging. In Chapter 5,

we set up a response surface experiment to maximize the

yield of a chemical extraction process. Chapter 6 deals with

an experiment, similar in structure to mixture experiments

in the chemical and pharmaceutical industries, aimed at

improving the finishing of aluminum sheets. In Chapters 7

and 8, we apply the optimal design of experiments approach

to a vitamin stability experiment and a pastry dough

experiment run over different days, and we demonstrate

that this offers protection against day-to-day variation in the

outcomes. In Chapter 9, we show how to take into account a

priori information about the experimental units and how to

deal with a time trend in the experimental results. In

Chapter 10, we set up a wind tunnel experiment that

involves factors whose levels are hard to change. Finally, in

Chapter 11, we discuss the design of a battery cell

experiment spanning two production steps.

Because our presentation of the case studies is often light

on mathematical and statistical detail, each chapter also

has a section that we call a “Peek into the black box.” In

these sections, we provide a more rigorous underpinning for

the various techniques we employ in our case studies. The

reader may find that there is not as much material in these

sections on data analysis as might be expected. Many books

on design of experiments are mostly about data analysis

rather than design generation, evaluation, and comparison.



We focus much of our attention in these peeks into the

black box on explaining what the reader can anticipate from

the analysis, before actually acquiring the response data. In

nearly every chapter, we have also included separate

frames, which we call “Attachments,” to discuss topics that

deserve special attention.

We hope that our book will appeal to the new practitioner

as well as providing some utility to the expert. Our fondest

wish is to empower more experimentation by more people.

In the words of Cole Porter, “Experiment and you'll see!”
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1

A simple comparative

experiment

1.1 Key concepts

1. Good experimental designs allow for precise

estimation of one or more unknown quantities of interest.

An example of such a quantity, or parameter, is the

difference in the means of two treatments. One

parameter estimate is more precise than another if it has

a smaller variance.

2. Balanced designs are sometimes optimal, but this is

not always the case.

3. If two design problems have different characteristics,

they generally require the use of different designs.

4. The best way to allocate a new experimental test is at

the treatment combination with the highest prediction

variance. This may seem counterintuitive but it is an

important principle.

5. The best allocation of experimental resources can

depend on the relative cost of runs at one treatment

combination versus the cost of runs at a different

combination.

Is A different from B? Is A better than B? This chapter

shows that doing the same number of tests on A and on B in

a simple comparative experiment, while seemingly sensible,

is not always the best thing to do. This chapter also defines

what we mean by the best or optimal test plan.



1.2 The setup of a comparative

experiment

Peter and Brad are drinking Belgian beer in the business

lounge of Brussels Airport. They have plenty of time as their

flight to the United States is severely delayed due to sudden

heavy snowfall. Brad has just launched the idea of writing a

textbook on tailor-made design of experiments.

[Brad] I have been playing with the idea for quite a while.

My feeling is that design of experiments courses and

textbooks overemphasize standard experimental plans such

as full factorial designs, regular fractional factorial designs,

other orthogonal designs, and central composite designs.

More often than not, these designs are not feasible due to

all kinds of practical considerations. Also, there are many

situations where the standard designs are not the best

choice.

[Peter] You don’t need to convince me. What would you do

instead of the classical approach?

[Brad] I would like to use a case-study approach. Every

chapter could be built around one realistic experimental

design problem. A key feature of most of the cases would be

that none of the textbook designs yields satisfactory

answers and that a flexible approach to design the

experiment is required. I would then show that modern,

computer-based experimental design techniques can handle

real-world problems better than standard designs.

[Peter] So, you would attempt to promote optimal

experimental design as a flexible approach that can solve

any design of experiments problem.

[Brad] More or less.

[Peter] Do you think there is a market for that?

[Brad] I am convinced there is. It seems strange to me

that, even in 2011, there aren’t any books that show how to



use optimal or computer-based experimental design to solve

realistic problems without too much mathematics. I’d try to

focus on how easy it is to generate those designs and on

why they are often a better choice than standard designs.

[Peter] Do you have case studies in mind already?

[Brad] The robustness experiment done at Lone Star Snack

Foods would be a good candidate. In that experiment, we

had three quantitative experimental variables and one

categorical. That is a typical example where the textbooks

do not give very satisfying answers.

[Peter] Yes, that is an interesting case. Perhaps the pastry

dough experiment is a good candidate as well. That was a

case where a response surface design was run in blocks,

and where it was not obvious how to use a central

composite design.

[Brad] Right. I am sure we can find several other

interesting case studies when we scan our list of recent

consulting jobs.

[Peter] Certainly.

[Brad] Yesterday evening, I tried to come up with a good

example for the introductory chapter of the book I have in

mind.

[Peter] Did you find something interesting?

[Brad] I think so. My idea is to start with a simple example.

An experiment to compare two population means. For

example, to compare the average thickness of cables

produced on two different machines.

[Peter] So, you’d go back to the simplest possible

comparative experiment?

[Brad] Yep. I’d do so because it is a case where virtually

everybody has a clear idea of what to do.

[Peter] Sure. The number of observations from the two

machines should be equal.

[Brad] Right. But only if you assume that the variance of

the thicknesses produced by the two machines is the same.



If the variances of the two machines are different, then a

50–50 split of the total number of observations is no longer

the best choice.

[Peter] That could do the job. Can you go into more detail

about how you would work that example?

[Brad] Sure.

Brad grabs a pen and starts scribbling key words and

formulas on his napkin while he lays out his intended

approach.

[Brad] Here we go. We want to compare two means, say 

 and , and we have an experimental budget that allows

for, say, n = 12 observations, n
1
 observations from machine

1 and  or n
2
 observations from machine 2. The sample

of n
1
 observations from the first machine allows us to

calculate a sample mean  for the first machine, with

variance . In a similar fashion, we can calculate a

sample mean  from the n
2
 observations from the second

machine. That second sample mean has variance .

[Peter] You’re assuming that the variance in thickness is 

for both machines, and that all the observations are

statistically independent.

[Brad] Right. We are interested in comparing the two

means, and we do so by calculating the difference between

the two sample means, . Obviously, we want this

estimate of the difference in means to be precise. So, we

want its variance

or its standard deviation

to be small.

[Peter] Didn’t you say you would avoid mathematics as

much as possible?



[Brad] Yes, I did. But we will have to show a formula here

and there anyway. We can talk about this later. Stay with me

for the time being.

Brad empties his Leffe, draws the waiter’s attention to

order another, and grabs his laptop.

[Brad] Now, we can enumerate all possible experiments

and compute the variance and standard deviation of 

for each of them.

Before the waiter replaces Brad’s empty glass with a full

one, Brad has produced Table 1.1. The table shows the 11

possible ways in which the n = 12 observations can be

divided over the two machines, and the resulting variances

and standard deviations.

Table 1.1 Variance of sample mean difference for different

sample sizes n
1
 and n

2
 for .

[Brad] Here we go. Note that I used a  value of one in my

calculations. This exercise shows that taking n
1
 and n

2
 equal

to six is the best choice, because it results in the smallest

variance.

[Peter] That confirms traditional wisdom. It would be useful

to point out that the  value you use does not change the

choice of the design or the relative performance of the

different design options.



[Brad] Right. If we change the value of , then the 11

variances will all be multiplied by the value of  and, so,

their relative magnitudes will not be affected. Note that you

don’t lose much if you use a slightly unbalanced design. If

one sample size is 5 and the other is 7, then the variance of

our sample mean difference, , is only a little bit larger

than for the balanced design. In the last column of the table,

I computed the efficiency for the 11 designs. The design

with sample sizes 5 and 7 has an efficiency of 0.333/0.343

= 97.2%. So, to calculate that efficiency, I divided the

variance for the optimal design by the variance of the

alternative.

[Peter] OK. I guess the next step is to convince the reader

that the balanced design is not always the best choice.

Brad takes a swig of his new Leffe, and starts scribbling on

his napkin again.

[Brad] Indeed. What I would do is drop the assumption

that both machines have the same variance. If we denote

the variances of machines 1 and 2 by  and ,

respectively, then the variances of  and  become 

and . The variance of our sample mean difference 

 then is

so that its standard deviation is

[Peter] And now you will again enumerate the 11 design

options?

[Brad] Yes, but first I need an a priori guess for the values

of  and . Let’s see what happens if  is nine times .

[Peter] Hm. A variance ratio of nine seems quite large.

[Brad] I know. I know. I just want to make sure that there is

a noticeable effect on the design.



Brad pulls his laptop a bit closer and modifies his original

table so that the thickness variances are  and .

Soon, he produces Table 1.2.

Table 1.2 Variance of sample mean difference for different

sample sizes n
1
 and n

2
 for  and .

[Brad] Here we are. This time, a design that requires three

observations from machine 1 and nine observations from

machine 2 is the optimal choice. The balanced design

results in a variance of 1.667, which is 25% higher than the

variance of 1.333 produced by the optimal design. The

balanced design now is only 1.333/1.667 = 80% efficient.

[Peter] That would be perfect if the variance ratio was

really as large as nine. What happens if you choose a less

extreme value for ? Can you set  to 2?

[Brad] Sure.

A few seconds later, Brad has produced Table 1.3.

Table 1.3 Variance of sample mean difference for different

sample sizes n
1
 and n

2
 for  and .



[Peter] This is much less spectacular, but it is still true that

the optimal design is unbalanced. Note that the optimal

design requires more observations from the machine with

the higher variance than from the machine with the lower

variance.

[Brad] Right. The larger value for n
2
 compensates the large

variance for machine 2 and ensures that the variance of 

is not excessively large.

[Peter, pointing to Table 1.3] Well, I agree that this is a nice

illustration in that it shows that balanced designs are not

always optimal, but the balanced design is more than 97%

efficient in this case. So, you don’t lose much by using the

balanced design when the variance ratio is closer to 1.

Table 1.3 Variance of sample mean difference for different

sample sizes n
1
 and n

2
 for  and .



Brad looks a bit crestfallen and takes a gulp of his beer

while he thinks of a comeback line.

[Peter] It would be great to have an example where the

balanced design didn’t do so well. Have you considered

different costs for observations from the two populations? In

the case of thickness measurements, this makes no sense.

But imagine that the two means you are comparing

correspond to two medical treatments. Or treatments with

two kinds of fertilizers. Suppose that an observation using

the first treatment is more expensive than an observation

with the second treatment.

[Brad] Yes. That reminds me of Eric Schoen’s coffee cream

experiment. He was able to do twice as many runs per week

with one setup than with another. And he only had a fixed

number of weeks to run his study. So, in terms of time, one

run was twice as expensive as another.

[Peter, pulling Brad’s laptop toward him] I remember that

one. Let us see what happens. Suppose that an observation

from population 1, or an observation with treatment 1, costs

twice as much as an observation from population 2. To keep

things simple, let the costs be 2 and 1, and let the total

budget be 24. Then, we have 11 ways to spend the

experimental budget I think. One extreme option takes one

observation for treatment 1 and 22 observations for

treatment 2. The other extreme is to take 11 observations



for treatment 1 and 2 observations for treatment 2. Each of

these extreme options uses up the entire budget of 24. And,

obviously, there are a lot of intermediate design options.

Peter starts modifying Brad’s table on the laptop, and a

little while later, he produces Table 1.4.

Table 1.4 Variance of sample mean difference for different

designs when treatment 1 is twice as expensive as

treatment 2 and the total cost is fixed.

[Peter] Take a look at this.

[Brad] Interesting. Again, the optimal design is not

balanced. Its total number of observations is not even an

even number.

[Peter, nodding] These results are not quite as dramatic as

I would like. The balanced design with eight observations for

each treatment is still highly efficient. Yet, this is another

example where the balanced design is not the best choice.

[Brad] The question now is whether these examples would

be a good start for the book.

[Peter] The good thing about the examples is that they

show two key issues. First, the standard design is optimal for

at least one scenario, namely, in the scenario where the

number of observations one can afford is even, the

variances in the two populations are identical and the cost

of an observation is the same for both populations. Second,



the standard design is often no longer optimal as soon as

one of the usual assumptions is no longer valid.

[Brad] Surely, our readers will realize that it is unrealistic

to assume that the variances in two different populations

are exactly the same.

[Peter] Most likely. But finding the optimal design when the

variances are different requires knowledge concerning the

magnitude of  and . I don’t see where that knowledge

might come from. It is clear that choosing the balanced

design is a reasonable choice in the absence of prior

knowledge about  and , as that balanced design was at

least 80% efficient in all of the cases we looked at.

[Brad] I can think of a case where you might reasonably

expect different variances. Suppose your study used two

machines, and one was old and one was new. There, you

would certainly hope the new machine would produce less

variable output. Still, an experimenter usually knows more

about the cost of every observation than about its variance.

Therefore, the example with the different costs for the two

populations is possibly more convincing. If it is clear that

observations for treatment 1 are twice as expensive as

observations for treatment 2, you have just shown that the

experimenter should drop the standard design, and use the

unbalanced one instead. So, that sounds like a good

example for the opening chapter of our book.

[Peter, laughing] I see you have already lured me into this

project.

[Brad] Here is a toast to our new project!

They clink their glasses, and turn their attention toward

the menu.

1.3 Summary

Balanced designs for one experimental factor at two levels

are optimal if all the runs have the same cost, the



observations are independent and the error variance is

constant. If the error variances are different for the two

treatments, then the balanced design is no longer best. If

the two treatments have different costs, then, again, the

balanced design is no longer best.

A general principle is that the experimenter should

allocate more runs to the treatment combinations where the

uncertainty is larger.



2

An optimal screening

experiment

2.1 Key concepts

1. Orthogonal designs for two-level factors are also

optimal designs. As a result, a computerized-search

algorithm for generating optimal designs can generate

standard orthogonal designs.

2. When a given factor’s effect on a response changes

depending on the level of a second factor, we say that

there is a two-factor interaction effect. Thus, a two-factor

interaction is a combined effect on the response that is

different from the sum of the individual effects.

3. Active two-factor interactions that are not included in

the model can bias the estimates of the main effects.

4. The alias matrix is a quantitative measure of the bias

referred to in the third key concept.

5. Adding any term to a model that was previously

estimated without that term removes any bias in the

estimates of the factor effects due to that term.

6. The trade-off in adding two-factor interactions to a

main-effects model after using an orthogonal main-effect

design is that you may introduce correlation in the

estimates of the coefficients. This correlation results in an

increase in the variances of the effect estimates.

Screening designs are among the most commonly used in

industry. The idea of screening is to explore the effects of

many experimental factors in one relatively small study to



find the few factors that most affect the response of

interest. This methodology is based on the Pareto or

sparsity-of-effects principle that states that most real

processes are driven by a few important factors.

In this chapter, we generate an optimal design for a

screening experiment and analyze the resulting data. As in

many screening experiments, we are left with some

ambiguity about what model best describes the underlying

behavior of the system. This ambiguity will be resolved in

Chapter 3. As it also often happens, even though there is

some ambiguity about what the best model is, we identify

new settings for the process that substantially improve its

performance.

2.2 Case: an extraction

experiment

2.2.1 Problem and design

Peter and Brad are taking the train to Rixensart, southeast

of Brussels, to visit GeneBe, a Belgian biotech firm.

[Brad] What is the purpose of our journey?

[Peter] Our contact, Dr. Zheng, said GeneBe is just

beginning to think about using designed experiments as

part of their tool set.

[Brad] So, we should probably keep things as standard as

possible.

[Peter] I guess you have a point. We need to stay well

within their comfort zone. At least for one experiment.

[Brad] Do you have any idea what they plan to study?

[Peter] Dr. Zheng told me that they are trying to optimize

the extraction of an antimicrobial substance from some

proprietary cultures they have developed in house. He

sketched the extraction process on the phone, but



reproducing what he told me would be a bit much to ask.

Microbiology is not my cup of tea.

[Brad] Likewise. I am sure Dr. Zheng will supply all the

details we need during our meeting.

They arrive at GeneBe and Dr. Zheng meets them in the

reception area.

[Dr. Zheng] Peter, it is good to see you again. And this

must be… .

[Peter] Brad Jones, he is a colleague of mine from the

States. He is the other principal partner in our firm, Intrepid

Stats.

[Dr. Zheng] Brad, welcome to GeneBe. Let’s go to a

conference room and I will tell you about the study we have

in mind.

In the conference room, Brad fires up his laptop, while Dr.

Zheng gets coffee for everyone. After a little bit of small

talk, the group settles in to discuss the problem at hand.

[Dr. Zheng] Some of our major customers are food

producers. They are interested in inhibiting the growth of

various microbes that are common in most processed foods.

You know, Escherichia coli, Salmonella typhimurium, etc. In

the past they have used chemical additives in food to do

this, but there is some concern about the long-term effects

of this practice. We have found a strong microbial inhibitor,

a certain lipopeptide, in strains of Bacillus subtilis. If we can

improve the yield of extraction of this inhibitor from our

cultures, we may have a safer alternative than the current

chemical agents. The main goal of the experiment we want

to perform is to increase the yield of the extraction process.

[Brad] Right.

[Dr. Zheng] The problem is that we know quite a lot

already about the lipopeptide, but not yet what affects the

extraction of that substance.

[Brad] Can you tell us a bit about the whole process for

producing the antimicrobial substance?


