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Preface

Design of experiments is a powerful tool for understanding systems and processes.
In practice, this understanding often leads immediately to improvements. We present
optimal design of experiments as a general and flexible method for applying design
of experiments. Our view is that optimal design of experiments is an appropriate tool
in virtually any situation that suggests the possible use of design of experiments.

Books on application areas in statistics or applied mathematics, such as design
of experiments, can present daunting obstacles to the nonexpert. We wanted to write
a book on the practical application of design of experiments that would appeal to
new practitioners and experts alike. This is clearly an ambitious goal and we have
addressed it by writing a different kind of book.

Each chapter of the book contains a case study. The presentation of the case
study is in the form of a play where two consultants, Brad and Peter, of the (ficti-
tious) Intrepid Stats consulting firm, help clients in various industries solve practical
problems. We chose this style to make the presentation of the core concepts of each
chapter both informal and accessible.

This style is by no means unique. The use of dialogs dates all the way back to the
Greek philosopher Plato. More recently, Galileo made use of this style to introduce
scientific ideas. His three characters were: the teacher, the experienced student, and
the novice.

Though our case studies involve scripted consulting sessions, we advise readers
not to copy our consulting style when collaborating on their own design problems. In
the interest of a compact exposition of the key points of each case, we skip much of
the necessary information gathering involved in competent statistical consulting and
problem solving.

We chose our case studies to show just how general and flexible the optimal
design of experiments approach is. We start off by a chapter dealing with a simple
comparative experiment. The next two chapters deal with a screening experiment
and a follow-up experiment in a biotechnology firm. In Chapter 4, we show how
a designed response surface experiment contributes to the development of a robust
production process in food packaging. In Chapter 5, we set up a response surface
experiment to maximize the yield of a chemical extraction process. Chapter 6 deals
with an experiment, similar in structure to mixture experiments in the chemical and
pharmaceutical industries, aimed at improving the finishing of aluminum sheets. In
Chapters 7 and 8, we apply the optimal design of experiments approach to a vitamin
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xiv PREFACE

stability experiment and a pastry dough experiment run over different days, and we
demonstrate that this offers protection against day-to-day variation in the outcomes.
In Chapter 9, we show how to take into account a priori information about the
experimental units and how to deal with a time trend in the experimental results. In
Chapter 10, we set up a wind tunnel experiment that involves factors whose levels
are hard to change. Finally, in Chapter 11, we discuss the design of a battery cell
experiment spanning two production steps.

Because our presentation of the case studies is often light on mathematical and
statistical detail, each chapter also has a section that we call a “Peek into the black
box.” In these sections, we provide a more rigorous underpinning for the various
techniques we employ in our case studies. The reader may find that there is not as
much material in these sections on data analysis as might be expected. Many books on
design of experiments are mostly about data analysis rather than design generation,
evaluation, and comparison. We focus much of our attention in these peeks into the
black box on explaining what the reader can anticipate from the analysis, before
actually acquiring the response data. In nearly every chapter, we have also included
separate frames, which we call “Attachments,” to discuss topics that deserve special
attention.

We hope that our book will appeal to the new practitioner as well as providing
some utility to the expert. Our fondest wish is to empower more experimentation by
more people. In the words of Cole Porter, “Experiment and you’ll see!”
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1

A simple comparative
experiment

1.1 Key concepts

1. Good experimental designs allow for precise estimation of one or more un-
known quantities of interest. An example of such a quantity, or parameter, is
the difference in the means of two treatments. One parameter estimate is more
precise than another if it has a smaller variance.

2. Balanced designs are sometimes optimal, but this is not always the case.

3. If two design problems have different characteristics, they generally require
the use of different designs.

4. The best way to allocate a new experimental test is at the treatment combination
with the highest prediction variance. This may seem counterintuitive but it is
an important principle.

5. The best allocation of experimental resources can depend on the relative cost
of runs at one treatment combination versus the cost of runs at a different
combination.

Is A different from B? Is A better than B? This chapter shows that doing the same
number of tests on A and on B in a simple comparative experiment, while seemingly
sensible, is not always the best thing to do. This chapter also defines what we mean
by the best or optimal test plan.

Optimal Design of Experiments: A Case Study Approach, First Edition. Peter Goos and Bradley Jones.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

1
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2 OPTIMAL DESIGN OF EXPERIMENTS

1.2 The setup of a comparative experiment

Peter and Brad are drinking Belgian beer in the business lounge of Brussels Airport.
They have plenty of time as their flight to the United States is severely delayed due
to sudden heavy snowfall. Brad has just launched the idea of writing a textbook on
tailor-made design of experiments.

[Brad] I have been playing with the idea for quite a while. My feeling is that design
of experiments courses and textbooks overemphasize standard experimental plans
such as full factorial designs, regular fractional factorial designs, other orthogonal
designs, and central composite designs. More often than not, these designs are not
feasible due to all kinds of practical considerations. Also, there are many situations
where the standard designs are not the best choice.

[Peter] You don’t need to convince me. What would you do instead of the classical
approach?

[Brad] I would like to use a case-study approach. Every chapter could be built
around one realistic experimental design problem. A key feature of most of the
cases would be that none of the textbook designs yields satisfactory answers and
that a flexible approach to design the experiment is required. I would then show
that modern, computer-based experimental design techniques can handle real-world
problems better than standard designs.

[Peter] So, you would attempt to promote optimal experimental design as a
flexible approach that can solve any design of experiments problem.

[Brad] More or less.
[Peter] Do you think there is a market for that?
[Brad] I am convinced there is. It seems strange to me that, even in 2011, there

aren’t any books that show how to use optimal or computer-based experimental design
to solve realistic problems without too much mathematics. I’d try to focus on how
easy it is to generate those designs and on why they are often a better choice than
standard designs.

[Peter] Do you have case studies in mind already?
[Brad] The robustness experiment done at Lone Star Snack Foods would be a

good candidate. In that experiment, we had three quantitative experimental variables
and one categorical. That is a typical example where the textbooks do not give very
satisfying answers.

[Peter] Yes, that is an interesting case. Perhaps the pastry dough experiment
is a good candidate as well. That was a case where a response surface design
was run in blocks, and where it was not obvious how to use a central composite
design.

[Brad] Right. I am sure we can find several other interesting case studies when
we scan our list of recent consulting jobs.

[Peter] Certainly.
[Brad] Yesterday evening, I tried to come up with a good example for the intro-

ductory chapter of the book I have in mind.
[Peter] Did you find something interesting?
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A SIMPLE COMPARATIVE EXPERIMENT 3

[Brad] I think so. My idea is to start with a simple example. An experiment to
compare two population means. For example, to compare the average thickness of
cables produced on two different machines.

[Peter] So, you’d go back to the simplest possible comparative experiment?
[Brad] Yep. I’d do so because it is a case where virtually everybody has a clear

idea of what to do.
[Peter] Sure. The number of observations from the two machines should be equal.
[Brad] Right. But only if you assume that the variance of the thicknesses produced

by the two machines is the same. If the variances of the two machines are different,
then a 50–50 split of the total number of observations is no longer the best choice.

[Peter] That could do the job. Can you go into more detail about how you would
work that example?

[Brad] Sure.
Brad grabs a pen and starts scribbling key words and formulas on his napkin

while he lays out his intended approach.
[Brad] Here we go. We want to compare two means, say μ1 and μ2, and we have

an experimental budget that allows for, say, n = 12 observations, n1 observations
from machine 1 and n − n1 or n2 observations from machine 2. The sample of n1

observations from the first machine allows us to calculate a sample mean X1 for the
first machine, with variance σ 2/n1. In a similar fashion, we can calculate a sample
mean X2 from the n2 observations from the second machine. That second sample
mean has variance σ 2/n2.

[Peter] You’re assuming that the variance in thickness is σ 2 for both machines,
and that all the observations are statistically independent.

[Brad] Right. We are interested in comparing the two means, and we do so by
calculating the difference between the two sample means, X1 − X2. Obviously, we
want this estimate of the difference in means to be precise. So, we want its variance

var(X1 − X2) = σ 2

n1
+ σ 2

n2
= σ 2

( 1

n1
+ 1

n2

)

or its standard deviation

σX1−X2
=

√
σ 2

n1
+ σ 2

n2
= σ

√
1

n1
+ 1

n2

to be small.
[Peter] Didn’t you say you would avoid mathematics as much as possible?
[Brad] Yes, I did. But we will have to show a formula here and there anyway. We

can talk about this later. Stay with me for the time being.
Brad empties his Leffe, draws the waiter’s attention to order another, and grabs

his laptop.
[Brad] Now, we can enumerate all possible experiments and compute the variance

and standard deviation of X1 − X2 for each of them.
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4 OPTIMAL DESIGN OF EXPERIMENTS

Table 1.1 Variance of sample mean difference for different
sample sizes n1 and n2 for σ 2 = 1.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 11 1.091 1.044 30.6
2 10 0.600 0.775 55.6
3 9 0.444 0.667 75.0
4 8 0.375 0.612 88.9
5 7 0.343 0.586 97.2
6 6 0.333 0.577 100.0
7 5 0.343 0.586 97.2
8 4 0.375 0.612 88.9
9 3 0.444 0.667 75.0

10 2 0.600 0.775 55.6
11 1 1.091 1.044 30.6

Before the waiter replaces Brad’s empty glass with a full one, Brad has produced
Table 1.1. The table shows the 11 possible ways in which the n = 12 observations can
be divided over the two machines, and the resulting variances and standard deviations.

[Brad] Here we go. Note that I used a σ 2 value of one in my calculations. This
exercise shows that taking n1 and n2 equal to six is the best choice, because it results
in the smallest variance.

[Peter] That confirms traditional wisdom. It would be useful to point out that the
σ 2 value you use does not change the choice of the design or the relative performance
of the different design options.

[Brad] Right. If we change the value of σ 2, then the 11 variances will all be mul-
tiplied by the value of σ 2 and, so, their relative magnitudes will not be affected. Note
that you don’t lose much if you use a slightly unbalanced design. If one sample size is 5
and the other is 7, then the variance of our sample mean difference, X1 − X2, is only a
little bit larger than for the balanced design. In the last column of the table, I computed
the efficiency for the 11 designs. The design with sample sizes 5 and 7 has an effi-
ciency of 0.333/0.343 = 97.2%. So, to calculate that efficiency, I divided the variance
for the optimal design by the variance of the alternative.

[Peter] OK. I guess the next step is to convince the reader that the balanced design
is not always the best choice.

Brad takes a swig of his new Leffe, and starts scribbling on his napkin again.
[Brad] Indeed. What I would do is drop the assumption that both machines have

the same variance. If we denote the variances of machines 1 and 2 by σ 2
1 and σ 2

2 ,
respectively, then the variances of X1 and X2 become σ 2

1 /n1 and σ 2
2 /n2. The variance

of our sample mean difference X1 − X2 then is

var(X1 − X2) = σ 2
1

n1
+ σ 2

2

n2
,
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Table 1.2 Variance of sample mean difference for different
sample sizes n1 and n2 for σ 2

1 = 1 and σ 2
2 = 9.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 11 1.818 1.348 73.3
2 10 1.400 1.183 95.2
3 9 1.333 1.155 100.0
4 8 1.375 1.173 97.0
5 7 1.486 1.219 89.7
6 6 1.667 1.291 80.0
7 5 1.943 1.394 68.6
8 4 2.375 1.541 56.1
9 3 3.111 1.764 42.9

10 2 4.600 2.145 29.0
11 1 9.091 3.015 14.7

so that its standard deviation is

σX1−X2
=

√
σ 2

1

n1
+ σ 2

2

n2
.

[Peter] And now you will again enumerate the 11 design options?
[Brad] Yes, but first I need an a priori guess for the values of σ 2

1 and σ 2
2 . Let’s see

what happens if σ 2
2 is nine times σ 2

1 .
[Peter] Hm. A variance ratio of nine seems quite large.
[Brad] I know. I know. I just want to make sure that there is a noticeable effect

on the design.
Brad pulls his laptop a bit closer and modifies his original table so that the

thickness variances are σ 2
1 = 1 and σ 2

2 = 9. Soon, he produces Table 1.2.
[Brad] Here we are. This time, a design that requires three observations from

machine 1 and nine observations from machine 2 is the optimal choice. The balanced
design results in a variance of 1.667, which is 25% higher than the variance of 1.333
produced by the optimal design. The balanced design now is only 1.333/1.667 = 80%
efficient.

[Peter] That would be perfect if the variance ratio was really as large as nine.
What happens if you choose a less extreme value for σ 2

2 ? Can you set σ 2
2 to 2?

[Brad] Sure.
A few seconds later, Brad has produced Table 1.3.
[Peter] This is much less spectacular, but it is still true that the optimal design

is unbalanced. Note that the optimal design requires more observations from the
machine with the higher variance than from the machine with the lower variance.

[Brad] Right. The larger value for n2 compensates the large variance for machine
2 and ensures that the variance of X2 is not excessively large.
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Table 1.3 Variance of sample mean difference for different
sample sizes n1 and n2 for σ 2

1 = 1 and σ 2
2 = 2.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 11 1.182 1.087 41.1
2 10 0.700 0.837 69.4
3 9 0.556 0.745 87.4
4 8 0.500 0.707 97.1
5 7 0.486 0.697 100.0
6 6 0.500 0.707 97.1
7 5 0.543 0.737 89.5
8 4 0.625 0.791 77.7
9 3 0.778 0.882 62.4

10 2 1.100 1.049 44.2
11 1 2.091 1.446 23.2

[Peter, pointing to Table 1.3] Well, I agree that this is a nice illustration in that it
shows that balanced designs are not always optimal, but the balanced design is more
than 97% efficient in this case. So, you don’t lose much by using the balanced design
when the variance ratio is closer to 1.

Brad looks a bit crestfallen and takes a gulp of his beer while he thinks of a
comeback line.

[Peter] It would be great to have an example where the balanced design didn’t do so
well. Have you considered different costs for observations from the two populations?
In the case of thickness measurements, this makes no sense. But imagine that the two
means you are comparing correspond to two medical treatments. Or treatments with
two kinds of fertilizers. Suppose that an observation using the first treatment is more
expensive than an observation with the second treatment.

[Brad] Yes. That reminds me of Eric Schoen’s coffee cream experiment. He was
able to do twice as many runs per week with one setup than with another. And he
only had a fixed number of weeks to run his study. So, in terms of time, one run was
twice as expensive as another.

[Peter, pulling Brad’s laptop toward him] I remember that one. Let us see what
happens. Suppose that an observation from population 1, or an observation with
treatment 1, costs twice as much as an observation from population 2. To keep things
simple, let the costs be 2 and 1, and let the total budget be 24. Then, we have 11 ways
to spend the experimental budget I think. One extreme option takes one observation
for treatment 1 and 22 observations for treatment 2. The other extreme is to take
11 observations for treatment 1 and 2 observations for treatment 2. Each of these
extreme options uses up the entire budget of 24. And, obviously, there are a lot of
intermediate design options.

Peter starts modifying Brad’s table on the laptop, and a little while later, he
produces Table 1.4.
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Table 1.4 Variance of sample mean difference for different
designs when treatment 1 is twice as expensive as treatment
2 and the total cost is fixed.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 22 1.045 1.022 23.2
2 20 0.550 0.742 44.2
3 18 0.389 0.624 62.4
4 16 0.313 0.559 77.7
5 14 0.271 0.521 89.5
6 12 0.250 0.500 97.1
7 10 0.243 0.493 100.0
8 8 0.250 0.500 97.1
9 6 0.278 0.527 87.4

10 4 0.350 0.592 69.4
11 2 0.591 0.769 41.1

[Peter] Take a look at this.
[Brad] Interesting. Again, the optimal design is not balanced. Its total number of

observations is not even an even number.
[Peter, nodding] These results are not quite as dramatic as I would like. The

balanced design with eight observations for each treatment is still highly efficient.
Yet, this is another example where the balanced design is not the best choice.

[Brad] The question now is whether these examples would be a good start for the
book.

[Peter] The good thing about the examples is that they show two key issues. First,
the standard design is optimal for at least one scenario, namely, in the scenario where
the number of observations one can afford is even, the variances in the two populations
are identical and the cost of an observation is the same for both populations. Second,
the standard design is often no longer optimal as soon as one of the usual assumptions
is no longer valid.

[Brad] Surely, our readers will realize that it is unrealistic to assume that the
variances in two different populations are exactly the same.

[Peter] Most likely. But finding the optimal design when the variances are different
requires knowledge concerning the magnitude of σ 2

1 and σ 2
2 . I don’t see where that

knowledge might come from. It is clear that choosing the balanced design is a
reasonable choice in the absence of prior knowledge about σ 2

1 and σ 2
2 , as that balanced

design was at least 80% efficient in all of the cases we looked at.
[Brad] I can think of a case where you might reasonably expect different variances.

Suppose your study used two machines, and one was old and one was new. There,
you would certainly hope the new machine would produce less variable output. Still,
an experimenter usually knows more about the cost of every observation than about
its variance. Therefore, the example with the different costs for the two populations is
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possibly more convincing. If it is clear that observations for treatment 1 are twice as
expensive as observations for treatment 2, you have just shown that the experimenter
should drop the standard design, and use the unbalanced one instead. So, that sounds
like a good example for the opening chapter of our book.

[Peter, laughing] I see you have already lured me into this project.
[Brad] Here is a toast to our new project!
They clink their glasses, and turn their attention toward the menu.

1.3 Summary

Balanced designs for one experimental factor at two levels are optimal if all the
runs have the same cost, the observations are independent and the error variance is
constant. If the error variances are different for the two treatments, then the balanced
design is no longer best. If the two treatments have different costs, then, again, the
balanced design is no longer best.

A general principle is that the experimenter should allocate more runs to the
treatment combinations where the uncertainty is larger.
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An optimal screening
experiment

2.1 Key concepts

1. Orthogonal designs for two-level factors are also optimal designs. As a result,
a computerized-search algorithm for generating optimal designs can generate
standard orthogonal designs.

2. When a given factor’s effect on a response changes depending on the level
of a second factor, we say that there is a two-factor interaction effect. Thus,
a two-factor interaction is a combined effect on the response that is different
from the sum of the individual effects.

3. Active two-factor interactions that are not included in the model can bias the
estimates of the main effects.

4. The alias matrix is a quantitative measure of the bias referred to in the third
key concept.

5. Adding any term to a model that was previously estimated without that term
removes any bias in the estimates of the factor effects due to that term.

6. The trade-off in adding two-factor interactions to a main-effects model after
using an orthogonal main-effect design is that you may introduce correlation
in the estimates of the coefficients. This correlation results in an increase in
the variances of the effect estimates.

Screening designs are among the most commonly used in industry. The idea of
screening is to explore the effects of many experimental factors in one relatively

Optimal Design of Experiments: A Case Study Approach, First Edition. Peter Goos and Bradley Jones.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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small study to find the few factors that most affect the response of interest. This
methodology is based on the Pareto or sparsity-of-effects principle that states that
most real processes are driven by a few important factors.

In this chapter, we generate an optimal design for a screening experiment and
analyze the resulting data. As in many screening experiments, we are left with some
ambiguity about what model best describes the underlying behavior of the system.
This ambiguity will be resolved in Chapter 3. As it also often happens, even though
there is some ambiguity about what the best model is, we identify new settings for
the process that substantially improve its performance.

2.2 Case: an extraction experiment

2.2.1 Problem and design

Peter and Brad are taking the train to Rixensart, southeast of Brussels, to visit GeneBe,
a Belgian biotech firm.

[Brad] What is the purpose of our journey?
[Peter] Our contact, Dr. Zheng, said GeneBe is just beginning to think about using

designed experiments as part of their tool set.
[Brad] So, we should probably keep things as standard as possible.
[Peter] I guess you have a point. We need to stay well within their comfort zone.

At least for one experiment.
[Brad] Do you have any idea what they plan to study?
[Peter] Dr. Zheng told me that they are trying to optimize the extraction of an

antimicrobial substance from some proprietary cultures they have developed in house.
He sketched the extraction process on the phone, but reproducing what he told me
would be a bit much to ask. Microbiology is not my cup of tea.

[Brad] Likewise. I am sure Dr. Zheng will supply all the details we need during
our meeting.

They arrive at GeneBe and Dr. Zheng meets them in the reception area.
[Dr. Zheng] Peter, it is good to see you again. And this must be. . . .
[Peter] Brad Jones, he is a colleague of mine from the States. He is the other

principal partner in our firm, Intrepid Stats.
[Dr. Zheng] Brad, welcome to GeneBe. Let’s go to a conference room and I will

tell you about the study we have in mind.
In the conference room, Brad fires up his laptop, while Dr. Zheng gets coffee for

everyone. After a little bit of small talk, the group settles in to discuss the problem at
hand.

[Dr. Zheng] Some of our major customers are food producers. They are interested
in inhibiting the growth of various microbes that are common in most processed
foods. You know, Escherichia coli, Salmonella typhimurium, etc. In the past they
have used chemical additives in food to do this, but there is some concern about
the long-term effects of this practice. We have found a strong microbial inhibitor,
a certain lipopeptide, in strains of Bacillus subtilis. If we can improve the yield of
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extraction of this inhibitor from our cultures, we may have a safer alternative than
the current chemical agents. The main goal of the experiment we want to perform is
to increase the yield of the extraction process.

[Brad] Right.
[Dr. Zheng] The problem is that we know quite a lot already about the lipopeptide,

but not yet what affects the extraction of that substance.
[Brad] Can you tell us a bit about the whole process for producing the antimicro-

bial substance?
[Dr. Zheng] Sure. I will keep it simple though, as it is not difficult to make it sound

very complicated. Roughly speaking, we start with a strain of B. subtilis, put it in a
flask along with some medium, and cultivate it at 37◦C for 24 hours while shaking the
flask the whole time. The next step is to put the resulting culture in another flask, with
some other very specific medium, and cultivate it at a temperature between 30◦C and
33◦C for some time. The culture that results from these operations is then centrifuged
to remove bacterial cells, and then it is ready for the actual extraction.

[Peter] How does that work?
[Dr. Zheng] We start using 100 ml of our culture and add various solvents to it. In

the extraction process, we can adjust the time in solution and the pH of the culture.
[Peter] Do you have an idea about the factors you would like to study? The time

in solution and the pH seem ideal candidates.
[Dr. Zheng] Yes, we did our homework. We identified six factors that we would

like to investigate. We want to look at the presence or absence of four solvents:
methanol, ethanol, propanol, and butanol. The two other factors we want to investigate
are indeed pH and the time in solution.

[Peter, nodding] Obviously, the response you want to study is the yield. How do
you measure it?

[Dr. Zheng] The yield is expressed in milligrams per 100 ml. We determine
the yield of a run of the extraction process by means of high-performance liquid
chromatography or HPLC.

[Peter] That does not sound very simple either. What is the yield of your current
extraction process?

[Dr. Zheng] We have been using methanol at neutral pH for 2 hours and get-
ting about a 25 mg yield per batch. We need something higher than 45 mg to get
management interested in taking the next step.

[Brad] That sounds like quite a challenge.
[Peter] How many processing runs can you afford for this study?
[Dr. Zheng] Design of experiments is not an accepted strategy here. This study

is just a proof of concept. I doubt that I can persuade management to permit more
than 15 runs. Given the time required to prepare the cultures, however, fewer than 15
trials would be better.

[Peter] Twelve is an ideal number for a screening experiment. Using large enough
multiples of four allows you to estimate the main effects of your factors independently.
You can then save three runs for doing a confirmatory experiment later on. If you
think that is a good idea, then I think Brad will have a design for you in less than
a minute.
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Table 2.1 Brad’s design for the extraction experiment at GeneBe.

Run x1 x2 x3 x4 x5 x6

1 −1 −1 −1 +1 −1 −1
2 −1 +1 −1 −1 +1 −1
3 −1 +1 −1 +1 +1 +1
4 +1 +1 +1 −1 −1 −1
5 −1 −1 +1 −1 −1 +1
6 −1 +1 +1 +1 −1 −1
7 +1 +1 −1 −1 −1 +1
8 +1 −1 −1 −1 +1 −1
9 +1 −1 +1 +1 +1 −1

10 −1 −1 +1 −1 +1 +1
11 +1 +1 +1 +1 +1 +1
12 +1 −1 −1 +1 −1 +1

In a few seconds, Brad turns his laptop so that Dr. Zheng and Peter can see the
screen.

[Brad] In generating this 12-run design, I used the generic names, x1–x6, for your
six experimental factors. I also coded the absence and presence of a solvent using a
−1 and a +1, respectively. For the factors pH and time, I used a −1 for their low
levels and a +1 for their high levels.

He shows Dr. Zheng and Peter the design in Table 2.1.
[Dr. Zheng] That was fast! How did you create this table? Did you just pick it

from a catalog of designs?
[Brad] In this case, I could have done just that, but I didn’t. I created this design

ex nihilo by using a computer algorithm that generates custom-built optimal designs.
[Dr. Zheng] That sounds fancy. I was hoping that, for our first project, we could

just do something uncontroversial and use a design from a book or a catalog.
[Peter] I have been looking at this design while you two were talking and I would

say that, for a two-level 12-run design, this is about as uncontroversial as you can get.
[Dr. Zheng] How so?
[Peter] This design has perfect structure in one sense. Notice that each column

only has two values, −1 and +1. If we sum each column, we get zero, which means
that each column has the same number of −1s and +1s. There is even more balance
than that. Each pair of columns has four possible pairs of values: ++, +−, −+, −−.
Each of these four possibilities appears three times.

[Brad] In the technical jargon, a design that has all these properties is an orthogonal
design. In fact, I said earlier that I could have taken this design from a catalog of
designs. That is because the optimal design of experiments algorithm in my software
generated a design that can be derived from a Plackett–Burman design.

[Peter] A key property of orthogonal designs is that they allow independent
estimation of the main effects.


