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Foreword

When I think back to my first excursions into the world of ultrasound and its effects on
chemical reactions it takes me back to 1975 when I obtained my first permanent academic
post as an organic chemist at an institution that was then called Lanchester Polytechnic but
later became Coventry University. The department I joined was Chemistry and Metallurgy,
reflecting the applied nature of science courses at that time. One day I was walking through
a metallurgy laboratory and saw an ultrasonic bath being used to clean metal samples. The
process intrigued me for I could see that the ultrasonic bath was producing a large amount of
energy as evidenced by the disturbance of the water with which it was filled. It occurred to
me that this was perhaps a form of energy which might be employed to influence chemical
reactivity using as an example a simple solvolysis reaction. However, the initial results
were puzzling but I was sharing an office with a physical chemist, the late Phil Lorimer,
but neither of us had heard of using ultrasound as a source of energy to promote chemical
reactivity. Together we pursued this new subject and met many problems in convincing the
UK science fraternity that we were ‘on to something big’. We produced our first paper in
1980 as a Chemical Communication, in which we reported a small (twofold) enhancement
in the hydrolysis rate of 2-chloro-2-methylpropane. By 1986 the idea of using ultrasound
to influence reactions had greatly expanded worldwide and we were involved in organising
the first ever international conference on sonochemistry at Warwick University.

So where does electrochemistry fit into the development of sonochemistry? Phil Lorimer
was originally an electrochemist and so had an interest in all things that might influence
electrochemical processes. Together with another colleague, David Walton, we began to
apply ultrasound to electrochemistry in the late 1980s and discovered that it could, for
example, modify the electrochemical oxidation mechanism of cyclohexanecarboxylate. In
1990 we published a review using the term ‘Sonoelectrochemistry’ for the first time in a
peer-reviewed journal. This review forced us to look at the literature surrounding the uses
of ultrasound in electrochemistry and brought to light a number of research publications
that had not previously been drawn together. Other sources have been unearthed since then,
including the pioneering work of Young and Kersten in 1936 on the effects of ultrasonic
radiation on electrodeposits. This was perhaps the first observation of improvements in
hardness and brightness induced by ultrasound. Walker reinvestigated and advanced the
work in the 1970s and in 1993 wrote a comprehensive review of his and other work entitled
‘Ultrasonic Agitation in Metal Finishing’. It is surprising to me that the very early work on
sonoelectrochemistry has not been cited extensively. This is the case with the 1953 paper
of Yeager and Hovorka entitled ‘Ultrasonic Waves and Electrochemistry’. It provided a
survey of the electrochemical applications of ultrasonic waves that were discussed in terms

xiii
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xiv Foreword

of (i) the effects of ultrasonic waves on electrode processes, (ii) electrokinetic phenomena
involving ultrasonic waves, and (iii) the use of ultrasonic waves as a tool in the study of the
structure of electrolytic solutions.

Our own work in sonoelectrochemistry progressed at a pace and in 1995 we took on one of
our own young and bright chemistry graduates to study for a PhD. He obtained his doctorate
three years later with a thesis entitled ‘The Effect of Ultrasound upon Electrochemical
Processes’ and his name was Bruno G. Pollet – the editor of this book. Bruno became more
and more involved in the work on sonoelectrochemistry and looked at a range of topics,
including the effect of ultrasonic frequency and power upon electrochemical systems, from
the theory and modelling to ‘real’ industrial applications.

The group of authors that Bruno has assembled for this book have been able to cover many
of the main areas of sonoelectrochemistry with contributions on fundamentals, analysis,
organic synthesis, nanoparticles, polymerisation and much more. I recommend this book to
you as a compendium of current thoughts and approaches to sonoelectrochemistry written
by experts in the field.

Tim Mason
May 2011
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Introduction to Electrochemistry

Bruno G. Pollet and Oliver J. Curnick

I.1 Introduction

This summary introduces some fundamental aspects of electrochemistry, explaining the
various electrochemical phenomena occurring at the electrode surface when a potential is
applied across it. For this purpose, electrode kinetic and mass-transport parameters will be
defined in detail.

I.2 Principles of Electrochemistry

All chemical interactions involve the interaction of electrons at the atomic or molecular
level, so that, in a sense, all chemistry is electrochemistry. The fundamental process in
electrochemistry is the transfer of electrons between the surface of the electrode and the
molecules of a chemical species in the region adjacent to this surface. The nature of this
region has a significant effect on the current response, thus it is very important to have some
idea about its structure.

Several models have been proposed for the interfacial region. In the simplest model, the
charge on the electrode is balanced by a layer of solvated ions of opposite charge held at the
electrode surface by coulombic attraction. This region is called the ‘electric double layer’
[1]. A consequence of this arrangement is that the potential drop between the electrode and
the solution occurs across an interfacial region which is a few nanometers thick, leading to
a high electric field.

Other models have also shown that the interfacial region can be viewed as two layers of
equal and opposite charge separated by a dielectric material (Figure I.1). The first region
consists of adsorbed solvent molecules and anions and is defined as the inner Helmholtz
plane (IHP). The next layer is defined as the outer Helmholtz plane (OHP) and consists
of solvated cations held in this plane by coulombic attraction extending into the diffusion
layer where there is competition between the ordering effect of coulombic attraction and
disordering of thermal motion. In other words, any electrode immersed in an electrolyte can
be modelled as a resistor and capacitor connected in series (an rC system) (by analogy with
electrical circuits) where the double layer act as a capacitor C and the ionic medium as a

Power Ultrasound in Electrochemistry: From Versatile Laboratory Tool to Engineering Solution, First Edition. Edited by Bruno G. Pollet.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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2 Power Ultrasound in Electrochemistry
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Figure I.1 Relative positions of the inner and outer Helmholtz planes of electrode double
layer.

resistor r. The product rC is very important in electrochemistry since it determines the rate
at which the current flowing to or from the electrode responds to a change in the applied
potential, in the absence of any electrochemical reactions taking place at the surface [1].

The next section discusses electrochemical reactions occurring in the interfacial region,
that is, the electron-transfer kinetics and the mass-transport of the electroactive species
within the double layer.

I.3 Electron-Transfer Kinetics

When a metal (R) is dipped into a solution of its ions (O) an equilibrium such as

Mn+ + ne− ↔ M (I.1)
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Introduction to Electrochemistry 3

or

O + ne− <=== kf

kr
===> R

is established at its surface. Such an electrode will adopt a potential difference with respect
to the solution, whose value is a measure of the position of the equilibrium, which in turn
depends on the concentrations of the O and R species at the electrode surface.

Ideally, a redox process is governed by the Nernst equation (Equation I.2) [2], which
describes the relationship between the electrode potential, EO/R, and the concentrations
at the electrode surface of the electroactive species O and R (assuming that the activity
coefficients of O and R are unity). The Nernst equation is then [2]

EO/R = Eo
O/R + RT

nF
ln

CS
O

CS
R

(I.2)

where
R is the gas constant in J K−1 mol−1 (R = 8.3184 J K−1 mol−1 at 298 K),
T is the temperature in K,
F is the Faraday constant in C mol−1 (F = 96 484.6 C mol−1),
EO/R is the working electrode potential in V,
Eo

O/R is the formal redox couple (or standard reduction potential – SRP) in V,
n is the number of electrons transferred per ion or molecule,
CS

O is the electrode surface concentration of O, M (electrode) in mol cm−3, and
CS

R is the electrode surface concentration of R, M (electrode) in mol cm−3.

[Formal implies that the activity coefficients are assumed to be unity.]
Experimentally, the electrode potential (EO/R) cannot be measured directly. However,

it can be inferred from a measurement of the potential difference between the electrode
and some second electrode placed into the same solution (cell potential, Ecell), provided
the potential on the second electrode is well known. This requires a reference elec-
trode, for example, a saturated calomel electrode (SCE) or a standard hydrogen electrode
(SHE) [2–4].

Thus, by convention, one may write that the cell potential is

Ecell = EO/R − Ereference (I.3)

If Ereference = 0 V (as for the SHE), then,

Ecell = EO/R (I.4)

If no current flows through the electrochemical cell, that is, no electrochemical changes
have occurred, the electrochemical cell is said to be at equilibrium. In other words, the
electrode will adopt an equilibrium or reversible potential (Erev).

Thus one may write that

EO/R = Erev (I.5)

or

Erev = Eo
O/R + RT

nF
ln

CS
O

CS
R

(I.6)
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4 Power Ultrasound in Electrochemistry

Equation (I.6) implies that there is a dynamic equilibrium at the electrode surface, that
is, the oxidation of R and the reduction of O occur at the same rate. Experimentally, it is
observed that, at the reversible potential, no net current flows in the cell, that is, the forward
and the reverse currents are equal in magnitude [3]. Thus one may write

If = Ir = Io (I.7)

where If and Ir are the partial currents for the forward and reverse electrochemical reactions
respectively and Io is an important kinetic parameter of an electron-transfer reaction known
as the exchange current at Erev. Io is a measure of the intrinsic ability of O and R to take part
in electron-transfer reactions at the electrode surface; for example, large values indicate
that electron transfer is facile.

In ‘real’ situations, information on the electron-transfer processes cannot be obtained
using a two-electrode system at equilibrium. Electrode kinetic parameters such as Io can
only be determined if the equilibrium O + ne– ↔ R is ‘disturbed’, that is, a potential
difference is applied to the electrochemical cell. In order to quantify relationships between
current and potential, it is necessary to employ a three-electrode system in which the
potential difference is varied between a working electrode (W.E.) [on which the electrode
reaction occurs] and a reference electrode (R.E.) and the current, developed by one or several
electrode reactions at the working electrode, is measured between a counter electrode (C.E.)
and the working electrode. These three electrodes are linked to a potentiostat (Figure I.2).

The steady potential resulting from the rapid establishment of the equilibrium in Equa-
tion (I.6) can be explained as follows: no net current is flowing when the forward and
reverse rates of the reaction are equal. The further such an equilibrium lies to the right,
the more negative is the electrode potential. If the working electrode potential is made
more negative than the equilibrium potential, the equilibrium may re-assert itself in order
to satisfy the Nernst equation, that is, the surface concentration of O and R have to take
up new values [see Equation (I.6)]. In this case, CS

R increases and CS
o decreases. Thus, a

decrease in the ratio CS
o /CS

R is observed and a cathodic current will be noted.
It should be emphasized that these predictions are based on thermodynamic parameters.

It is important to note that the partial currents flowing in the electrochemical cell at any

E

Operational
amplifier+

R.E.

C.E.W.E.

Cell

–
Ammeter

I

A

Figure I.2 Potentiostatic assembly for electrode potential measurements.
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potential depend on the electron-transfer kinetics. Thus, at any potential the measured
current, Inet, is related to the forward and reverse partial currents and is given by

Inet = Ir − If (I.8)

For simplicity, it is assumed in the following discussion that the rate of heterogeneous
electron transfer is the rate-limiting step, that is, other factors such as mass-transfer effect
are not considered.

Since I represents the number of electrons reacting with O per second, or the number
of coulombs of electric charge flowing per second, the question ‘What is I?’ is essentially
the same as ‘What is the rate, v, of the reaction O + ne– ↔ R?’ The following equations
demonstrate the direct proportionality between the Faradaic current and electrolysis rate
(Faraday’s law) [1]:

I = dQ

dt
(I.9)

and

Q

nF
= w

Mr
= N (I.10)

where
I is the current flowing in A,
Q is the quantity of electricity passed in C,
t is the time in s,
n is the valence of the element deposited,
F is the Faraday constant in C mol−1 (F = 96 484.6 C mol−1),
w is the mass of substance deposited in g,
Mr is the relative atomic mass of the element deposited in g mol−1, and
N is the number of moles electrolysed in mol.

Thus if the reaction rate, v, is given by

v = dN

dt
(I.11)

then, from Equations (I.9) and (I.10)

v = I

nF
(I.12)

Since electrode reactions are heterogeneous, their reaction rates are described in units of
moles per unit area per second; that is,

v = I

nFA
(I.13)

or

v = i

nF
(I.13a)

where i is the current density (i = I/A) in A cm−2, A is the electrode surface area (cm2) and
v is in mol cm−2 s−1.
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6 Power Ultrasound in Electrochemistry

If one assumes, for dilute solutions, that the activity approximates to concentration, one
may write

v = kCS (I.14)

Employing Equations (I.13) and (I.14), the current is given by

I = nFAkCS (I.15)

Thus one may write that the partial currents for the forward and reverse reactions as:

If = nFAkfC
S
o (I.16)

and,

Ir = nFAkrC
S
R (I.17)

where n is the number of electrons transferred, A is the electrode surface area (cm2), CS is
the surface concentration (mol cm−3) and kf and kr are the rate constants (cm s−1) for the
forward and reverse heterogeneous reaction.

Unlike conventional reaction rate constants, which vary only with temperature, these
rate constants are dependent both on temperature and the applied potential, Eapp. It is found
experimentally that the forward and reverse rate constants vary exponentially as given
below [3]

kf = ko exp[(−αnF/RT)(Eapp − Eo)] (I.18)

and

kr = ko exp[((1 − α)nF/RT)(Eapp − Eo)] (I.19)

where ko is the formal or the apparent heterogeneous rate constant and α is known as the
electron-transfer coefficient.

Thus, the measured current, Inet, becomes

Inet = Ir − If = nFA
(
krC

S
R − kfC

S
o

)
(I.20)

or substituting kf and kr from Equations (I.18) and (I.19)

Inet = nFAko
{
CS

R exp[(1 − α)(nF/RT)(Eapp − Eo)] − CS
o exp[(−αnF/RT)(Eapp − Eo)]

}

(I.21)

Equation (I.21) is known as the Eyring equation and relates the surface concentrations
to the net current flow, Inet. The equation is ideal and cannot be tested experimentally.
However, one such equation which can be tested is the Butler-Volmer equation, which
relates the bulk concentrations (measurable) with the net current. Discussion below will
show how the Eyring equation can be transformed to the Butler-Volmer equation provided
that the Nernst equation is considered.

If it is assumed that the surface concentrations and the bulk concentrations of O and R
are only equal when the electrode is at equilibrium, that is, CS

o = C∗
o and CS

R = C∗
R when

Ecell = Erev, then rearranging the Nernst equation [Equation (I.6)] gives
(
C∗

R/C∗
o

)
exp[(nF/RT)(Erev − Eo)] = 1 (I.22)
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If both sides of Equation (I.22) are raised to the power α, one obtains
(
C∗

R/C∗
o

)α
exp[(αnF/RT) (Erev − Eo)] = 1 (I.23)

(where 1α = 1) and if both sides of Equation (I.22) are raised to the power (α − 1), one
also obtains

(
C∗

R/C∗
o

)(α−1)
exp[(α − 1) (nF/RT)(Erev − Eo)] = 1 (I.24)

If both sides of Equation (I.23) are multiplied by CS
o , one may write

CS
o

(
C∗

R/C∗
o

)α
exp[(αnF/RT) (Erev − Eo)] = CS

o (I.25)

similarly if both sides of Equation (I.24) are multiplied by CS
R, one may write

CS
R

(
C∗

R/C∗
o

)(α−1)
exp[(α − 1) (n/RT)(Erev − Eo)] = CS

R (I.26)

Inserting Equations (I.25) and (I.26) into Equation (I.21) leads to Equation (I.27)

Inet = nFAko
(
C∗

R

)α (
C∗

o

)(1−a) {(
CS

R/C∗
R

)
exp[(1 − α)(nF/RT)(Eapp − Erev)]

× (
CS

o /C∗
o

)
exp[(−αnF/RT)(Eapp − Erev)]

}
(I.27)

It is also found experimentally that there is a deviation of the applied potential, Eapp,
from the reversible potential, Erev. This ‘perturbation’ is termed overpotential, η (see later
in this section) and is given by:

η = Eapp − Erev (I.28)

Inserting Equation (I.28) into Equation (I.27) leads to Equation (I.29)

Inet = nFAko
(
C∗

R

)α (
C∗

o

)(1−α) {(
CS

R/C∗
R

)
exp[(1 − α)(nF/RT)η]

× (
CS

o /C∗
o

)
exp[(−αnF/RT)η]

}
(I.29)

or

Inet = Io
{(

CS
R/C∗

R

)
exp[(1 − α)(nF/RT)η] − (

CS
o /C∗

o

)
exp[(−αnF/RT)η]

}
(I.30)

with Io = nFAko (C∗
R)α (C∗

o )(1 − α) being the exchange current. Often the exchange current
is normalised to unit area to provide the exchange current density, io = Io/A.

If the solution is well stirred or currents are kept so low that the surface concentra-
tions do not differ appreciably from the bulk values, that is, CS

o = C∗
o and CS

R = C∗
R, then

Equation (I.30) becomes

inet = io{exp[((1 − α)nF/RT)η] − exp[(−αnF/RT)η]} (I.31)

which is known as the Butler-Volmer equation.
Equation (I.31) must be regarded as the fundamental equation of electrode kinetics and

it shows how the net current varies with the exchange current density, the overpotential
and the electron-transfer coefficient. For practical purposes, it is convenient to consider the
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8 Power Ultrasound in Electrochemistry

limiting behaviour of Equation (I.31) for small and large values of the arguments of the
exponential terms. Experimentally, two limiting forms of Equation (I.31) are used:

(a) At small overpotentials.
For small values of overpotential, that is, when η → 0, the exponential terms can be

written as Taylor expansions, that is, exp(x) ≈ (1 + x). Thus, Equation (I.31) becomes

inet = ionF

RT
η (I.32)

that is, the current density is directly proportional to the overpotential. Thus a plot of
inet versus η is linear. By analogy with Ohm’s law (V = Ir), here (RT/nFio) can be
regarded as an impedance and is often referred to as a Faradaic (or charge transfer or
ohmic) resistance. This is particularly important in AC impedance measurements. In
practice, the linear approximation can be used for |η| > 10/n mV.

(b) At large overpotentials.
At large positive overpotentials, that is, when η → +∞ that is, exp[(−αnF/RT)η] →

0, then Equation (I.31) can be approximated to

inet ≈ io exp[(1 − α)(nF/RT)η] (I.33)

or

log inet ≈ log io + (1 − α)(nF/(2.3RT))η (I.34)

[where ln(x) = 2.3 log(x)] or

η ≈ −2.3RT log io/((1 − α)nF) + 2.3RT log inet/((1 − α)nF) (I.35)

At large negative overpotentials, that is, when η → −∞, Equation (I.31) can be
approximated to

inet ≈ −io exp[(−αnF/RT)η] (I.36)

or

log |inet| ≈ log io − αnF/(2.3RT)η (I.37)

or

η ≈ 2.3RT log io/(αnF) − 2.3RT log |inet|/(αnF) (I.38)

The logarithmic relationships in Equations (I.35) and (I.38) are known as the Tafel
equations in the form of η = a + b log inet. In practice, the Tafel approximation is
generally used for |η| < 120/n mV.

A plot of versus η vs. log inet will be linear in this high overpotential region, and log io
and α can be found from the intercept (a) and slope (b) respectively, as shown in Figure I.3.

Having discussed the important parameters in electrode kinetics, the next section con-
siders the effect of overpotential on the electrode potential measurements.

All galvanic cells are said to operate reversibly when they draw zero current, that is,
operate at the reversible potential, Erev. However, if the electrode potential is deliberately
altered to a value more anodic or cathodic to its equilibrium value, then current will
immediately flow in such a direction so as restore the equilibrium, that is, normal battery


