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From the earliest times, engineers have been inspired by birds as models for flight vehicles, and more 
specifically, shape changing or morphing flight vehicles. A common thematic element has been to 
gaze upon a bird and imagine “the bird that changes into an airplane”, and vice versa. Now that this 
vision is within reach, exciting research is investigating the methodologies and technologies required.

Morphing Aerospace Vehicles and Structures is a synthesis of the relevant disciplines and applications 
involved in the morphing of fixed wing flight vehicles. The book is organized into three major sections 
on Bio-Inspiration, Control and Dynamics, and Smart Materials and Structures. Most chapters are 
both tutorial and research oriented in nature, covering elementary concepts through advanced and 
in many cases novel methodologies. Insightful numerical and experimental results compliment the 
technical exposition wherever possible. To stimulate and encourage further investigation, all chapters 
discuss further topics for research in particular subject areas, and a summary chapter addresses broad 
challenges and directions for future research. 

Key features:

• Features the work of leading researchers in the field of morphing flight. Covers a wide range of 
morphing technologies that includes Bio-Mechanics, Intelligent Control, Aerodynamics, Flight 
Mechanics and Control, and Smart Materials and Structures.

• Emphasizes the essential technical interdependencies of a variety of disciplines.

• Delivers practical insights while presenting a comprehensive treatment that maintains engineering 
and mathematical detail and rigor.

• Includes a brief history of morphing and bio-inspiration for air vehicles.

Morphing Aerospace Vehicles and Structures is an insightful reference and introduction to morphing that 
will be invaluable for practicing engineers and researchers in aerospace and mechanical engineering.
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11.3.3 Examples of Morphing with the Kagomé Truss 277
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Foreword

Morphing systems are reconfigurable systems whose features include geometric shape change,
but also can include color, aural or electromagnetic changes. Morphing aircraft with retractable
landing gear, flaps and slats and variable sweep wings are not unusual today, but they were
futuristic 70 or 80 years ago. Who has not marveled to see the morphing wing of a commercial
jet robotically change shape as it deploys spoilers and flaps when landing? On the other hand,
the missions for these aircraft are conventional. This book looks at morphing systems with an
eye to the future in which missions will be challenging and today’s solutions simply will not
work.

I first came across the term “morphology” in 1971 while reading the final draft of Professor
Holt Ashley’s textbook Engineering Analysis of Flight Vehicles. His first chapter is entitled
“Morphology of the Airplane.” Holt was my research adviser at Stanford in the late 1960s
and, more importantly a distinguished educator, researcher, engineer and master of the written
English language. When I suggested that he change “morphology” to something like “shape,”
he replied: “But morphology is such a wonderful word! So descriptive!” And so it is.

My four-year stint as a DARPA program manager included development of game-changing
morphing aircraft for a specific military mission. The DARPA program was very successful
and we showed that: (1) morphing shape change is not expensive, compared to the system
benefits it provides; and (2) morphing concepts succeed when the airplane mission involves
design conflicts requiring the choice of either building a large wing/engine combination or a
smaller mechanized wing with smaller engines and fuel requirements. Sometimes, no other
approach other than morphing worked.

Future aircraft missions will require aircraft shape and feature changes that, in turn, require
new component technologies, from engines to wing mechanisms to smart materials, as well
as expanded analysis techniques. This book provides valuable information to begin this jour-
ney into the future. It begins with bio-inspiration. The Russian engineer Genrich Altshuller
observed that “In nature there are lots of hidden patents.” Chapter 8 on perching aircraft sug-
gests a unique use for integrated morphing technologies, while Chapter 9 on smart materials
and control of morphing devices provides a window on the challenging problems of system
integration.
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xvi Foreword

Oliver Wendell Holmes once wrote: “A man’s mind stretched by a new idea can never go
back to its original dimensions.” This book provides an opportunity for mind expansion. I
encourage you to read it, absorb the ideas and contribute to the morphing aircraft future.

Terry A. Weisshaar
Professor Emeritus
Purdue University

West Lafayette, Indiana
USA
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Series Preface

The field of aerospace is wide ranging and multi-disciplinary, covering a large variety of
products, disciplines and domains, not merely in engineering but in many related supporting
activities. These combine to enable the aerospace industry to produce exciting and technolog-
ically advanced vehicles. The wealth of knowledge and experience that has been gained by
expert practitioners in the various aerospace fields needs to be passed onto others working in
the industry, including those just entering from University.

The Aerospace Series aims to be a practical and topical series of books aimed at engineering
professionals, operators, users and allied professions such as commercial and legal executives
in the aerospace industry. The range of topics is intended to be wide ranging, covering design
and development, manufacture, operation and support of aircraft as well as topics such as
infrastructure operations and developments in research and technology. The intention is to
provide a source of relevant information that will be of interest and benefit to all those people
working in aerospace.

There has been much interest world-wide in the development of morphing air-vehicles to
improve performance, and possibly change mission requirements in-flight, by enabling the
air-vehicle to adjust its external shape and structural/aerodynamic/control characteristics to
adapt to the changing flight environment. Many different concepts have been proposed, with
a few being demonstrated on a range of different prototype flying vehicles.

This book, Morphing Aerospace Vehicles and Structures, is the first textbook to provide an
overview of the current status of morphing air-vehicles, and to provide guidance as to likely
future directions in this exciting technology. Starting with the bio-inspired geometric changes
of insects, birds and bats that are the motivation for many morphing concepts, the book then
describes issues relating to the flight control and dynamics of morphing air-vehicles, and
also the application of smart materials and hierarchical control for morphing. It is a welcome
addition to the Wiley Aerospace Series.

Peter Belobaba, Jonathan Cooper, Roy Langton and Allan Seabridge
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1
Introduction
John Valasek
Texas A&M University, USA

A flying machine is impossible, in spite of the testimony of the birds
—John Le Conte, well-known naturalist, ”The Problem of the Flying

Machine,” Popular Science Monthly, November 1888, p. 69.

1.1 Introduction

Current interest in morphing vehicles has been fueled by advances in smart technologies
such as materials, sensors, actuators, their associated support hardware and microelectronics.
These advances have led to a series of breakthroughs in a wide variety of disciplines that, when
fully realized for aircraft applications, have the potential to produce large improvements in
aircraft safety, affordability, and environmental compatibility. The road to these advances and
applications is paved with the efforts of pioneers going back several centuries. This chapter
seeks to succinctly map out this road by highlighting the contributions of these pioneers and
showing the historical connections between bio-inspiration and aeronautical engineering. A
second objective is to demonstrate that the field of morphing has now come nearly full circle
over the past 100 plus years. Birds inspired the pioneer aviators, who sought solutions to
aerodynamic and control problems of flight. But a smooth and continuous shape-changing
capability like that of birds was beyond the technologies of the day, so the concept of variable
geometry using conventional hinges and pivots evolved and was used for many years. With
new results in bio-inspiration and recent advances in aerodynamics, controls, structures, and
materials, researchers are finally converging upon the set of tools and technologies needed
to realize the original dream of aircraft which are capable of smooth and continuous shape-
changing. The focus and scope of this chapter are intentionally limited to concepts and aircraft
that are accessible through the unclassified, open literature.

Morphing Aerospace Vehicles and Structures, First Edition. Edited by John Valasek.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

1
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2 Morphing Aerospace Vehicles and Structures

Figure 1.1 Lilienthal Glider circa 1880s showing bird influence. Reproduced by permission of Archives
Otto-Lilienthal Museum

1.2 The Early Years: Bio-Inspiration

Otto Lilienthal was a nineteenth-century Prussian aviator who had a lifelong fascination with
bird flight which led him into a professional career as a designer. He appeared on the aviation
scene in 1891 by designing, building, and flying a series of gliders. Between 1891 and 1896 he
completed nearly 2,000 flights in 16 different types of gliders, an example of which is shown in
Figure 1.1. The wings of these gliders were described as resembling “the outstretched pinions
of a soaring bird.” The bird species which captivated him most were storks, and the extent to
which birds influenced Lilienthal is evidenced by two of the many books which he wrote on
aviation: Our Teachers in Soaring Flight in 1897, and Birdflight as the Basis for Aviation: A
Contribution toward a System of Aviation in 1889 (Lilienthal 1889). His observations on bird
twist and camber distributions were influential in the development of his air-pressure tables
and airfoil data. Interestingly, Lilienthal also made attempts at powered flight but chose to only
study wings with orntithopteric wingtips. His insistence on the use of flapping wing tips in
preference to a conventional propeller is an indication of the extent to which he was captivated
by bird flight (Crouch 1989). Several early pioneers recognized the value in morphing as a
control effect. Edson Fessenden Gallaudet, Professor of Physics at Yale, applied the concept of
wing warping to a kite in 1898. While not entirely successful, this kite nonetheless embodied
the basic structural concepts which would appear in aircraft designs much later (Crouch 1989).
Independently, Orville and Wilbur Wright, correctly deduced that wing warping could provide
lateral control. Wilbur remarked to Octave Chanute in 1900 that “My observation of the flight
of buzzards leads me to believe that they regain their lateral balance, when partly overturned
by a gust of wind, by a torsion of the tips of the wings. If the rear edge of the right wing tip is
twisted upward and the left downward, the bird becomes an animated windmill and instantly
begins to turn, a line from its head to its tail being the axis” (Wright 1900). This observation
led to the design of the 1902 Wright Glider, which incorporated wing warping for lateral
(roll) control (Figure 1.2). The warping was accomplished by wires attached to the pilot’s
belt, which were controlled by his shifting body position. Although this craft was flown by
the Wrights as both a kite and a glider, it was during flights of the latter type that the need for
a directional (yaw) control was first realized, and then solved with the creation of the rudder.
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Figure 1.2 1902 Wright Glider featuring lateral and directional control by warping. Reproduced by
permission of United States Air Force Historical Research Agency

Correctly recognizing that achieving harmony of control would greatly improve the control
and usefulness of an aircraft, in October 1902 the Wrights developed an interconnection
between warping of the wing and warping of the vertical tail. Thus the concept of what
would later become the aileron-to-rudder interconnect or ARI was born. With the problems of
longitudinal control, lateral control, directional control, and control harmony solved, the 1902
Wright Glider became essentially the world’s first successful airplane (Crouch 1989). These
developments paved the way for the success of the powered 1903 Wright Flyer a year later.

The Etrich Taube (“dove” in German) series of designs have probably been the ultimate
expression of bio-inspiration to aircraft design. In fact, except for the omission of flapping
wings, the Taube designs are essentially bio-mimetic, i.e. directly mimicking a biological
system (Figure 1.3). The Etrich Luft-Limousine / VII was somewhat unique for an airplane of

Figure 1.3 Etrich Luft-Limousine / VII four-seater passenger airplane of 1912
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Figure 1.4 Rumpler Taube on the front page of the New York Times Mid-Week Pictorial, January
1st, 1917

its time since it employed multi-material construction. This consisted of an aluminum sheet
covering from the nose to just behind the wings, with wood used everywhere else. The fuselage
structure used wooden rings and channel-section longitudinal members and the windows were
celluloid and wire gauze. The initial Taube designs were created by Igo Etrich in Austria in
1909. The original inspiration for the unique wing planform on Taube designs was not a bird
wing, but the Zanonia macrocarpa seed, which falls from trees in a slow spin induced by a
single wing. This was not successful, yet the influence of birds on later adaptations of this wing
design can clearly be seen (Figure 1.4). Like the Wright designs, the Taube designs employed
wing and horizontal tail warping via wires and external posts, although the vertical tail surfaces
were hinged. Despite contemporary aircraft designs which featured vertical tails of a size and
proportion that would be recognizable in modern designs, the Taube designs mimicked birds
so much that the dorsal and ventral fins comprising the vertical tail surfaces were very small.
Ultimately, the very small vertical tail surfaces became a distinguishing characteristic of the
Taube designs.

The Wright and Taube designs demonstrated that warping controls can be effective on air-
craft with thin and flexible wings. But the invention of the now conventional hinged controls,
such as ailerons and rudders, was essential for later aircraft with more rigid structures and
metallic materials. Thus the problem of materials and structures has been a central considera-
tion to morphing aircraft from the outset. By the onset of the First World War in 1914 and in
the years afterward, virtually all high performance aircraft used conventional hinged control
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surfaces instead of warping. With the advent of aircraft with relatively rigid metallic structures
in the 1930s, the path to morphing clearly lay in changing the geometry of the aircraft via
complex arrangements of conventional hinges, pivots, and rails rather than warping.

1.3 The Middle Years: Variable Geometry

During the inter-war years in France, Ivan Makhonine conceived the idea of a telescoping
wing aircraft. The aim was to improve cruise performance by reducing the induced drag, or
the drag due to the creation of lift. This was to be accomplished by reducing span loading
which is the ratio of aircraft weight to wing span. As shown in Figure 1.5, the mechanism

Figure 1.5 The Makhonine MAK-101 telescoping wing airplane of 1933: wing tip extended (top) and
retracted (bottom)
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Figure 1.6 Sir Barnes Neville Wallis with a model of the Swallow, wings at low sweep

works like a stiletto knife, except that the wing can also be retracted automatically since it was
pneumatically powered with a standby manual system. The fixed landing gear MAK-10 was
first flown in 1931, followed by the retractable landing gear MAK-101 in 1933. The MAK-101
was flown many times over the next several years until it was destroyed in its hangar during
a USAAF bombing raid late in the Second World War. Makhonine continued his research
into the telescoping wing concept post-war, culminating in the last aircraft in the series, the
MAK-123 which first flew in 1947. The MAK-123 was a four-seat passenger aircraft that
flew well and was reported to have adequate handling qualities, but was damaged in a forced
landing and never flew again.

British aircraft designer Sir Barnes Neville Wallis, well known as the inventor of the
geodesic structural design concept used in the Vickers Wellington medium bomber, also in-
vestigated novel variable geometry configurations. Although he did not invent the swing-wing
concept, Wallis devoted much effort to making what he called the “wing-controlled aerodyne”
practical as a means of achieving supersonic flight. His two main goals were to use variable
geometry as a solution to handling the center of gravity changes during flight, and to achieve
laminar flow over the wing body. His Wild Goose design of the 1940s was a military mission
supersonic concept with a slender laminar flow body and swing-wings. Several sub-scale mod-
els of the Wild Goose were successfully flown in the late 1940s and early 1950s. A full-scale
piloted version of the Wild Goose was planned but later cancelled in 1952. The Swallow was a
longer-range derivative of the Wild Goose, designed in the 1950s. Many sub-scale models were
produced (Figure 1.6) and flown, and the results were so promising that full-scale versions
were planned. However, these were not to be implemented due to the British defense funding
climate of the late 1950s. Nevertheless, the Swallow was influential as a military concept
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Figure 1.7 An illustration of the Swallow by Barnes Wallis

aircraft (Figure 1.7) and inspired various design features which later appeared in U.S. aircraft
such as the General Dynamics F-111 Aardvark. During this same period in the USA, variable
geometry research sponsored by NASA paved the way for experimental transonic designs
such as the Bell X-5 (Figure 1.8). The X-5 was the first full-scale aircraft to be flown which
was capable of sweeping its wings in flight. The wing sweep angles could be set in flight to
20, 45, and 60 degrees and were tested at subsonic and transonic speeds. With the wings fully
extended, the low-speed performance was improved for take-off and landing, and with the
wings swept back, the high speed performance was improved and drag was reduced. Results
of this research directly influenced the design of the General Dynamics F-111 Aardvark and
the Grumman F-14 Tomcat, both of which went into large-scale production. It is interesting

Figure 1.8 Bell X-5 showing variable sweep wing positions. Reproduced by permission of National
Aeronautics and Space Administration
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Figure 1.9 Boeing 2707 Supersonic Transport notional configuration with variable sweep wing

to note that the variable geometry concept eventually found its way into the commercial air
transport sector as well. It was seriously considered for various conceptual designs, including
the Boeing 2707 Supersonic Transport of the 1960s (Figure 1.9). Even though the B2707 never
progressed beyond the full-scale mock-up stage, a large variable geometry supersonic aircraft
appeared a decade later in the form of the Rockwell International B-1A bomber. NASA later
conducted a research program with an aircraft that combined both variable geometry and
shape changing similar to the traditional wing warping of the early pioneers. The AFTI F-111
Mission Adaptive Wing (MAW), shown in Figure 1.10, was intended to minimize penalties
for off-design flight conditions through a combination of smooth-skin variable camber and
variable wing sweep angle. As opposed to the hinged flaps with discontinuous surfaces and
exposed mechanisms of conventional aircraft, the variable camber surfaces of the MAW
feature smooth flexible upper surfaces and fully enclosed lower surfaces that can be actuated in
flight to provide the desired wing camber. This flight research program was highly successful
and served as a vital stepping stone toward the realization of a fully morphing aircraft.

With all of the successes of the variable geometry approach, it is not surprising that bio-
inspiration was largely overlooked or simply not considered promising enough during this

Figure 1.10 NASA AFTI F-111 Mission Adaptive Wing. Reproduced by permission of National
Aeronautics and Space Administration


