
CHITOSAN-BASED SYSTEMS FOR BIOPHARMACEUTICALS

DELIVERY, TARGETING AND POLYMER THERAPEUTICS

Chitosan-Based Systems for Biopharmaceuticals

Chitosan-Based Systems for Biopharmaceuticals

Delivery, Targeting and Polymer Therapeutics

Edited by

BRUNO SARMENTO

Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal and

CICS, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde–Norte, Gandra, Portugal

JOSÉ DAS NEVES

Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal

This edition first published 2012 © 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Chitosan-based systems for biopharmaceuticals : delivery, targeting, and polymer therapeutics / edited by Bruno Sarmento, José das Neves.

p.; cm.

Includes bibliographical references and index.

ISBN 978-0-470-97832-0 (cloth) – ISBN 978-1-119-96296-0 (ePDF) – ISBN 978-1-119-96297-7 (oBook) – ISBN 978-1-119-96407-0 (ePub) – ISBN 978-1-119-96408-7 (eMobi)

I. Sarmento, Bruno. II. das Neves, José, 1978-

[DNLM: 1. Biopharmaceutics. 2. Chitosan–therapeutic use. 3. Biopolymers–therapeutic use. 4. Drug Carriers–therapeutic use. QU 83]

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470978320

Set in 10/12pt Times by Thomson Digital, Noida, India

Contents

List	of Con	ntributors	xvii		
For	eword		xxiii		
		a José Alonso			
•	face		XXV		
Ack	knowledgments xxvii				
Par	t One	General Aspects of Chitosan	1		
1	Chem	nical and Technological Advances in Chitins and Chitosans Useful for			
	the F	ormulation of Biopharmaceuticals	3		
	Ricca	rdo A. A. Muzzarelli			
	1.1	Introduction	3		
	1.2	Safety of Chitins and Chitosans	4		
	1.3	Ionic Liquids: New Solvents and Reaction Media	5		
	1.4	Chitin and Chitosan Nanofibrils	8		
		1.4.1 Mechanically Isolated Nanofibrils in the Presence of Acetic Acid	8		
		1.4.2 Nanochitosan Obtained from Partially Deacetylated Chitin or Deacetylated			
		Nanochitin	9		
	1.5	Electrospun Nanofibers	10		
	1.6	Polyelectrolyte Complexes and Mucoadhesion	12		
		1.6.1 Chitosan Polyelectrolyte Complexes Soluble in Alkaline Medium	14		
		1.6.2 Polyelectrolyte Complexes of Regioselectively Oxidized Chitin	15		
		1.6.3 Polyelectrolyte Complexes of Chitosan with Bacterial Cell Wall Components	15		
		Conclusions and Future Perspectives	16		
		nowledgments	16		
	Refe	erences	16		
2	-	cal Properties of Chitosan and Derivatives in Sol and Gel States uerite Rinaudo	23		
	2.1	Introduction	23		
	2.1	Chitin	23		
	2.2	2.2.1 Solid State of Chitin	24		
		2.2.2 Solubility of Chitin	24		
		2.2.3 Characterization of Chitin	26		
		2.2.4 Processing of Chitin Solution and Physical Properties of Materials	28		
	2.3	Chitosan	28		
		2.3.1 Solubility of Chitosan	28		
		2.3.2 Characterization of Chitosan	29		

	2.4 Refe	 2.3.3 Processing of Chitosan-Based Materials 2.3.4 Complex Materials Based on Interacting Chitosan and Chitosan Derivatives Conclusions and Future Perspectives 	31 31 36 36
3		rption Promotion Properties of Chitosan and Derivatives Yamamoto	45
	3.1	Introduction	45
	3.2	Effect of Chitosan on the Intestinal Absorption of Poorly Absorbable Drugs	47
	3.3		47
	3.4		48
	3.5		51
	3.6		54
	Refe	erences	54
4	Bioco	ompatibility and Biodegradation of Chitosan and Derivatives	57
	Ahma	nd Sukari Halim, Lim Chin Keong, Ismail Zainol, and Ahmad Hazri Abdul Rashid	
	4.1	Introduction	57
	4.2	Biocompatibility Evaluation of Chitosan and Derivatives	58
		4.2.1 <i>In Vitro</i> Biocompatibility	60
		4.2.2 <i>In Vivo</i> Biocompatibility	63
	4.2	4.2.3 Effect of Sterilization on Biocompatibility	64
	4.3	Biodegradation of Chitosan and Derivatives	65
		4.3.1 Factors Influencing the Biodegradation of Chitosan and Derivatives4.3.2 <i>In Vitro</i> Biodegradation of Chitosan and Derivatives	67 68
		4.3.3 <i>In Vivo</i> Biodegradation of Chitosan and Derivatives	69
	4.4	Conclusions and Future Perspectives	69
		erences	70
5	Teres	gical and Pharmacological Activity of Chitosan and Derivatives a Cunha, Branca Teixeira, Bárbara Santos, Marlene Almeida, avo Dias, and José das Neves	75
	5.1	Introduction	75
	5.2	Biological Activity	76
		5.2.1 Antimicrobial Activity	76
		5.2.2 Immune Effects and Anti-Inflammatory Activity	77
		5.2.3 Antioxidant Activity	78
		5.2.4 Anticancer Activity	79
		5.2.5 Blood Coagulation Effects5.2.6 Antidiabetic Activity	79 80
		5.2.7 Neuroprotective Activity	80
		5.2.8 Other Biological Activities	81
	5.3	Chitosan's Usefulness in Therapy and Alternative Medicine	82
		5.3.1 Wound Healing	82
		5.3.2 Obesity	82

		Contents	vii
		5.2.2 Dualimidamia	02
		5.3.3 Dyslipidemia5.3.4 Dental Plaque	83 83
		5.3.5 Renal Failure	
		5.3.6 Other Uses	83
	<i>5</i> 1		84
		Conclusions and Future Perspectives	84
		nowledgments	85
		erences	85
	Furt	ther Reading	92
6	Biolo	gical, Chemical, and Physical Compatibility of Chitosan and Biopharmaceuticals	93
	Masa	yuki Ishihara, Masanori Fujita, Satoko Kishimoto, Hidemi Hattori, and Yasuhiro Kanatani	
	6.1	Introduction	93
	6.2	Structural Features of Chitosan and Its Derivatives	94
	6.3	Biocompatibility for Chitosan and Its Derivatives	95
		6.3.1 Inflammatory Reaction	95
		6.3.2 Foreign Body Reaction	96
		6.3.3 Biocompatibility Testing	97
	6.4	Biocompatibility of Photo-Cross-Linkable Chitosan Hydrogel	98
		6.4.1 Photo-Cross-Linkable Chitosan Hydrogel	98
		6.4.2 Photo-Cross-Linkable Chitosan Hydrogel as a Biological Adhesive	99
		6.4.3 Photo-Cross-Linkable Chitosan Hydrogel as a Wound Dressing	99
		6.4.4 Safety of Photo-Cross-Linkable Chitosan Hydrogel	99
	6.5	Physical and Chemical Compatibility of Chitosan and Its Derivatives	100
		6.5.1 Chitosan-Based Peptide and Protein Delivery Systems	101
		6.5.2 Chitosan-Based Gene Delivery Systems	101
		6.5.3 Physicochemical Characterization of Protein-, Peptide-, or	
		Gene-Loaded Chitosan-Based PECs	101
	6.6		102
		erences	103
_			40=
7		roaches for Functional Modification or Cross-Linking of Chitosan witha, N. Sanoj Rejinold, Joel D. Bumgardner, Shanti V. Nair, and Rangasamy Jayakumar	107
			107
	7.1		107
	7.2	8	108
		7.2.1 Chemical Cross-Linking	108
		7.2.2 Radiation Cross-Linking	111
		7.2.3 Physical Cross-Linking	111
	7.3	Modified Chitosan: Synthesis and Characterization	112
		7.3.1 Synthesis of Water-soluble Chitosan Derivatives	112
		7.3.2 Thiolation	113
		7.3.3 Succinylation	113
		7.3.4 Chitosan-Grafted Polymers	115
	7.4	Applications of Modified Chitosan and Its Derivatives in Drug Delivery	118
	7.5	Conclusions and Future Perspectives	118
	Ack	nowledgments	118
	Pof	prances	110

		Biopharmaceuticals Formulation and Delivery Aspects Using and Derivatives	125
8	Form	f Chitosan and Derivatives in Conventional Biopharmaceutical Dosage s Formulation o Vasconcelos, Pedro Barrocas, and Rui Cerdeira	127
	8.1	Introduction	127
	8.2	Advantageous Properties of Chitosan and Its Derivatives	128
	8.3	Oral Administration	129
	8.4	Buccal Administration	131
		Nasal Administration	132
		Pulmonary Administration	132
	8.7	Transdermal Administration	133
	8.8	Conclusions and Future Perspectives	133
	Refe	rences	134
9	for Bi	facture Techniques of Chitosan-Based Microparticles and Nanoparticles opharmaceuticals a Ferrari, M. Cristina Bonferoni, Silvia Rossi, Giuseppina Sandri, arla M. Caramella	137
	0.1	Introduction	127
		Introduction Water-in-Oil Emulsion and Chemical Cross-linking	137 138
		Drying Techniques	130
	9.3	9.3.1 Spray Drying	141
		9.3.2 Supercritical Fluid Drying	141
		9.3.3 Electrospraying	143
	94	Ionic Cross-linking Methods	144
	<i>7</i>	9.4.1 Low-MW Molecules	145
		9.4.2 Macromolecules	148
	9.5	Coacervation and Precipitation Method	151
		Direct Interaction between Chitosan and Biopharmaceuticals	152
		9.6.1 DNA–Chitosan Interaction	152
		9.6.2 siRNA–Chitosan Interaction	153
	9.7	Conclusions and Future Perspectives	153
	Refe	rences	154
10		san and Derivatives for Biopharmaceutical Use: Mucoadhesive Properties rina Leithner and Andreas Bernkop-Schnürch	159
	10.1	Introduction	159
	10.2	Mucoadhesion	160
		10.2.1 The Mucus	160
		10.2.2 The Interaction of Mucoadhesives and Mucosa	160
		10.2.3 Mucoadhesion	160
		10.2.4 Chitosan as a Mucoadhesive Polymer	161
	10.3	Chitosan and Its Derivatives	161

				Contents	ix	
		10.3.1	Overview		161	
			Thiolated Chitosan		161	
			Chitosan–EDTA and Chitosan–DTPA		164	
			Trimethyl Chitosan		167	
			Mono-N-Carboxymethyl Chitosan		168	
			<i>N</i> -Sulfonato- <i>N</i> , <i>O</i> -Carboxymethylchitosan		168	
			Hydrophobically Modified Chitosans		169	
			PEGylated Chitosan		170	
			Chitosan–Succinate and Chitosan–Phthalate		170	
	10.4	-	rmaceutical Use of Chitosan and Its Derivatives		171	
			Overview		171	
			Oral Drug Delivery		171	
			Nasal Drug Delivery		174	
	10.5		Buccal Drug Delivery		175	
			sions and Future Perspectives		175	
	Refer	ences			176	
11	Chitos	an-Base	d Systems for Mucosal Delivery of Biopharmaceuticals		181	
	Sonia 1	Al-Qadi,	Ana Grenha, and Carmen Remuñán-López			
	11.1	Introdu	ction		181	
	11.2	Importa	ant Challenges for the Delivery of Biopharmaceuticals by Mucosal Routes		182	
	11.3	Interest	in Chitosan for Mucosal Delivery of Biopharmaceuticals		184	
		11.3.1	Chitosan Physicochemical Properties		184	
		11.3.2	Biological Properties of Chitosan		185	
			Mucoadhesive and Permeation-Enhancing Properties		186	
		11.3.4	Chitosan Derivatives		187	
	11.4	Chitosa	an-Based Delivery Nanosystems for Mucosal Delivery of Biopharmaceutic	als	188	
		11.4.1	Oral Delivery of Biopharmaceuticals		189	
			Nasal Delivery of Biopharmaceuticals		192	
			Pulmonary Delivery of Biopharmaceuticals		195	
			sions and Future Perspectives		200	
		owledgm	nents		200	
	Refer	ences			201	
12	Chitos	an-Base	d Delivery Systems for Mucosal Vaccination		211	
	Gerrit	Borchard	d, Farnaz Esmaeili, and Simon Heuking			
	12.1	Introdu	ction		211	
	12.2	Adjuva	nt Properties of Chitosan		212	
	12.3	Chitosa	n in the Delivery of Protein and Subunit Vaccines		213	
	12.4		an-Based Formulations of DNA Vaccines		215	
	12.5		e Formulations Using Chitosan in Combination with Other Polymers		216	
	12.6		nn Derivatives in Vaccine Carrier Design		217	
			<i>N,N,N</i> -Trimethyl Chitosan		217	
			Nasal Delivery of TMC-Based Vaccine Formulations		218	
		12.6.3	Pulmonary Delivery of TMC-Based Vaccine Formulations		219	

x Contents

		12.6.4	Oral Delivery of TMC-Based Vaccine Formulations	219
		12.6.5	Other Chitosan Derivatives	219
	12.7	Conclu	sions and Future Perspectives	220
	Refer	rences		220
13	Chitos	an-Base	d Nanoparticulates for Oral Delivery of Biopharmaceuticals	225
	Filipa .	Antunes,	Fernanda Andrade, and Bruno Sarmento	
	13.1	Introdu	ction	225
	13.2	Challer	nges on the Oral Delivery of Therapeutic Proteins	226
			nges on the Oral Delivery of Genetic Material	227
	13.4	Role of	Chitosan in the Protection of Biopharmaceuticals in the Gastrointestinal Tract	229
	13.5	Chitosa	nn-Based Nanoparticles for Oral Delivery of Therapeutic Proteins	232
	13.6	Chitosa	nn-Based Nanoparticles for Oral Delivery of Genetic Material	234
	13.7	Conclu	sions and Future Perspectives	236
	Ackn	owledgm	nents	237
	Refer	rences		237
14			d Systems for Ocular Delivery of Biopharmaceuticals Rishi Paliwal, and Shivani Rai Paliwal	243
	14.1	Introdu	ction	243
	14.2		Delivery of Biopharmaceuticals	244
			nn: A Suitable Biomaterial for Ocular Therapeutics	244
			nn-Based Systems for Ocular Delivery of Biomacromolecules	245
		14.4.1	Chitosan Solutions as Permeation Enhancers	245
		14.4.2	Chitosan-Based Nanoemulsions	246
		14.4.3	Chitosan Micro- and Nanoparticles	247
		14.4.4	Chitosan-Coated Delivery Systems	248
		14.4.5	Chitosan Complexed with Other Biomaterials	248
	14.5	Toxicol	logical and Compatibility Aspects of Chitosan-Based Ocular Systems	249
	14.6	Conclu	sions and Future Perspectives	250
	Refer	rences		250
15			lification of Chitosan for Delivery of DNA and siRNA	255
	-	-	m, Hu-Lin Jiang, Ding-Ding Guo, Yun-Jaie Choi, Myung-Haing Cho,	
	Toshih	iro Akaik	te, and Chong-Su Cho	
	15.1	Introdu	ction	255
	15.2	Hydrop	philic Modification	256
	15.3	Hydrop	phobic Modification	257
	15.4	Specific	c Ligand Modification	259
		15.4.1	Galactose Ligand	259
		15.4.2	Mannose Ligand	261
		15.4.3	Folate Ligand	263
	15.5	-	sitive Modification	264
		15.5.1	Imidazole	264
		15.5.2	PEI	267
		15.5.3	Spermine	269

			Contents	xi
		15.5.4 PAMAM Dendron		269
	15.6	Conclusions and Future Perspectives		269
		owledgment		269
	Refer			269
Par	t Three	Advanced Application of Chitosan and Derivatives for Biopharmaceutical	s	275
16		s-Specific Chitosan-Based Nanoparticle Systems for Nucleic Acid Delivery pol Jain and Mansoor Amiji		277
	16.1	Introduction		277
	10.1	16.1.1 Nanotechnology in Vaccine and Drug Delivery		277
		16.1.2 Chitosan: A Versatile Biopolymer		278
		16.1.3 Chitosan for Delivery of Nucleic Acid Vaccines and Therapies		279
		16.1.4 Passive versus Active Systemic Targeted Delivery		280
	16.2	Chitosan-Based Nanoparticle Delivery Systems		283
		16.2.1 Chitosan-Based Nanodelivery Systems for DNA Vaccines		283
		16.2.2 Chitosan-Based Nanodelivery Systems for Nucleic Acid Therapy		285
	16.3	Illustrative Examples of DNA Vaccine Delivery		286
		16.3.1 Mucosal Vaccination		286
	16.4	16.3.2 Systemic Vaccination		287
	16.4 16.5	Illustrative Examples of Nucleic Acid Delivery Systems for		288
	16.6	Anti-Inflammatory Therapy		291
	Refer	Conclusions and Future Perspectives rences		294 295
17	Functi	onal PEGylated Chitosan Systems for Biopharmaceuticals		301
		ong Cho, Goen Kim, Hyeok-Seung Kwon, and Yu-Kyoung Oh		
	17.1	Introduction		301
		17.1.1 Physicochemical Properties of PEGylated Chitosan		302
		17.1.2 Biological Properties of PEGylated Chitosan		303
	17.2	PEGylated Chitosan for the Delivery of Proteins and Peptides		304
		17.2.1 Protein Delivery		304
		17.2.2 Peptide Delivery		307
	17.3	PEGylated Chitosan for Delivery of Nucleic Acids		308
		17.3.1 Plasmid DNA Delivery		308
	17.4	17.3.2 Oligonucleotide Delivery		310
	17.4 17.5	PEGylated Chitosan for Delivery of Other Macromolecular Biopharmaceuticals PEGylated Chitosan Used for Cellular Scaffolds		311 313
	17.5	Conclusions and Future Perspectives		313
	Refer	<u>.</u>		314
18		li-Sensitive Chitosan-Based Systems for Biopharmaceuticals		319
	Cuipin	g Zhai, Jinfang Yuan, and Qingyu Gao		
	18.1	Introduction		319
		pH-Sensitive Chitosan-Based Systems		319

xii Contents

	18.3	Thermo	osensitive Chitosan-Based Systems	321
	18.4	pH-Sen	sitive and Thermosensitive Chitosan-Based Systems	323
	18.5	pH- and	d Ionic-Sensitive Chitosan-Based Systems	325
	18.6	Photo-S	Sensitive Chitosan-Based Systems	325
	18.7	Electric	eal-Sensitive Chitosan-Based Systems	326
	18.8	Magnet	cic-Sensitive Chitosan-Based Systems	326
			cal Substance-Sensitive Chitosan-Based Systems	327
	18.10	Conclu	sions and Future Perspectives	327
	Refer	ences		328
19	Chitos	an Copo	lymers for Biopharmaceuticals	333
	Ramon	Novoa-	Carballal, Ricardo Riguera, and Eduardo Fernandez-Megia	
	19.1	Introdu		333
		19.1.1	General Copolymerization Methods	334
			Chitosan Copolymers for Biopharmaceuticals	336
			The Integrity of the Chitosan Chain in Chitosan Copolymers	336
	19.2		n-g-Poly(Ethylene Glycol)	337
		19.2.1	, i	
			Poly(Ethylene Glycol)	337
		19.2.2	Applications of Chitosan-g-Poly(Ethylene Glycol) with Biopharmaceuticals	347
	19.3		n-g-Polyethylenimine	347
			Synthetic Strategies toward the Preparation of Chitosan-g-Polyethylenimine	350
			Applications to Gene Therapy	353
	19.4		Copolymers of Chitosan	357
			Chitosan-g-Polypeptide	357
			Grafting of Chitosan to Thermoresponsive Polymers	357
	10.5		Chitosan-g-Methacrylates	362
	19.5		mers of Chitosan with Promising Applications	363
			Chitosan-g-Polyesters	363
			Chitosan-g-Polysaccharides	366
			Block Copolymers of Chitosan	367
	10.6		Chitosan-g-Dendrimer	368
	19.6 Refer		sions and Future Perspectives	368 369
	Keler	ences		305
20			Chitosan for Anticancer Biopharmaceutical Delivery	381
	Claudi	a Philipp	oi, Brigitta Loretz, Ulrich F. Schaefer, and Claus-Michael Lehr	
	20.1	Introdu	ction	381
	20.2	Chitosa	in and Cancer: Intrinsic Antitumor Activity of the Polymer Itself	382
		20.2.1	Effects of Chitosan, Low-Molecular Weight Chitosan, and	
			Chitooligosaccharides	382
			Effects of Chitosan Nanoparticles	383
	20.3		n Formulations Developed for Classic Anticancer Drugs	383
		20.3.1	Chemically Modified Chitosans or Chitosan–Drug Conjugates	383
		20.3.2	Nanoparticulate Carrier Systems	384
		20.3.3	Chitosans as Absorption Enhancers	384

		Content	ts xiii
	20.4	Biopharmaceuticals Delivered by Chitosan Preparations	384
		20.4.1 Nucleic Acid–Based Therapeutics	385
		20.4.2 Peptide-Based Actives for Cancer Treatment	387
	20.5	Active Targeting Strategies and Multifunctional Chitosan Formulations	388
		20.5.1 Active Targeting Strategies	388
		20.5.2 Multifunctional Chitosan Nanoparticles	389
	20.6	Conclusions and Future Perspectives	389
	Refer	rences	390
21	Chitos	san-Based Biopharmaceutical Scaffolds in Tissue Engineering	
		egenerative Medicine	393
	Tao Jio	ang, Meng Deng, Wafa I. Abdel- Fattah, and Cato T. Laurencin	
		Introduction	393
	21.2	Fabrication of Chitosan-Based Biopharmaceuticals Scaffolds	395
		21.2.1 Techniques for Fabricating Chitosan-Based Scaffolds	395
		21.2.2 Functionalization of Chitosan-Based Scaffolds via Biopharmaceuticals	402
	21.3	11	
		in Tissue Engineering and Regenerative Medicine	403
		21.3.1 Regeneration of Soft Tissue	404
		21.3.2 Regeneration of Hard Tissue	410
		Future Trends: Regenerative Engineering	416
	21.5	Conclusions and Future Perspectives	417
		owledgments	417
	Refer	rences	418
22		d-Healing Properties of Chitosan and Its Use in Wound Dressing	
	Biopha	armaceuticals	429
	Tyler (G. St. Denis, Tianhong Dai, Ying-Ying Huang, and Michael R. Hamblin	
	22.1	Introduction	429
	22.2	Brief Review of Wound Repair	430
		22.2.1 Inflammatory Phase	430
		22.2.2 Proliferative Phase	431
		22.2.3 Remodeling Phase	432
	22.3	Wound-Healing Effects of Chitosan	433
		22.3.1 <i>In Vitro</i> Studies	433
		22.3.2 <i>In Vivo</i> Studies	435
		22.3.3 Clinical Studies	438
	22.4	Chitosan for Wound Therapeutics Delivery	440
		22.4.1 Antimicrobials	440
		22.4.2 Combination with Photodynamic Therapy	442
		22.4.3 Growth Factors	443
		22.4.4 Delivery of Other Drugs	444
	22.5	Conclusions and Future Perspectives	444
	Ackn	owledgments	447
	Refer	rences	447

Par	t Four	Regulatory Status, Toxicological Issues, and Clinical Perspectives	451
23		logical Properties of Chitosan and Derivatives for Biopharmaceutical Applications s J. Kean and Maya Thanou	453
	23.1	Introduction	453
	23.2	In Vitro Toxicity of Chitosan and Derivatives	454
		23.2.1 <i>In Vitro</i> Toxicity of Chitosan	454
		23.2.2 <i>In Vitro</i> Toxicity of Chitosan Derivatives	455
		23.2.3 <i>In Vitro</i> Toxicity of Chitosan Formulations	455
		23.2.4 Antibacterial, Antifungal, and Antiparasitic Activities of Chitosan	
		and Chitosan Derivatives	457
	23.3	In Vivo Toxicity of Chitosan and Derivatives	457
		23.3.1 <i>In Vivo</i> Toxicity of Chitosan	457
		23.3.2 <i>In Vivo</i> Toxicity of Chitosan Derivatives	458
		23.3.3 In Vivo Toxicity of Chitosan Formulations	458
	23.4	Conclusions and Future Perspectives	459
	Refer	ences	459
24	_	atory Status of Chitosan and Derivatives	463
	Michae	el Dornish, David S. Kaplan, and Sambasiva R. Arepalli	
		Introduction	463
		Source	464
		Characterization	464
	24.4	Purity	465
		24.4.1 Impurities	465
		24.4.2 Heavy Metals	465
		24.4.3 Protein	465
		24.4.4 Microbiological Bioburden	466
		24.4.5 Bacterial Endotoxin	466
	24.5	Applications of Advanced Uses of Chitosan	466
		24.5.1 Tissue Engineering	466
		24.5.2 Gene Delivery with Chitosan	467
		24.5.3 Nasal Drug and Vaccine Delivery	467
	24.6	Regulatory Considerations for Chitosan and Chitosan Derivatives in the	
		European Union, and Medical Devices or Combination Products with	460
		Medical Device (CDRH) Lead	468
	247	24.6.1 The US Food and Drug Administration	468
	24.7	Regulatory Pathways	469
	24.8	Chitosan Medical Products: US Regulatory Review Processes for Medical	460
	24.0	Devices or Combination Products with CDRH Lead	469
	24.9	Chitosan Wound Dressings	470
	24.10	24.9.1 Hemostasis and Antimicrobial Activities	470
	24.10	The European Regulatory System: The European Medicines Agency (EMA)	171
		and European Directorate for the Quality of Medicines (EDQM)	474
		24.10.1 Pharmaceuticals – Europe	474
		24.10.2 Medical Devices – Europe	475

		Contents	xv				
	24.11	Further Regulatory Considerations	475				
		24.11.1 Generally Recognized as Safe (GRAS)	476				
		24.11.2 Pharmacopoeia Monographs	476				
		24.11.3 Standards Development Organizations	476				
	24.12	Conclusions and Future Perspectives	477				
		owledgments	478				
	24.13	Disclaimer	478				
	Refer	rences	478				
25		ability and Intellectual Property Issues Related to Chitosan-Based					
	_	armaceutical Products	483				
	Mafala	la Videira and Rogério Gaspar					
	25.1	Introduction	483				
		Setting the Scene: The Role of Chitosan as a Pharmaceutical Excipient	484				
		25.2.1 Current Achievements in Chitosan Use	484				
		25.2.2 Chitosan-Based Ocular Therapy	486				
		25.2.3 Tissue Engineering and Wound Management	487				
		25.2.4 Drug Delivery Systems: Emerging Targeting Solutions	488				
		25.2.5 Recent Trends in Using Chitosan	494				
	25.3	Addressing the Drivers for Scientific Progress on Chitosan: Innovation and Inventability	495				
		25.3.1 Is There a Next Generation of Chitosan?	495				
	25.4	Conclusions and Future Perspectives	496				
	Refer	rences	497				
26	Qualit	Quality Control and Good Manufacturing Practice (GMP) for Chitosan-Based					
	Biopharmaceutical Products						
	Torster	n Richter, Maika Gulich, and Katja Richter					
	List c	of Abbreviations	503				
		Introduction	504				
	26.2	Regulatory Requirements for Production	505				
		26.2.1 Medical Devices	505				
		26.2.2 Excipients	506				
		26.2.3 APIs/Pharmaceuticals	507				
		Manufacturing GMP: Fundamental Considerations	508				
		Requirements for Rooms, Personnel, and Equipment	511				
	26.5	Qualification and Validation	511				
		26.5.1 Qualification	511				
	266	26.5.2 Process Validation	513				
	26.6	Quality Control	513				
	267	26.6.1 Specific Features of Chitosan Quality Control	516				
	26.7	Monitoring and Maintenance of a GMP System	519				
		26.7.1 Vendor and Customer Audits	519				
	26.8	26.7.2 Public Authority Inspections Conclusions and Future Perspectives	521 522				
		rences	522				
	110101		~~~				

xvi Contents

27	Preclinical and Clinical Use of Chitosan and Derivatives for Biopharmaceuticals:					
	From Preclinical Research to the Bedside					
	David	A. Zahar	off, Michael Heffernan, Jonathan Fallon, and John W. Greiner			
	27.1	Introdu	ction	525		
	27.2 Chitosan as a Parenteral (Subcutaneous) Vaccine Platform					
		27.2.1	Enhancement of Humoral and Cell-Mediated Immune Responses	526		
		27.2.2	Enhancement of the Immunoadjuvant Properties of GM-CSF	527		
	27.3	Chitosa	n as an Immunotherapeutic Platform	530		
		27.3.1	Intratumoral Immunotherapy with Chitosan–IL-12	530		
		27.3.2	Intravesical Immunotherapy of Superficial Bladder Carcinoma			
			with Chitosan–IL-12	535		
	27.4	Conclus	sions and Future Perspectives	537		
	References			539		
Inde	ex			543		

List of Contributors

Wafa I. Abdel-Fattah, Biomaterials Department, National Research Centre, Cairo, Egypt

Toshihiro Akaike, Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan

Marlene Almeida, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal

Sonia Al-Qadi, Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Faculty of Pharmacy, Santiago de Compostela, Spain

Mansoor Amiji, Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA

Fernanda Andrade, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal

A. Anitha, Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Kochi, India

Filipa Antunes, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal

Sambasiva R. Arepalli, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA

Pedro Barrocas, Laboratory of Pharmaceutical Development, R&D Department, Bial - Portela & C.^a, S.A., S. Mamede do Coronado, Portugal

Andreas Bernkop-Schnürch, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innsbruck, Austria

M. Cristina Bonferoni, Department of Drug Sciences, School of Pharmacy, University of Pavia, Pavia, Italy

Gerrit Borchard, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland

Joel D. Bumgardner, Department of Biomedical Engineering, University of Memphis, TN, USA

Carla M. Caramella, Department of Drug Sciences, School of Pharmacy, University of Pavia, Pavia, Italy

Rui Cerdeira, Laboratory of Pharmaceutical Development, R&D Department, Bial - Portela & C.^a, S.A., S. Mamede do Coronado, Portugal

Chong-Su Cho, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea

Hee-Jeong Cho, College of Pharmacy, Seoul National University, Seoul, South Korea

Myung-Haing Cho, Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea

Yun-Jaie Choi, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea

Teresa Cunha, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal

Tianhong Dai, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA

Department of Dermatology, Harvard Medical School, Boston, MA, USA

José das Neves, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal

Meng Deng, Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT, USA

Gustavo Dias, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal

Michael Dornish, FMC BioPolymer AS/NovaMatrix, Sandvika, Norway

Farnaz Esmaeili, King's College London, Pharmaceutical Science Division, London, United Kingdom

Jonathan Fallon, Laboratory of Tumor Immunology and Biology, National Cancer Institute, CCR, National Institutes of Health, Bethesda, MD, USA

Eduardo Fernandez-Megia, Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain

Franca Ferrari, Department of Drug Sciences, School of Pharmacy, University of Pavia, Pavia, Italy

Masanori Fujita, Research Institute, National Defense Medical College, Saitama, Japan

Qingyu Gao, Institute of Fine Chemical and Engineering, Henan University, Kaifeng, People's Republic of China

Rogério Gaspar, Nanomedicine and Drug Delivery Systems Group, iMed.UL- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal

John W. Greiner, Laboratory of Tumor Immunology and Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA

Ana Grenha, Centre for Molecular and Structural Biomedicine, Institute for Biotechnology and Bioengineering, University of Algarve, Faro, Portugal

Maika Gulich, Heppe Medical Chitosan GmbH, Halle (Saale), Germany

Ding-Ding Guo, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea

Ahmad Sukari Halim, Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia

Michael R. Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA

Department of Dermatology, Harvard Medical School, Boston, MA, USA

Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA

Hidemi Hattori, Research Institute, National Defense Medical College, Saitama, Japan

Michael Heffernan, Laboratory of Tumor Immunology and Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA

Simon Heuking, Vaccine Formulation Laboratory, Department of Biochemistry, University of Lausanne, Epalinges, Switzerland

Ying-Ying Huang, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA

Department of Dermatology, Harvard Medical School, Boston, MA, USA

Aesthetic and Plastic Center of Guangxi Medical University, Nanning, China

Masayuki Ishihara, Research Institute, National Defense Medical College, Saitama, Japan

Shardool Jain, Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA

Rangasamy Jayakumar, Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Kochi, India

Hu-Lin Jiang, Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea

Tao Jiang, Zimmer Orthobiologics, Inc., Austin, TX, USA

Yasuhiro Kanatani, Department of Policy Science, National Institute of Public Health, Saitama, Japan

David S. Kaplan, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA

Thomas J. Kean, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA

Lim Chin Keong, Reconstructive Sciences Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia

Goen Kim, College of Pharmacy, Seoul National University, Seoul, South Korea

You-Kyoung Kim, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea

Satoko Kishimoto, Research Institute, National Defense Medical College, Saitama, Japan

Research Fellow of the Japan Society for Promotion of Science, Tokyo, Japan

Hyeok-Seung Kwon, College of Pharmacy, Seoul National University, Seoul, South Korea

Cato T. Laurencin, Department of Orthopedic Surgery, University of Connecticut, Farmington, CT, USA

Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA

Claus-Michael Lehr, Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany

Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany

Katharina Leithner, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innsbruck, Austria

Brigitta Loretz, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany

Riccardo A. A. Muzzarelli, Professor Emeritus of Enzymology, University of Ancona, Ancona, Italy

Shanti V. Nair, Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Kochi, India

Ramon Novoa-Carballal, Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain

Yu-Kyoung Oh, College of Pharmacy, Seoul National University, Seoul, South Korea

Rishi Paliwal, Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India

Shivani Rai Paliwal, Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India

Claudia Philippi, Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany

Ahmad Hazri Abdul Rashid, SIRIM, Environmental and Bioprocess Technology Centre, Shah Alam, Selangor, Malaysia

N. Sanoj Rejinold, Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Kochi, India

Carmen Remuñán-López, Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Faculty of Pharmacy, Santiago de Compostela, Spain

Katja Richter, Heppe Medical Chitosan GmbH, Halle (Saale), Germany

Torsten Richter, Heppe Medical Chitosan GmbH, Halle (Saale), Germany

Ricardo Riguera, Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain

Marguerite Rinaudo, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique, affiliated with Joseph Fourier University, Grenoble, France

Silvia Rossi, Department of Drug Sciences, School of Pharmacy, University of Pavia, Pavia, Italy

Giuseppina Sandri, Department of Drug Sciences, School of Pharmacy, University of Pavia, Pavia, Italy

Bárbara Santos, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal

Bruno Sarmento, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal

CICS, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde-Norte, Gandra, Portugal

Ulrich F. Schaefer, Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany

Tyler G. St. Denis, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA Columbia University, New York, NY, USA

Branca Teixeira, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal

Maya Thanou, Pharmaceutical Sciences Division, King's College London, London, United Kingdom

Teófilo Vasconcelos, Laboratory of Pharmaceutical Development, R&D Department, Bial - Portela & C. a, S. A., S. Mamede do Coronado, Portugal

Mafalda Videira, Nanomedicine and Drug Delivery Systems Group, iMed.UL- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal

Suresh P. Vyas, Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India

Akira Yamamoto, Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan

Jinfang Yuan, Institute of Fine Chemical and Engineering, Henan University, Kaifeng, People's Republic of China

David A. Zaharoff, Laboratory of Tumor Immunology and Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA

Biomedical Engineering Program, University of Arkansas, Fayetteville, AR, USA

Ismail Zainol, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia

Cuiping Zhai, Institute of Fine Chemical and Engineering, Henan University, Kaifeng, People's Republic of China

Foreword

The reading of the book Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics has given me great pleasure because it represents a nice illustration of the area of research to which I have dedicated an important part of my research career. It was in the early 1990s, working at MIT with Bob Langer on the encapsulation of proteins within poly(lactide-co-glycolide) (PLGA) microspheres, that I became conscious of the necessity of new biomaterials for the controlled delivery of delicate compounds, that is, biopharmaceuticals; biomaterials which would be friendly with the associated compounds; biomaterials which could be converted into nanoparticles using mild techniques; and biomaterials that could have a low price based on their wide availability in nature. Chitosan comes to my mind as a wonderful biomaterial fulfilling all these desirable properties. Our goal was to convert chitosan powders into nanoparticles using a procedure that would be adequate for the association of biopharmaceuticals. We were then the first authors reporting the ionotropic gelation technique for the association of proteins to chitosan nanoparticles in 1997. Now, it is amazing for me to see how the history of this biomaterial has evolved. We find thousands of articles and hundreds of patents using the keywords "chitosan nanoparticles." It is, indeed, the biomaterial that has attracted the most significant research attention in the area of nanodrug delivery. As a consequence of this accumulated information, we got to know this unique material quite well. For example, we currently recognize how we can engineer this material in order to make it useful for a variety of interesting biomedical applications and, even more importantly, we can appreciate how this biomaterial is making its way to a final purpose: to provide us with new solutions for improving our health and quality of life.

This book will be of great value to those readers who want to know about chitosan from the perspective of its potential for the delivery of biopharmaceuticals. Following an introductory section, the book is divided in three major parts. The first part is about the general properties of chitosan, with emphasis on the physical—chemical properties that are critical for processing it into adequate delivery systems and also on those of relevance for its use as a biomaterial for human use (biocompatibility and biodegradability). In addition, this part presents the inherent biological properties of chitosan, its behavioral mechanism of action upon contact with living cells and tissues, and the way it interacts with drugs and more precisely with delicate biomolecules such as peptides, proteins, antigens, and nucleic acid-based biocompounds. This part ends by presenting the possibility of chemically modifying chitosan in order to further extend the properties and functionalities of chitosan with regard to its use for the delivery of biopharmaceuticals.

In the second part of the book, the reader will find a great display of the possibilities of chitosan being processed into different pharmaceutical forms, starting by conventional dosage forms and continuing to microand nanoparticles. This part logically focuses on the special mucoadhesive properties of chitosan and, thus, on its potential for mucosal drug and vaccine delivery.

The third part is particularly illustrative of the degree of chitosan evolution as a biomaterial. It presents various ways to chemically modify and engineer chitosan in order to make it attractive for a variety of interesting applications, including wound dressing, targeted drug delivery, tissue engineering, and regenerative medicine.

The fourth and final section is without a doubt the most critical one for those who want to know where we stand on the prospects of chitosan as a biomaterial for drug delivery. This section complements the first one regarding the toxicological properties of chitosan under the perspective of the regulatory path and presents the

xxiv Foreword

quality control and good manufacturing practice required for chitosan-derived products. Most significantly, this part covers the amazing information available on chitosan patents and the patentability of chitosan-based biopharmaceutical products, this one being one of the most important applications of chitosan.

Overall, the book presents, in a didactic and well-structured form, critical information for readers interested in the delivery of biopharmaceuticals. It would also be of great benefit for researchers attempting to design, produce, and characterize new biomaterials. It would, of course, also be of interest for any student or researcher interested in the growing field of nanodrug delivery.

María José Alonso Professor of Biopharmacy and Pharmaceutical Technology University of Santiago de Compostela (USC), Spain

Preface

Bruno Sarmento^{1,2} and José das Neves¹

¹ Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto,
Porto, Portugal

² CICS, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde–Norte,
Gandra, Portugal

Since the market launch in 1982 of the first recombinant "human" insulin (Humulin[®], Eli Lilly, Indianapolis, IN, United States), biopharmaceutical medicinal products have seen a steady rise (with particular boosting in recent years) as important tools of modern therapeutics. With an estimated global market of over \$US 167 billion by 2015 [1], biopharmaceuticals are currently widely recognized as highly effective molecules in the management of many metabolic, oncologic, and infectious diseases, as well as in the prevention and *in vivo* diagnosis of such diseases. This particular class of pharmaceuticals is quite heterogeneous and not always clearly defined, comprising different active biological molecules of different complexity such as proteins, peptides, and nucleic acids, among others, which are of biological origin and/or manufactured by biotechnological techniques, usually involving living organisms, cells, or their active components [2]. However, unfavorable physical—chemical properties, poor stability, low permeability, and unsuitable biodistribution of biopharmaceuticals pose important challenges for their adequate pharmaceutical formulation and delivery, and thus their use in therapy. In particular, the challenges in developing adequate materials and systems that allow the use of biopharmaceuticals in daily life are huge. Among the wide variety of proposed solutions for advancing the field [3,4], delivery systems based on chitosan and derivatives have deserved recent singular attention.

The history of chitosan dates back to 1859, when French physiologist Charles Rouget (1824–1904) described the deacetylation of chitin by means of its boiling in the presence of concentrated potassium hydroxide [5]. Immediately, he recognized that the newly obtained product was soluble in acidic solutions, contrasting with the water-insoluble nature of native chitin, thus opening new possibilities for its use. However, it wasn't until 35 years later that the modified chitin received the name "chitosan", which has been attributed to the German physiologist and chemist Felix Hoppe-Seyler (1825–1895) [6]. Nearly one century went by until this modified natural polymer started receiving enough attention as a useful material to be used in the design of drug products [7–9]. Over the years, the study of chitosan revealed that it exhibits several favorable biological properties, such as biocompatibility, biodegradability, low toxicity, and mucoadhesiveness, thus making this polymer a promising candidate for the formulation of biopharmaceuticals. More than a simple excipient for the design of conventional pharmaceutical dosage forms, the development of novel biopharmaceutical delivery systems based on chitosan is a rising subject irrespective of the intended route of administration.

In the present book, renowned experts and researchers from academia, industry, and regulatory bodies provide a concise and up-to-date overview of different issues regarding the application of chitosan and its

derivatives for the development and optimization of biopharmaceutical medicinal products. The book is divided in four different parts. Part One discusses general aspects of chitosan and derivatives, with particular emphasis on issues related to the development of biopharmaceutical chitosan-based systems, comprising a useful background for the following chapters. Part Two deals with the use of chitosan and derivatives in the formulation and delivery of biopharmaceuticals, and focuses on the synergistic effects between chitosan and this particular subset of pharmaceuticals. Further, Part Three continues and complements the previous part by discussing in detail specific applications of chitosan and/or some particular derivatives for biopharmaceutical use. Finally, Part Four presents diverse viewpoints on different issues such as the regulatory, manufacturing, and toxicological requirements of chitosan and its derivatives related to the development of biopharmaceutical products, as well as their patent status and their clinical application and potential.

We expect this book to provide scientists and researchers in the fields of drug delivery, material science, medical science, and bioengineering, as well as professionals in the pharmaceutical, biotechnology, and healthcare industries, with an important compendium of fundamental concepts and practical tools for their daily activities. Also, the broad emphasis on different regulatory issues may turn this book into a relevant starting point for discussion among worldwide regulatory bodies, drug policymakers, and biopharmaceutical companies in pursuing suitable biopharmaceutical products based on chitosan and its derivatives, mostly due to their undoubtedly favorable properties.

References

- 1. International Market Analysis Research and Consulting Group (2010) Global Biopharmaceutical Market Report (2010–2015).
- 2. Rader, R.A. (2008) (Re)defining biopharmaceutical. Nat. Biotechnol., 26, 743-751.
- 3. Orive, G., Gascon, A.R., Hernandez, R.M. *et al.* (2004) Techniques: new approaches to the delivery of biopharmaceuticals. *Trends Pharmacol. Sci.*, **25**, 382–387.
- 4. Jorgensen, L. and Nielson, H.M. (2009) *Delivery Technologies for Biopharmaceuticals: Peptides, Proteins, Nucleic Acids and Vaccines*, Wiley, Chichester, West Sussex.
- Rouget, C. (1859) Des substances amylacées dans les tissus des animaux, spécialement des Articulés (chitine).
 R. Hebd. Séances Acad. Sci., 48, 792–795.
- 6. Hoppe-Seyler, F. (1894) Ueber chitin und cellulose. Ber. Dtsch. Chem. Ges., 27, 3329-3331.
- 7. Machida, Y. and Nagai, T. (1989) Chitin/chitosan as pharmaceutical excipients, in *Topics in Pharmaceutical Sciences* (eds D.D. Breimer, D.J.A. Crommelin, and K.K. Midha), Fédération Internationale Pharmaceutique, The Hague.
- 8. Knapczyk, J., Krówczynski, L., Krzek, J. et al. (1989) Requirements of chitosan for pharmaceutical and biomedical application, in *Chitin and Chitosan: Sources, Chemistry, Biochemistry, Plysical Properties and Applications* (eds G. Braek-Skjåk, T. Anthonsen, and P. Sandford), Elsevier, London.
- 9. Illum, L. (1998) Chitosan and its use as a pharmaceutical excipient. Pharm. Res., 15, 1326–1331.

Acknowledgments

The editors would like to express their deepest gratitude to all the authors for accepting the challenge of writing this work. Also, a special word of appreciation is due to Professor María José Alonso for kindly accepting our invitation to write the foreword, and to everyone at Wiley who assisted in the production of this book.