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Preface

Recently, the transdermal route has vied with oral treatment as the most 

successful innovative research area in API delivery. In the USA (the most 

important pharmaceutical market), out of 129 API delivery products 

under clinical evaluation, 51 are transdermal or dermal systems; 30% of 77 

candidate products in preclinical development represent such API 

delivery. The worldwide transdermal patch market approaches $20 billion, 

yet is based on only 20 drugs. This rather limited number of drug 

substances is attributed to the excellent barrier function of the skin, which 

is accomplished almost entirely by the outermost 10–15 μm (in the dry 

state) of tissue, the stratum corneum (SC). Before being taken up by blood 

vessels in the upper dermis and prior to entering the systemic circulation, 

substances permeating the skin must cross the SC and the viable 

epidermis.  There are three possible pathways leading to the capillary 

network: through hair follicles with associated sebaceous glands, via 

sweat ducts, or across continuous SC between these appendages. As the 

fractional appendageal area available for transport is only about 0.1%, this 

route usually contributes negligibly to apparent steady state drug flux. 

The intact SC thus provides the main barrier to exogenous substances, 

including drugs. The corneocytes of hydrated keratin are analogous to 

‘bricks’, embedded in a ‘mortar’ composed of highly organized, multiple 

lipid bilayers of ceramides, fatty acids, cholesterol and its esters. These 

bilayers form regions of semicrystalline gel and liquid crystal domains. 

Most molecules penetrate through skin via this intercellular microroute. 

Facilitation of drug penetration through the SC may involve by-pass or 

reversible disruption of its elegant molecular architecture. The ideal 

properties of a molecule penetrating intact SC well are:
 ● molecular mass less than 600 Da;
 ● adequate solubility in both oil and water so that the membrane concen-

tration gradient, which is the driving force for passive drug diffusion 

along a concentration gradient, may be high;
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 ● partition coefficient such that the drug can diffuse out of the vehicle, 

partition into, and move across the SC, without becoming sequestered 

within it;
 ● low melting point, correlating with good solubility, as predicted by ideal 

solubility theory.

Clearly, many drug molecules do not meet these criteria. This is especially 

true for biopharmaceutical drugs, which are becoming increasingly 

important in therapeutics and diagnostics of a wide range of illnesses. 

Drugs that suffer poor oral bioavailability or susceptibility to first-pass 

metabolism, and are thus often ideal candidates for transdermal delivery, 

may fail to realize their clinical application because they do not meet one 

or more of the above conditions. Examples include peptides, proteins and 

vaccines which, due to their large molecular size and susceptibility to acid 

destruction in the stomach, cannot be given orally and, hence, must be 

dosed parenterally. Such agents are currently precluded from successful 

transdermal administration, not only by their large sizes, but also by their 

extreme hydrophilicities. Several approaches have been used to enhance 

the transport of drugs through the SC. However, in many cases, only mod-

erate success has been achieved and each approach is associated with 

 significant problems. Chemical penetration enhancers allow only a modest 

improvement in penetration. Chemical modification to increase lipophi-

licity is not always possible and, in any case, necessitates additional studies 

for regulatory approval, due to generation of new chemical entities. 

Significant enhancement in delivery of a large number of drugs has been 

reported using iontophoresis. However, specialized devices are required 

and the agents delivered tend to accumulate in the skin appendages. 

The method is presently best-suited to acute applications. Electroporation 

and sonophoresis are known to increase transdermal delivery. However, 

they both cause pain and local skin reactions and sonophoresis can 

cause breakdown of the therapeutic entity. Techniques aimed at removing 

the SC barrier, such as tape-stripping and suction/laser/thermal ablation 

are impractical, while needle-free injections have so far failed to replace 

conventional needle-based insulin delivery. Clearly, a robust alternative 

strategy is required to enhance drug transport across the SC and thus 

widen the range of drug substances amenable to transdermal delivery.

Microneedle arrays are minimally invasive devices that can be used 

to  by-pass the SC barrier and thus achieve transdermal drug delivery. 

Microneedles (MNs) (50–900 μm in height, up to 2000 MN cm−2) in various 

geometries and materials (silicon, metal, polymer) have been produced 

using recently developed microfabrication techniques. Silicon MN arrays 

are prepared by modification of the dry or wet etching processes employed 
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in microchip manufacture. Metal MN are produced by electrodeposition 

in defined polymeric moulds or photochemical etching of needle shapes 

into a flat metal sheet and then bending these down at right angles to the 

sheet. Polymeric MN have been manufactured by micromoulding of 

molten/dissolved polymers. MN are applied to the skin surface and pierce 

the epidermis (devoid of nociceptors), creating microscopic holes through 

which drugs diffuse to the dermal microcirculation. MN are long enough 

to penetrate to the dermis, but are short and narrow enough to avoid stim-

ulation of dermal nerves. Solid MN puncture skin prior to application of a 

drug-loaded patch or are pre-coated with drug prior to insertion. Hollow 

bore microneedles allow diffusion or pressure-driven flow of drugs 

through a central lumen, while polymeric drug-containing microneedles 

release their payload as they biodegrade in the viable skin layers. In vivo 

studies using solid MN have demonstrated delivery of  oligonucleotides, 

desmopressin and human growth hormone, reduction of blood glucose 

levels from insulin delivery, increase of skin transfection with DNA and 

enhanced elicitation of immune response from delivery of DNA and pro-

tein antigens. Hollow MN have also been shown to deliver insulin and 

reduce blood glucose levels. MN arrays do not cause pain on application 

and no reports of development of skin infection currently exist.

Recently, MNs have been considered for a range of other applications, 

in addition to transdermal and intradermal drug/vaccine delivery. These 

include minimally invasive therapeutic drug monitoring, as a stimulus for 

collagen remodelling in anti-ageing strategies and for delivery of active 

cosmaceutical ingredients. MN technology is likely to find ever-increasing 

utility in the healthcare field as further advancements are made. However, 

some significant barriers will need to be overcome before we see the first 

MN-based drug delivery or monitoring device on the market. Regulators, 

for example, will need to be convinced that MN puncture of skin does not 

lead to skin infections or any long-term skin problems. MN will also need 

to be capable of economic mass production. In this book, we review the 

work that has been carried out on MN to date in both the academic and 

industrial sectors. We have looked in detail at both in vitro and in vivo 

studies and covered the important area of MN-based vaccines. We also 

consider safety and public perception aspects of MN and discuss poten-

tially novel applications of this exciting technology moving forwards. It is 

our hope that this book will serve as a comprehensive overview of the 

field and hence that it will be of use to those new to MN as well as people 

already engaged in work in this area.

Writing this text took considerable time and we would like to thank our 

families for their patience and support throughout the project. We are also 
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grateful to past and present members of the Microneedles Group at 

Queen’s for their hard work and imagination in the lab; Dr Martin Garland, 

Dr Corona Cassidy, Dr Elizabeth Ryan, Dr Cian McCrudden, Dr Rita 

Majithiya, Sharifa Al-Zahrani, Ella Mahmood, Karen Mooney and Ester 

Caffarel. We would also like to acknowledge BBSRC, EPSRC, The Wellcome 

Trust and The Royal Society for funding our work in this area. Karen 

Moore from Wiley-Blackwell provided considerable help and encourage-

ment as we completed this project and her support and guidance are 

greatly appreciated.

Ryan Donnelly
Raj Singh

Des Morrow
David Woolfson

(Belfast, UK)
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CHAPTER 1

Transdermal Drug Delivery

1.1 Genesis of transdermal drug delivery

The administration of chemical agents to the skin surface has long been 

practised, whether for healing, protective or cosmetic reasons. Historically, 

the skin was thought to be totally impervious to exogenous chemicals [1]. 

Thus, topical drug therapy typically involved the localized administration 

of medicinal formulations to the skin, generally when the skin surface was 

breached by disease or infection and a route of drug absorption into the 

deeper cutaneous layers was consequently open. However, once it was 

understood that the skin was a semipermeable membrane rather than a 

totally impermeable barrier, new possibilities arose for the use of this 

route as a portal for systemic drug absorption.

In the early twentieth century it was recognized that more lipophilic 

agents had increased skin permeability. The barrier properties of the skin 

were attributed specifically to the outermost layers in 1919 [2]. Scheuplein 

and co-workers thoroughly investigated skin permeability to a wide range 

of substances in vitro [3]. They modelled skin as a three-layer laminate of 

stratum corneum, epidermis and dermis, with drug permeation driven by 

Fickian diffusion. By digesting the epidermal layer, stratum corneum was 

separated from the lower layers of the skin and was determined to be the 

principal barrier to drug absorption.

Transdermal drug delivery refers to the delivery of the drug across 

intact, healthy skin and into the systemic circulation. The diffusive process 

by which this is achieved is known as percutaneous absorption. Thus, 

classical topical formulations can be distinguished from those intended 

for transdermal drug delivery in that, whilst the former are generally 
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2  Microneedle-mediated Transdermal and Intradermal Drug Delivery

applied to a broken, diseased or damaged integument, the latter are used 

exclusively on healthy skin where the barrier function is intact.

It is, indeed, fortuitous for all of us that the skin is a self-repairing organ. 

This ability, together with the barrier protective properties associated with 

the integument, is a direct function of skin anatomy. Therefore, in order to 

develop an effective approach to transdermal drug delivery, it is necessary 

to be aware of how skin anatomy restricts the percutaneous absorption of 

exogenously applied chemicals. So effective is the skin as a barrier to the 

external environment that, even now, the majority of licensed prepara-

tions applied to the skin are aimed at delivering the drug for a local, rather 

than a systemic, action.

1.2 Skin anatomy

As the largest and one of the most complex organs in the human body, the 

skin is designed to carry out a wide range of functions [4]. Thus, the skin 

forms a complex membrane with a nonhomogenous structure (Figure 1.1). 

It contains and protects the internal body organs and fluids, and exercises 

environmental control over the body in respect of temperature and, to 

some extent, humidity. In addition, the skin is a communicating organ, 

relaying the sensations of heat, cold, touch, pressure and pain to the  central 

nervous system.

1.2.1 The epidermis
The multilayered nature of human skin can be resolved into three distinct 

layers. These are the outermost layer, the epidermis, beneath which lies 

the much larger dermis and, finally, the deepest layer, the subcutis. The 

epidermis, which is essentially a stratified epithelium, lies directly above 

the dermo-epidermal junction. This provides mechanical support for the 

epidermis and anchors it to the underlying dermis. The junction itself is a 

complex glycoprotein structure about 50 nm thick [5].

Directly above the undulating ridges of the dermo-epidermal junction 

lies the basal layer of the epidermis, the stratum germinativum. This layer 

is single-cell in thickness with columnar-to-oval shaped cells, which are 

actively undergoing mitosis. As the name implies, the stratum germinati-

vum generates replacement cells to counterbalance the constant shedding 

of dead cells from the skin surface. In certain disease states, such as 

 psoriasis, the rate of mitosis in this layer is substantially raised in order to 

compensate for a diminished epidermal barrier, the epidermal turnover 

time being as fast as four days. As the cells of the basal layer gradually 

move upwards through the epidermis, they undergo rapid differentiation, 
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becoming flattened and granular. The ability to divide by mitosis is lost. 

Directly above the stratum germinativum is a layer, several cells in 

 thickness, in which the cells are irregular and polyhedral in shape. This 

layer is the stratum spinosum, and each cell has distinct spines or prickles 

protruding from the surface in all directions. Although they do not 

undergo mitosis, the cells of this layer are metabolically active. The 

 prickles of adjacent cells interconnect via desmosomes or intercellular 

bridges. The increased structural rigidity produced by this arrangement 

increases the resistance of the skin to abrasion.

As the epidermal cells migrate upwards towards the skin surface they 

become flatter and more granular in appearance, forming the next 

epidermal layer, which is the stratum granulosum, consisting of a few 

layers of granular cells. Their appearance is due to the actively meta-

bolizing cells producing granular protein aggregates of keratohyalin, a 

precursor of keratin [6]. As cells migrate through the stratum granulosum, 

cell organelles undergo intracellular digestion and disappear. The cells of 

the stratum granulosum die due to degeneration of the cell nuclei and 

metabolic activity ceases towards the top of this layer. A further differen-

tiation of cells above the stratum granulosum can be seen in sections taken 

from thick skin, such as on the palm of the hand or the sole of the foot. 

200–400µm

2–4 mm
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Sweat
Gland

Micro-circulation
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Stratum germinativum

Stratum granulosum
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Figure 1.1 Diagrammatic representation of the major features of skin anatomy.
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4  Microneedle-mediated Transdermal and Intradermal Drug Delivery

This  distinct layer of cells, which is now substantially removed from 

nutrients supplied via the dermal circulation, is the stratum lucidum. 

The cells of this layer are elongated, translucent and anuclear.

1.2.2 The stratum corneum
The stratum corneum, or horny layer, is the outermost layer of the 

epidermis, and thus the skin. It is now well accepted that this layer 

constitutes the principal barrier for penetration of most drugs [7]. The 

horny layer represents the final stage of epidermal cell differentiation. The 

thickness of this layer is typically 10 μm, but a number of factors, including 

the degree of hydration and skin location, influence this. For example, the 

stratum corneum on the palms and soles can be, on average, 400–600 μm 

thick [7] whilst hydration can result in a 4-fold increase in thickness [8].

The stratum corneum consists of 10–25 rows of dead keratinocytes, 

now called corneocytes, embedded in the secreted lipids from lamellar 

bodies [7]. The corneocytes are flattened, elongated, dead cells, lacking 

nuclei and other organelles [9]. The cells are joined together by des-

mosomes, maintaining the cohesiveness of this layer [10]. The heteroge-

neous  structure of the stratum corneum is composed of approximately 

75–80% protein, 5–15% lipid and 5–10% other substances on a dry weight 

basis [11].

The majority of protein present in the stratum corneum is keratin and 

is located within the corneocytes [11]. The keratins are a family of 

Multilamellar ordered
lipid domains

Bimolecular leaflet

Polar head groups
(hydrophilic region)

Hydrocarbon chains
(hydrophobic region)

Site of action for lipid fluidising agents
(chemical penetration enhancers)

Figure 1.2 Arrangement of lipids in the stratum corneum.
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α-helical polypeptides. Individual molecules aggregate to form 

filaments (7–10 nm diameter and many microns in length) that are 

stabilized by insoluble disulphide bridges. These filaments are thought 

to be responsible for the hexagonal shape of the corneocyte and provide 

mechanical strength for the stratum corneum [12]. Corneocytes possess 

a protein rich envelope around the periphery of the cell, formed from 

precursors, such as involucrin, loricrin and cornifin. Transglutaminases 

catalyze the formation of γ-glutamyl cross-links between the envelope 

proteins that render the envelope resistant and highly insoluble. The 

protein envelope links the corneocyte to the surrounding lipid enriched 

matrix [10].

The main lipids located in the stratum corneum are ceramides, fatty 

acids, cholesterol, cholesterol sulphate and sterol/wax esters [11,12]. 

These lipids are arranged in multiple bilayers called lamellae (Figure 1.2). 

Phospholipids are largely absent, a unique feature for a mammalian 

membrane. The ceramides are the largest group of lipids in the stratum 

corneum, accounting for approximately half of the total lipid mass [13], 

and are crucial to the lipid organization of the stratum corneum [10].

The bricks and mortar model of the stratum corneum (Figure 1.3) is a 

common representation of this layer [8]. The bricks correspond to parallel 

plates of dead keratinized corneocytes, and the mortar represents the 

 continuous interstitial lipid matrix. It is important to note that the corneo-

cytes are not actually brick-shaped, but rather are polygonal, elongated 

and flat (0.2–1.5 μm thick and 34.0–46.0 μm in diameter) [9]. The ‘mortar’ 

is not a homogenous matrix. Rather, lipids are arranged in the lamellar 

phase (alternating layers of water and lipid bilayers), with some of the 

lipid bilayers in the gel or crystalline state [14]. The extracellular matrix 

is further complicated by the presence of intrinsic and extrinsic proteins, 

such as enzymes. The barrier properties of the stratum corneum have 

been assigned to the multiple lipid bilayers residing in the intercellular 

space. These bilayers prevent desiccation of the underlying tissues by 

inhibiting water loss and limit the penetration of substances from the 

external environment [14].

Corneocyte

Desmosome

Intercellular lipid domains

Figure 1.3 ‘Bricks and mortar’ model of stratum corneum.
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1.2.3 The dermis
This region, also known as the corium, underlies the dermo-epidermal 

junction and varies in thickness from 2 to 4 mm. Collagen, a fibrous 

protein, is the main component of the dermis and is responsible for the 

tensile strength of this layer. Elastin, also a fibrous protein, forms a  network 

between the collagen bundles and is responsible for the elasticity of the 

skin and its resistance to external deforming forces. These protein compo-

nents are embedded in a gel composed largely of mucopolysaccharides. 

The skin appendages such as the sebaceous and sweat glands, together 

with hair follicles, penetrate this region. Since these open to the external 

environment they present a possible entry point into the skin.

The dermis has a rich blood supply extending to within 0.2 mm of the 

skin surface and derived from the arterial and venous systems in the 

subcutaneous tissue. This blood supply consists of microscopic vessels 

and does not extend into the epidermis. Thus, a drug reaching the dermis 

through the epidermal barrier will be rapidly absorbed into the systemic 

circulation, a key advantage in the use of microneedles to by-pass the 

barrier to drug penetration offered by the stratum corneum.

1.2.4 Skin appendages
The skin appendages comprise the hair follicles and associated sebaceous 

glands, together with the eccrine and apocrine glands. Hairs are formed 

from compacted plates of keratinocytes, with the hair shaft housed in a 

hair follicle formed as an epidermal invagination. Associated flasklike 

sebaceous glands are formed as epidermal outgrowths. The sebaceous 

gland secretes an oily material (sebum), which plays a role in lubricating 

the skin surface and maintaining skin pH around 5 [15]. This mixture of 

lipids acts as a plasticizer for the stratum corneum and maintains an acid 

mantle of about pH 5 on the skin surface. Hairs can be pigmented or 

nonpigmented and can extend more than 3 mm into the hypodermis [16]. 

In humans, the skin density of these units varies with body region. For 

example, on the face, follicular openings can account for up to 10% of the 

surface area, whilst on other parts of the body, these orifices make up only 

0.1% of the surface area [16]. Thus, a transfollicular route may be important 

for certain veterinary transdermal drug delivery applications, where the 

hair follicle density is much higher, but not in humans.

The eccrine glands respond to increased temperature and stress by exud-

ing a dilute salt solution (sweat), where its evaporation plays an important 

thermoregulatory role. The coiled and tubular eccrine gland is located in the 

dermal tissue, and is connected to a duct that ascends towards the surface. 
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