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Preface

Time series analysis is widely used in meteorological and climatological studies

because the vast majority of observations of atmospheric and land surface variables

are ordered in time (or space). Over the years we have found a continuing interest by

both students and researchers in our profession (and those allied to it) in under-

standing basic methods for analyzing observations ordered in time or space and

evaluating the results. The purpose of this book is to respond to this interest. We’ve

done this by deriving and interpreting various equations that are useful in explaining

the structure of data and then, using computer programs, applying them to

meteorological data sets. Overall, the material we cover serves as an introduction

in the application of statistics to the analysis of univariate time series. The topics

discussed should be relevant to anyone in any science where events are observed in

time and/or space. To demonstrate a procedure, we use scalar atmospheric variables,

for example, air temperature. Anyone who completes the five chapters, including

working the problems at the end of each chapter, will have acquired sufficient

understanding of time series terminology andmethodology to confidently deal with

more advanced spectrum analysis, for example, that found in radar and atmospheric

turbulence measurements, analysis, and theory.

Chapter 1 deals with Fourier analysis and is divided into five sections. In the first

three sections, mathematical formulas for representing a time series by Fourier sine

and cosine coefficients are developed and their inherent symmetry emphasized.

These formulas are applied to three data sets, two of which are actual observations.

The three sections provide the background necessary to apply Fourier analysis to a

time series, and one of the end-of-chapter problems invites the reader to write a

computer program designed to accomplish this.

In the fourth section of Chapter 1 we investigate statistical properties of the

Fourier spectrum. These statistical properties arise because time series from the phys-

ical world are usually nondeterministic, that is, no two data sets are alike. We explore

the concept of a random variable, a realization, a population, stationarity, expec-

tation, and a probability density function. The goal is to understand how random

data produce a distribution of variances at each harmonic frequency and the

statistical properties of this distribution. Armed with this information, the last part



of this section involves testing the hypothesis that a particular data set, as viewed

through the Fourier spectrum, is a sample from a population of white noise, that is,

random numbers.

The fifth section of Chapter 1 is an examination of various topics relevant to

time series analysis.We discuss aliasing, spectrum folding, and spectrumwindows,

phenomena that are a direct consequence of digital sampling, and show examples

of each. In addition, we develop the Fourier transform, the mathematical for-

mula that in one step converts a time series into its Fourier components in the

frequency domain.

Chapter 1 is the longest of the five chapters because it encompasses both

theory and application of Fourier analysis, relevant statistical concepts, and

the foundation of methods of time series analysis developed in the remaining

chapters.

The subject of Chapter 2 is linear systems. This chapter is the study of the

relationships between two time series, an input series and an output series, and the

associated input and output spectra. What links the two time series is a physical

system, as in the case of measurement of some physical variable (for example, a

thermometer to measure temperature), or a mathematical system, as in the case of

filtering an observed time series to remove unwanted noise in the data.

Fundamental to Chapter 2 is the convolution integral. Whether a system is

physical or mathematical, the convolution integral provides the mathematical

connection between the input and output series, and its Fourier transform provides

the connection between the input and output spectra.

Most variables of interest in the physical sciences are continuous in time (or

space). Nevertheless, we practically always analyze digital time series. We investigate

the relationship between analog and digital time series using a generalized function

called the Dirac delta function. Through its application we can explain how the

structure of an output time series that has passed through a linear system is altered

relative to the input time series in terms of modified Fourier coefficients and phase

angles. Two examples are discussed, a first order linear system and an integrator,

both of which have practical use in meteorology and climatology, and the physical

sciences in general.

Chapter 3 is principally about nonrecursive data filtering; that is, a filtered output

time series is related only to the input time series – there is no feedback (as in

recursive filtering). Time series that are to be filtered are viewed as data that already

have been collected as opposed to real time filtering.

The primary objective of this chapter is to design and apply a two-parameter filter

called the Lanczos filter. The two design parameters are the number of weights and

the frequency that separates the Fourier spectrum into harmonic variances that

remain unchanged and those that are suppressed. This filter provides its designer

much more control of the filtering process than simple one-parameter filters, for

example, the runningmean. The theory of Lanczos filtering is developed, examples of
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its use are shown, and a computer program is provided so that the reader can apply

the procedure to a data set.

One of the goals of a physical scientist is to understand the morphology of natural

events. An obvious step that must be taken is to obtain samples in time and/or space

of variables that characterize the physical properties of an event over its lifetime.

The fact that an event has a lifetime implies that it evolves in time and/or space, a

consequence of which is that successive observations of its properties are related.

This is called autocorrelation, the title of Chapter 4. To realize the importance of

autocorrelation in analyzing time series, we compare the formula for calculating the

variance of the mean of a random variable with autocorrelation to that without

autocorrelation. The latter formula is the form seen in typical undergraduate

statistics texts while the former formula takes into account the degree of dependence

in the time series.

In Chapter 4 we are interested in finding the best formula for estimating themean,

variance, autocovariance function, and autocorrelation function of a population of

time series based, typically, on a single observed time series taken from that

population. We examine populations of independent as well as autocorrelated data.

Among the five chapters, this one is the most statistically oriented.

The lagged-product method discussed in Chapter 5 is an alternative to Fourier

analysis. Quite often, Fourier analysis of geophysical data yields noisy-looking

spectra. When this occurs, it is common to smooth a spectrum to make it more

visually interpretable. In the lagged-productmethod, a smoothed variance spectrum

can be obtained directly from the Fourier transform of the product of the auto-

covariance function with another function that alters its shape. The degree of

smoothing is controlled entirely by the latter function. The term lagged-product

is used because the autocovariance function comprises time-lagged (or spatially-

lagged) products and it is the autocovariance function that is being transformed.

This book was written for students and scientists who have a background in

calculus and statistics, and familiarity with complex variables. Prior in-depth study

of complex variables is not required.

The authors wish to thank the many students who have provided valuable com-

ments and corrections over the years the material was used as lecture notes.

Chapters 2, 4, and 5 were inspired by the book Spectral Analysis and its Applications

(1968) by G.M. Jenkins and D.G. Watts, a classic volume in time series analysis.

Claude Duchon and Rob Hale

22 May 2011
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1
Fourier analysis

It is often the case in the physical sciences, and sometimes the social sciences as well,

that measurements of a particular variable are collected over a period of time. The

collected values form a data set, or time series, that may be quite lengthy or otherwise

difficult to interpret in its raw form. We then may turn to various types of statistical

analyses to aid our identification of important attributes of the time series and their

underlying physical origins. Basic statistics such as the mean, median, or total

variance of the data set help us succinctly portray the characteristics of the data set as

a whole, and, potentially, compare it to other similar data sets.

Further insight regarding the time series, however, can be gained through the use

of Fourier, harmonic, or periodogram analysis – three names used to describe a single

methodology. The primary aim of such an analysis is to determine how the total

variance of the time series is distributed as a function of frequency, expressed either

as ordinary frequency in cycles per unit of time, for example, cycles per second, or

angular frequency in radians per unit of time. This allows us to quantify, in away that

the basic statistics named above cannot, any periodic components present in the data.

For example, outside air temperature typically rises and falls with some regularity

over the course of a day, a periodic component governed by the rising and setting of

the sun as the earth rotates about its axis. Such a periodic component is readily

apparent and quantifiable after applying Fourier analysis, but is not describedwell by

the mean, median, or total variance of the data.

In the first two sections of Chapter 1, we will learn some essential terminology of

Fourier analysis and the fundamentals of performing Fourier analysis and its inverse,

Fourier synthesis. Example data sets and their analyses are presented in Section 1.3 to

further aid in understanding the methodology.

As with other types of statistical analyses, statistical significance plays an impor-

tant role in Fourier analysis. That is, after performing a Fourier analysis, what if we

Time Series Analysis in Meteorology and Climatology: An Introduction, First Edition. Claude Duchon and Robert Hale.
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find that the variance at one frequency is noticeably larger than at other frequencies?

Is this the result of an underlying physical phenomenon that has a periodic nature?

Or, is the larger variance simply statistical chance, owing to the randomnature of the

process? To answer these questions, in Section 1.4 we examine how to ascribe

confidence intervals to the results of our Fourier analysis.

In Section 1.5, we take a more detailed look at particular issues that may be

encountered when using Fourier analyses. Although not generally requisite to

performing a Fourier analysis, the concepts covered are often critical to correct

interpretation of the results, and in some cases may increase the efficacy of an

analysis. An understanding of these topics will allow an investigator to pursue

Fourier analysis with a high degree of confidence.

1.1 Overview and terminology

1.1.1 Obtaining the Fourier amplitude coefficients

The goal of Fourier analysis is to decompose a data sequence into harmonics

(sinusoidal waveforms) such that, when added together, they reproduce the time

series.Whatmakes sinusoidal waveforms an appropriate representation of the data is

their orthogonality property, their ability to successfully model waves in the

atmosphere, oceans, and earth, as well as phenomena resulting from solar forcing,

and the fact that the harmonic amplitudes are independent of time origin and time

scale (Bloomfield, 1976, p. 7).

Harmonic frequencies are gauged with respect to the fundamental period, the

shortest record length for which the time series is not repeated. In most practical

cases, this is the entire length of the available record, since the record typically

does not contain repeated sequences of identical data. The harmonic frequencies

include harmonic 1, which corresponds to one cycle over the fundamental

period, and higher harmonics that are integer multiples of one cycle. Thus each

harmonic is always an integer number of cycles over the length of the funda-

mental period.

To establish a sense of Fourier analysis, consider a simple example. The heavy line

in Figure 1.1 connects the average monthly temperatures at Oklahoma City over

the three-year period 2007–2009. By looking at the heavy line only, it is quite evident

that there is a strong annual cycle in temperature. It is equally clear that one sinusoid

will not exactly fit all the data, so other harmonics are required. The fundamental

period, or period of the first harmonic, is the length of the record, three years. The

third harmonic has a period one-third the length of the fundamental period, and

consequently represents the annual cycle. The thin line in Figure 1.1 shows the third

harmonic after it has been added to the mean of all 36 months, that is, the

0-th harmonic. As expected, the third harmonic provides a close fit to the observed

time series.

2 CH 1 FOURIER ANALYSIS



1.1.2 Obtaining the periodogram

The computation of variance arises in elementary statistics as a defined measure of

the variability in a data set. When the computation of variance is applied to a time

series, it is similarly defined. Now, though, the variance in the data set can be

decomposed into individual variances, each one related to the amplitude of a

harmonic. Just as adding the sinusoids from all harmonics reproduces the original

time series, adding all harmonic variances yields the total variance in the time series.

How the decomposition is achieved and how variance is related to harmonic

amplitude are discussed in Section 1.2.

A periodogram is a plot of the variance associated with each harmonic (usually

excluding the 0-th) versus harmonic number and shows the contribution by each

harmonic to the total variance in the time series. Henceforth, the term periodogram

will be used to refer to the calculation of variance at the harmonic frequencies.

The term Fourier line variance spectrum is synonymous with periodogram, while

the generic term spectrum generally means the distribution of some quantity

with frequency.

The variance at each harmonic frequency is given by the square of its amplitude

divided by two, except at the last harmonic. Figure 1.2 shows the periodogram

(truncated to the first 10 harmonics) of the data in Figure 1.1 where we see that

harmonic 3 dominates the variability in the data. The small variances at harmonics 6

(period¼ 6 months) and harmonic 9 (period¼ 4 months) are easily observed in

Figure 1.2, but, in fact, there are nonzero variances at all 18 possible harmonics

(excluding the 0-th) and their sum equals the total variance of 75.23 �C2 in the

2007–2009 Oklahoma City mean monthly temperature time series.
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Figure 1.1 Mean monthly temperatures at Oklahoma City 2007–2009 (heavy line), and

harmonic 3 (light line) of the Fourier decomposition.
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The periodogram in Figure 1.2 was computed using the computer program

given in Appendix 1.A. This program, written in Fortran 77, performs a ‘fast’ Fourier

analysis of any data set with an even number of data and has been used throughout

this chapter to compute the periodograms we discuss.

1.1.3 Classification of time series

We can classify time series of data into four distinct types of records. The type

of record determines the mathematical procedure to be applied to the data to obtain

its spectrum.

The 36 values of temperature xn, in Figure 1.1, connected by straight-line segments

for ease in visualization, constitute a finite digital record. Digital time series arise in

twoways (Box and Jenkins, 1970, p. 23): sampling an analog time series, for example,

measuring continuously changing air temperature each hour on the hour; or

accumulating or averaging a variable over a period of time, for example, the previous

record of monthly mean temperatures at Oklahoma City. With respect to the latter

case, if N is the number ofmonths of data andDt the time interval between successive

values, the record length in Figure 1.1 isNDt¼ 36months. In this case, as well as with

all finite digital records, all data points can be exactly fitted with a finite number of

harmonics. This is in contrast to a finite analog record of length T, such as a pen trace

on an analog strip chart, for example, a seismograph, for which an infinite number of

harmonics may be required to fit the signal.

Figure 1.3 is an example of a finite analog record. Sampling the time series at

intervals ofDt yields the finite digital record shown in Figure 1.4. The sample values

again have been connected by straight-line segments to better visualize the variations
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Figure 1.2 Variance at each harmonic through 10 for the data in Figure 1.1.
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in xn. The sampling interval,Dt, associated with each datum can be shown on a time

series plot to the left or right of, or centered on, each datum – it is a matter of choice.

In Figure 1.4, Dt is to the right of each datum. One might think that there should

be a fifteenth sample point at the very end of the curve in Figure 1.3. However,

because of the association of each sampled value with oneDt, the length of the digital
record would be one sample interval longer than the analog record. Conceptually,

the fifteenth sample point is the first value of a continuing, but unavailable,

analog record.

The concept of an infinite analog record is often used in theoretical work.

An example would be the trace in Figure 1.3 extended indefinitely in both directions

of time. For this case a continuum of harmonics is required to fit the signal, thereby

resulting in a variance density spectrum. Note, however, that a variance density

spectrum can be created also with a finite digital record. How this comes about is

0

t
0 T

x
t

Figure 1.3 An example of a finite analog data record.

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Δt

NΔt = 14Δt

x
n

0

Figure 1.4 An example of a finite digital data record obtained by sampling the finite analog

record in Figure 1.3. There are N¼ 14 data.
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discussed in Chapter 5. An infinite digital record would be obtained by sampling the

infinite analog record at intervals of Dt. We will use infinite analog and digital

records in Section 3.1.4 (Chapter 3) to determine the effects on the mean value of a

time series after it is filtered.

By far the type of record most commonly observed and analyzed in science and

technology is the finite digital record. With a few exceptions, this is the type of data

recordwewill dealwith in the remainder ofChapter 1, and forwhich the formulas for

computing a periodogram are presented.

1.2 Analysis and synthesis

1.2.1 Formulas

If one of the data sets collected in your research is a time series of atmospheric

pressure, Fourier “analysis” can be used to derive its periodogram and to examine

which harmonics dominate the series. Conversely, once the analysis has been done,

the original time series of pressure can be reconstructed purely from knowledge of

the harmonic amplitudes. Thus Fourier “synthesis” is the inverse process of analysis.

Note that the title of this chapter employs the more generic meaning of analysis and

includes both the analysis and synthesis terms just described.

The formulas in Table 1.1 are those needed to perform analysis and synthesis. The

equations under Fourier Analysis are used to calculate the Fourier coefficients or

harmonic amplitudes. The equations under Fourier Synthesis express the time series

xn as the sum of products of cosines and sines with amplitudes Am and Bm,

respectively, or, alternatively, the sum of products of cosines only with amplitudes

Rm and phase angles qm. Notice that the expressions are slightly different depending
on whether the time series has an even or an odd number of data. The synthesis

equations are equivalent to the forms introduced by Shuster around 1900

(Robinson, 1982).

The arguments of the cosine and sine terms associated with the Am and Bm
coefficients are of the form

2pmnDt

NDt

where m is harmonic number and nDt a point in time along the time axis of total

length NDt. Thus, 2pm is the number of radians in them-th harmonic over the total

length of the time series. The product of 2pmand the ratio nDt/NDt provide location
along the sinusoid in radians. Because the time increments (Dt) cancel, they are not
shown in Table 1.1. In Fourier synthesis, the summation is over all harmonics at a

given location nDt, while in Fourier analysis the summation is over all data locations

for a given harmonic m.
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The variance at each harmonic for even and odd data lengths is given in Table 1.1

under the heading Variance at Harmonic m. Note that the only exception to the

general formula for harmonic variance occurs at m¼N/2 when N is even. The

cosine coefficient at N/2 is squared but not divided by two (the sine coefficient is

zero). The formulas for the total variance S2 under the heading Total Variance yield

the same variance estimates as the formula

S2 ¼ 1

N

XN�1

n¼ 0

xn � xð Þ2 ð1:1Þ

for computing total variance directly from the data, in which x is the series mean.

The two formulas in Table 1.1 are nearly the same, the only difference being that the

Table 1.1 Formulas used in Fourier synthesis and analysis for an even or odd number of data.

Fourier Analysis

A0 ¼ 1
N

PN�1

n¼ 0

xn B0 ¼ 0

Am ¼ 2
N

PN�1

n¼ 0

xn cos
2pmn

N
Bm ¼ 2

N

PN�1

n¼0

xn sin
2pmn

N

m¼ 1;N
2
�1

� �
N evenð Þ; m¼ 1;N�1

2

� �
Noddð Þ

AN=2 ¼ 1
N

PN�1

n¼ 0

xn cosðpnÞ BN=2 ¼ 0 ðN evenÞ

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m

q
qm ¼ tan�1 Bm

Am

� �

Fourier Synthesis

xn ¼
PN=2
m¼0

Amcos
2pmn

N
þBmsin

2pmn

N

� �
¼ PN=2

m¼0

Rmcos
2pmn

N
�qm

� �
; n¼ 0;N�1½ � ðN evenÞ

xn ¼
PN�1
2

m¼0

Amcos
2pmn

N
þBmsin

2pmn

N

� �
¼ PN�1

2

m¼0

Rmcos
2pmn

N
�qm

� �
; n¼ 0;N�1½ � ðN oddÞ

Variance at Harmonic m

S2m ¼ A2
m þ B2

m

2
m ¼ 1; N

2
�1

� � ðNevenÞ; m ¼ 1; N�1
2

� � ðN oddÞ

S2N=2 ¼ A2
N=2 ðN evenÞ

Total Variance

S2 ¼ PN=2
m¼ 1

S2m ðN evenÞ S2 ¼ PN�1
2

m¼ 1

S2m ðN oddÞ
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expression for the upper limit of each summation depends on whether N is even

or odd.

1.2.2 Fourier coefficients

The method for obtaining the Fourier coefficients is based on the orthogonality of

cosine and sine functions at harmonic frequencies, where orthogonality means that

the sumof the products of two functions over some interval equals zero. Themethod

entails multiplying both sides of a Fourier synthesis equation by one of the cosine or

sine harmonic terms, summing over all n, and solving for the coefficient associated

with the harmonic term.

For example, consider multiplying both sides of the first Fourier synthesis equa-

tion in Table 1.1 (using the Am, Bm form) by cos 2pkn
N

and summing over all n. The

second summation on the right-hand side will have the form and result

XN�1

n¼ 0

sin
2pmn

N
cos

2pkn

N
¼ 0 ð1:2Þ

wherem and k are integers. That this sum is zero can be shown with two examples as

well as mathematically. The sine and cosine terms for m¼ k¼ 1 are shown in

Figure 1.5 and for m¼ 1 and k¼ 2 in Figure 1.6. The algebraic signs of the sum of

cross products within each quadrant are shown at the base of each figure. Because of

symmetry, the absolute magnitude of each sum is the same for each quadrant in

−1

−0.5

0

0.5

1

n = 0 n = N
+ +− −

sin(2πmn/N)

cos(2πkn/N)

Figure 1.5 Signs of sums of cross products of cosine and sine terms for m¼ k¼ 1.
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Figure 1.5 and similarly for Figure 1.6. Thus the waveforms are orthogonal because

the sum of their cross products is zero over the interval 0 to N in each illustration.

It can be surmised from these figures that the sumof the cross products is zero over

the fundamental period for any combination of the m and k integers. But how could

this be shown mathematically? Firstly, we put the sine and cosine terms in complex

exponential form, and then expand the summation above using Euler’s formula

to obtain

XN�1

n¼0

sinð2pmn=NÞ cosð2pkn=NÞ

¼
XN�1

n¼0

1

2i
ðei2pmn=N� e�i2pmn=NÞ 1

2
ðei2pkn=Nþ e�2pkn=NÞ

¼ 1

4i

XN�1

n¼0

ðei2pðmþkÞn=Nþ ei2pðm�kÞn=N� e�i2pðm�kÞn=N� e�i2pðmþkÞn=NÞ: ð1:3Þ

A procedure is developed in Appendix 1.B for finding the sum of complex

exponentials. The final two formulas, Equations 1.B.3 and 1.B.4, are very useful

for quickly finding the sums of sines and cosines over any range of their arguments.

An example of using the first formula follows.

Consider just the first summation on the right-hand side in Equation 1.3. Let

Q ¼
XN�1

n¼ 0

ei2pðmþkÞn=N: ð1:4Þ

cos(2πkn/N)

sin(2πmn/N)

−1

−0.5

0

0.5

1

n = 0 n = N

++ −− −+

Figure 1.6 Signs of sums of cross products of cosine and sine terms for m¼ 1 and k¼ 2.
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Using Equation 1.B.3, Q becomes

Q ¼ 1� ei2pðmþkÞ

1� ei2pðmþkÞ=N

¼ 1� cos½2pðmþ kÞ� � i sin½2pðmþ kÞ�
1� cos½2pðmþ kÞ=N� � i sin½2pðmþ kÞ=N�

¼ 0; mþ k 6¼ 0; N: ð1:5Þ

The numerator is zero for all integer values of m and k while the denominator is

nonzero except when (mþ k)¼ 0 or N, in which cases the denominator is 0 and

Equation 1.5 is indeterminate. To evaluate Equation 1.5 for these cases we can apply

l’Hopital’s rule. The result of taking the first derivative with respect to (mþ k) in

both the numerator anddenominator yields a determinate formwith valueN. That is

Q0 ¼ 2p sin½2pðmþ kÞ� � i 2p cos½2pðmþ kÞ�
ð2p=NÞ sin½2pðmþ kÞ=N� � i ð2p=NÞ cos½2pðmþ kÞ=N�

¼ N; mþ k ¼ 0; N: ð1:6Þ

The same result also can be obtained by substituting 0 or N for (mþk) in

Equation 1.4. We observe that the first and fourth summations in Equation 1.3

cancel each other for these values.

We can apply the above procedure to the second term in Equation 1.3. The

summation will be zero again, except when (m� k) is 0 or N. Employing l’Hopital’s

rule yields a determinate form with value N for these cases, similar to Equation 1.6.

And again, the same results can be obtained from Equation 1.4. Accordingly, when

(m� k)¼ 0 or N, the second and third summations in Equation 1.3 cancel. Thus

Equation 1.2 is valid for any integer k orm. This includes the possibility that (kþm)

is an integer multiple of N.

Now that we have shown that the summed sine–cosine cross product terms akin

to Equation 1.2 must be zero, let us consider the sums of sine–sine and cosine–

cosine products resulting from multiplying the first Fourier synthesis equation

by cos 2pkn
N

and summing over all n. Following the procedure in Appendix 1.B we

find that

XN�1

n¼0

sin
2pmn

N
sin

2pkn

N
¼

0 ; k 6¼m
N
2
; k ¼ m 6¼ 0; N

2
ðNevenÞ; k ¼ m 6¼ 0 ðNoddÞ

0 ; k ¼ m ¼ 0; N
2
ðNevenÞ; k ¼ m ¼ 0 ðNoddÞ

8>>><
>>>:

ð1:7Þ
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and

XN�1

n¼0

cos
2pmn

N
cos

2pkn

N
¼

0 ; k 6¼m

N
2
; k ¼m 6¼0; N

2
ðNevenÞ; k ¼m 6¼0ðNoddÞ

N; k ¼m¼ 0; N
2
ðNevenÞ; k ¼m¼ 0ðNoddÞ:

8>>><
>>>:

ð1:8Þ

Thusmultiplying the synthesis equation for N even by the k-th sine harmonic term

and summing yields

XN�1

n¼0

xn sin
2pkn

N
¼
XN=2
m¼0

Am

XN�1

n¼0

sin
2pkn

N
cos

2pmn

N
þBm

XN�1

n¼0

sin
2pkn

N
sin

2pmn

N

 !

ð1:9Þ

which reduces to

XN�1

n¼0

xn sin
2pkn

N
¼ BkN=2; k ¼ 1;

N

2
�1

� �
ð1:10Þ

so that

Bk ¼ ð2=NÞ
XN�1

n¼0

xn sin
2pkn

N
; k ¼ 1;

N

2
�1

� �
: ð1:11Þ

Observe that the sine coefficients for k¼ 0, N/2 (N even) are always zero.

The Fourier cosine coefficients, Ak, are obtained in a similar manner, but A0 and

AN/2 are, in general, nonzero. As is evident from Table 1.1, A0 is the mean of the time

series. For N odd, an expression similar to Equation 1.9 is used to obtain the Fourier

coefficients, the only difference being that the range of harmonics extends from 0 to

(N� 1)/2. Table 1.1 shows the resulting formulas for all Fourier coefficients.

The coefficients Am and Bm represent the amplitudes of the cosine and sine

components, respectively. As shown in the left-hand panel of Figure 1.7a, the cosine

coefficient is always along the horizontal axis (positive to the right), and the sine

coefficient is always normal to the cosine coefficient (positive upward). In the right-

hand panel we see how the cosine and sine vector lengths determine the associated

cosine and sine waveforms (ignore the dashed line for the moment). Figures 1.7b–d

show various possibilities of waveform relationships depending on the sign of Am

and the sign of Bm. More discussion of Figure 1.7 is given in Section 1.2.4.
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Bm(+)

Bm(+)

Am(+)

Am(−)

θm(+)

θm(+)

θm(+)

θm(+)

Rm

0 ≤ θm ≤ π/2

π/2 ≤ θm ≤ π

n = 0

Rm

Bm(+)

n

xn
Am(+)

Rm

n = 0

n

xn Bm(+)

Am(−)

Rm

(a) θm is in the first quadrant.

(b) θm  is in the second quadrant.

Bm(−) m(−)

Am(−)

Rm

m /2

xn

n = 0

n

m(−)

Rm

x

Bm(−)

m(−)

Am(+)

Rm

/2 m ≤ 0

xn

n = 0

n

Rm

m(−)

(c) m is in the third quadrant.

(d) m is in the fourth quadrant.

Bm(−)Am(−)

Am(+)

Bm(−)

≤ θ

≤≤ θ

Figure 1.7 (a)–(d) The magnitude and sign of each Fourier coefficient determines the

quadrant in which the phase angle lies. Geometric vector lengths in the left hand panels are

twice the lengths of the Fourier coefficients in the right hand panels.
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An alternative approach can be taken to solve for the Fourier coefficients.

As shown by Bloomfield (1976, p. 13), the As and Bs above are identical to the

coefficients from a least-squares fit of individual harmonics to the data.

1.2.3 Total and harmonic variances

The standard formula for the total variance of a time series of length N

S2 ¼ 1

N

XN�1

n¼ 0

xn � xð Þ2 ð1:1Þ

was given in section in Section 1.2.1. The total variance is identical to the sum of

the variances at the individual harmonics as shown in Table 1.1 for N even and

N odd. The variance at an individual harmonic can be derived from Equation 1.1

by first substituting the Fourier synthesis equations for N even or N odd in

Table 1.1 into Equation 1.1 for xn and x. The substitution for x is A0. After

expanding the synthesis equation inside the parentheses in Equation 1.1,

squaring the result, and performing the required summation, the cross product

terms vanish (see Equation 1.2) and, using Equations 1.7 and 1.8, the remaining

squared terms will reduce to the equations for variance at any harmonic seen in

Table 1.1. With one exception, a harmonic variance is the sum of the squares of

the Fourier cosine and sine coefficients divided by two. The exception occurs at

harmonic m¼N/2. The expansion of Equation 1.1 into the sum of harmo-

nic variances is a good exercise in the application of orthogonality in time

series analysis.

1.2.4 Amplitude and phase representation

Instead of representing a time series by the appropriate sums of both sines and

cosines, an alternative representation is to use either sines or cosines alone and

include phase angles, as seen in the right-hand equations in Table 1.1 under Fourier

Synthesis. Because of orthogonality, the cosine term is shifted by 90� or p/2 radians
from the sine term for any harmonic. As a result, a single sinusoid can be represented

by two amplitude coefficients (Am and Bm) or, equivalently, by a single amplitude

coefficient Rm and a phase angle qm. The advantages of the latter are a slightly more

compact representation of xn and only one waveform for each harmonic.

Figure 1.7a illustrates the connection between the two forms of Fourier synthesis.

The dashed sinusoid with amplitude Rm in the right-hand panel has been decom-

posed into a cosine term and a sine term. Their respective amplitudes Am and Bm
depend on the location of the dashed sinusoid relative to the origin n¼ 0, that is, its
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