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Foreword

Effectors in Plant–Microbe

Interactions: Past to Present

Brian Staskawicz

Department of Plant and Microbial Biology, University

of California Berkeley, Berkeley, CA 94720, USA

The basic understanding of why a phytopathogen can

cause disease on only a few species of any particular plant

has long intrigued plant pathologists. In fact, if one looks at

all the potential disease-causing agents of plants, the ability

of a pathogen to cause disease is often the exception as

most plants are able to recognize and actively defend

themselves against most pathogens in nature. Early work by

E.C. Stakman at the University of Minnesota in early

twentieth century established the concept of the

“physiological race” of a single species of rust (Stakman,

1914). He demonstrated that physiological races derived

from the sexual cycle of Puccinia graminis gave rise to

distinct strains that varied in their ability to cause disease

when inoculated on various wheat varieties. This

observation was critical to the concept that resistance to

cereal rust pathogens was race specific and that knowledge

of the genetic variation in rusts was essential to the

successful breeding for disease resistance. It was then

Harold Flor in the 1940s with his work on flax rust who

provided a genetic explanation for Stakman's “physiological

race” concept (Flor, 1942). His work established that single

gene differences in both the host and pathogen controlled

whether a flax rust strain caused disease on a particular



cultivar of flax. Building on these prior observations and

work by Al Ellingboe along with the discovery of

recombinant DNA and gene cloning, I set out with Douglas

Dahlbeck and Noel Keen in the early 1980s to clone a gene

that defined the “physiological race” that Stakman and Flor

had previously described and genetically characterized. The

cloning of an “avirulence” gene from a Pseudomonas

syringae pv. glycinea race established that a single gene in

the pathogen controlled whether this bacterium caused

disease on a particular cultivar of soybean (Staskawicz

et  al., 1984). In this case, the avirulence gene was

recognized as a single resistance gene in soybean.

However, it was not until several years later that it was

established that these so-called avirulence genes also

played a major role in the virulence of the pathogen. This

was accomplished once methods had been established for

performing site-directed gene mutations in phytopathogenic

bacteria such that isogenic strains could be constructed and

evaluated on hosts that did not contain the cognate

resistance gene. Mutations in the avrBs2 gene resulted in

lower bacterial growth populations on pepper plants that did

not contain the cognate Bs2 gene (Kearney and Staskawicz,

1990). Once it was established that avirulence genes could

be isolated in this manner, it was not long before several

more examples were published. The concept that avirulence

genes also had a role in virulence was further strengthened

by the discovery that the “Hrp” gene in Xanthomonas,

Ralstonia, and Pseudomonas turned out to be highly

homologous to the type three secretion systems genes that

had been earlier established in animal bacterial pathogens

(Fenselau et  al., 1992; Gough et  al., 1992). Since the

medical field used the term “effector protein” to describe

proteins that were delivered via the bacterial type three

secretion systems, phytopathologists also adopted this term

to be consistent with the medical field. Since the original

discovery of phytopathogenic effectors, it has become



apparent that all classes of plant pathogens employ

effectors to either modulate or suppress plant innate

immune functions (Dodds and Rathjen, 2010). Since the

field has rapidly expanded over the last 5 years, the

publishing of this book is timely as it brings together a

wealth of information and points of view on a wide range of

pathogen effectors. There is no question that we have

learned a great deal about the mode of action of pathogen

effectors to date, but this field is in its infancy and surely

will flourish in the years to come. The combination of

molecular, cellular, genomic, and structural studies will be

paramount to this effort. As for the future, the sequencing of

field isolates of naturally occurring pathogens will shed new

light on pathogen diversity and will provide novel insights

into the evolution and function of pathogen effectors in

agricultural systems. This, in turn, will greatly benefit the

deployment of durable disease-resistance strategies to

control disease in an environmentally sustainable manner.

One can only hope that translational approaches will be

employed to solve important disease problems that are

currently present and for new diseases that will emerge in

the future.
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Preface

Every single plant in nature is closely associated with

mutualistic microbes, particularly fungi and bacteria. In

addition, plants are repeatedly attacked by a multitude of

pathogens and pests, including bacteria, fungi, oomycetes,

nematodes, and insects. Deciphering how plants interact

with both mutualistic and parasitic microbes is central to

understanding their biology. One could almost argue that

plant biology should be viewed as a subdiscipline of plant–

microbe interactions. Identifying the plant–microbe cross

talks is also crucial for a better understanding of the

processes regulating the complex interactions between

entangled plant and microbial communities in ecosystems.

The field of plant–microbe interactions has significantly

matured in recent years. All major classes of molecular

players both from plants (surface and intracellular immune

receptors) and microbes (microbial pattern molecules and

effectors) have now been revealed. This book focuses on

effectors, secreted microbial molecules that alter plant

processes and facilitate colonization. Effectors are central to

our newly integrated view of plant–microbe interactions.

Effectors have evolved to facilitate parasitism, for example,

by suppressing host immunity in a variety of ways.

However, they can also “trip on the wire” and activate plant

immune receptors, a response known as effector-triggered

immunity. These are complex interactions and the

coevolutionary dynamics between plants and microbes have

left striking marks in their genomes. Our goal was to take

stock of current knowledge on effectors of plant-associated

organisms and illustrate the diverse and complex ways in

which effectors interact with their host plants.

The book opens with general reviews on plant immunity

and how it is targeted by microbial effectors (Chapters 1



and 2). The field of effector biology has greatly benefited

from genome-wide analyses, which result in complete

catalogs of effector genes. Chapters 3–5 report on genome-

wide analyses and evolution of effectors genes. These

chapters nicely illustrate how comparative genomics greatly

contributed to our understanding of effector evolution.

Chapters 6–8 describe how effectors function in suppressing

host immunity and how they are perceived by plant immune

receptors. How effectors traffic inside plant cells is covered

by Chapters 9 and 10. Finally, the closing Chapters 11–15

cover emerging topics. Effectors have been reported in a

number of plant–microbe systems, including bacterial and

fungal symbioses, as well as nematode and insect pests.

Effector biology is a new and fast-paced field of research.

As with all emerging fields of science, consensus among

researchers has not always been reached and some topics

remain controversial. Readers will surely notice more than

one example throughout the book. We elected to keep such

“inconsistencies” rather than enforce an arbitrarily sanitized

version. We hope that such differences between authors will

be informative of the current dynamic state of our science.

Books may have become less fashionable in the age of

tweeting and microblogging. However, we hope that there is

value in a document that summarizes the current state of

the field of effector biology and provides a handy

complement to the literature for both novice and

experienced scientists.

Francis Martin and Sophien Kamoun


