

Contents

Chapter 1: Introducing WEBGL

The Basics of WebGL

So Why is WebGL so Great?

Designing a Graphics API

An Overview of Graphics Hardware

Understanding the WebGL Graphics Pipeline

Comparing WebGL to Other Graphics

Technologies

Linear Algebra for 3D Graphics

Summary

Chapter 2: Creating Basic Webgl Examples

Drawing a Triangle

Understanding the WebGL Coding Style

Debugging Your WebGL Application

Using the DOM API to Load Your Shaders

Putting It Together in a Slightly More Advanced

Example

Summary

Chapter 3: Drawing

WebGL Drawing Primitives and Drawing Methods

Typed Arrays

Exploring Different Ways to Draw

Interleaving Your Vertex Data for Improved

Performance

Using a Vertex Array or Constant Vertex Data

A Last Example to Wind Things Up

Summary

Chapter 4: Compact Javascript Libraries

and Transformations

Working with Matrices and Vectors in JavaScript

Using Transformations

Understanding the Complete Transformation

Pipeline

Getting Practical with Transformations

Understanding the Importance of Transformation

Order

A Complete Example: Drawing Several

Transformed Objects

Summary

Chapter 5: Texturing

Understanding Lost Context

Introducing 2D Textures and Cubemap Textures

Loading Your Textures

Defining Your Texture Coordinates

Using Your Textures in Shaders

Working with Texture Filtering

Understanding Texture Coordinate Wrapping

A Complete Texture Example

Using Images for Your Textures

Understanding Same-Origin Policy and Cross-

Origin Resource Sharing

Summary

Chapter 6: Animations and User Input

Animating the Scene

Event Handling for User Interaction

Applying Your New Knowledge

Summary

Chapter 7: Lighting

Understanding Light

Working with a Local Lighting Model

Understanding the Phong Reflection Model

Understanding the JavaScript Code Needed for

WebGL Lighting

Using Different Interpolation Techniques for

Shading

Understanding the Vectors that Must be

Normalized

Using Different Types of Lights

Understanding the Attenuation of Light

Understanding Light Mapping

Summary

Chapter 8: WEBGL Performance

Optimizations

WebGL under the Hood

WebGL Performance Optimizations

A Closer Look at Blending

Taking WebGL Further

Summary

Introduction

Advertisements

Chapter 1

Introducing WebGL

WHAT’S IN THIS CHAPTER?

The basics of WebGL

Why 3D graphics in the browser offer great possibilities

How to work with an immediate-mode API

The basics of graphics hardware

The WebGL graphics pipeline

How WebGL compares to other graphics technologies

Some basic linear algebra needed for WebGL

In this chapter you will be introduced to WebGL and learn

some important theory behind WebGL, as well as general

theory behind 3D graphics. You will learn what WebGL is and

get an understanding of the graphics pipeline that is used

for WebGL.

You will also be given an overview of some other related

graphics standards that will give you a broader

understanding of WebGL and how it compares to these

other technologies.

The chapter concludes with a review of some basic linear

algebra that is useful to understand if you really want to

master WebGL on a deeper level.

THE BASICS OF WEBGL
WebGL is an application programming interface (API) for

advanced 3D graphics on the web. It is based on OpenGL ES

2.0, and provides similar rendering functionality, but in an

HTML and JavaScript context. The rendering surface that is

used for WebGL is the HTML5 canvas element, which was

originally introduced by Apple in the WebKit open-source

browser engine. The reason for introducing the HTML5

canvas was to be able to render 2D graphics in applications

such as Dashboard widgets and in the Safari browser on the

Apple Mac OS X operating system.

Based on the canvas element, Vladimir Vukićević at

Mozilla started experimenting with 3D graphics for the

canvas element. He called the initial prototype Canvas 3D.

In 2009 the Khronos Group started a new WebGL working

group, which now consists of several major browser

vendors, including Apple, Google, Mozilla, and Opera. The

Khronos Group is a non-profit industry consortium that

creates open standards and royalty-free APIs. It was founded

in January 2000 and is behind a number of other APIs and

technologies such as OpenGL ES for 3D graphics for

embedded devices, OpenCL for parallel programming,

OpenVG for low-level acceleration of vector graphics, and

OpenMAX for accelerated multimedia components. Since

2006 the Khronos Group has also controlled and promoted

OpenGL, which is a 3D graphics API for desktops.

The final WebGL 1.0 specification was frozen in March

2011, and WebGL support is implemented in several

browsers, including Google Chrome, Mozilla Firefox, and (at

the time of this writing) in the development releases of

Safari and Opera.

For the latest information about which versions of different browsers

support WebGL, visit www.khronos.org/webgl/.

http://www.khronos.org/webgl/

SO WHY IS WEBGL SO

GREAT?
In the early days of the web, the content consisted of static

documents of text. The web browser was used to retrieve

and display these static pages. Over time the web

technology has evolved tremendously, and today many

websites are actually full-featured applications. They

support two-way communication between the server and

the client, users can register and log in, and web

applications now feature a rich user interface that includes

graphics as well as audio and video.

The fast evolution of web applications has led to them

becoming an attractive alternative to native applications.

Some advantages of web applications include the following:

They are cheap and easy to distribute to a lot of users. A

compatible web browser is all that the user needs.

Maintenance is easy. When you find a bug in your

application or when you have added some nice new

features that you want your users to benefit from, you

only have to upgrade the application on the web server

and your users are able to benefit from your new

application immediately.

At least in theory, it is easier to have cross-platform

support (i.e., to support several operating systems such

as Windows, Mac OS, Linux, and so on) since the

application is executing inside the web browser.

However, to be honest, web applications also have had

(and still have) some limitations compared to native

applications. One limitation has been that the user interface

of web applications has not been as rich as for their native

application counterparts. This changed a lot with the

introduction of the HTML5 canvas tag, which made it

possible to create really advanced 2D graphics for your web

applications. But the initial HTML5 canvas tag only specified

a 2D context that does not support 3D graphics.

With WebGL, you get hardware-accelerated 3D graphics

inside the browser. You can create 3D games or other

advanced 3D graphics applications, and at the same time

have all the benefits that a web application has. In addition

to these benefits, WebGL also has the following attractive

characteristics:

WebGL is an open standard that everyone can

implement or use without paying royalties to anyone.

WebGL takes advantage of the graphics hardware to

accelerate the rendering, which means it is really fast.

WebGL runs natively in the browsers that support it; no

plug-in is needed.

Since WebGL is based on OpenGL ES 2.0, it is quite easy

to learn for many developers who have previous

experience with this API, or even for developers who

have used desktop OpenGL with shaders.

The WebGL standard also offers a great way for students

and others to learn and experiment with 3D graphics. There

is no need to download and set up a toolchain like you have

to do for most other 3D APIs. To create your WebGL

application, you only need a text editor to write your code,

and to view your creation you can just load your files into a

web browser with WebGL support.

DESIGNING A GRAPHICS

API
There are two fundamentally different ways to design a

graphics API:

Using an immediate-mode API

Using a retained-mode API

WebGL is an immediate-mode API.

An Immediate-Mode API

For an immediate-mode API, the whole scene needs to be

redrawn on every frame, regardless of whether it has

changed. The graphics library that exposes the API does not

save any internal model of the scene that should be drawn.

Instead, the application needs to have its own

representation of the scene that it keeps in memory. This

design gives a lot of flexibility and control to the application.

However, it also requires some more work for the

application, such as keeping track of the model of the scene

and doing initialization and cleanup work. Figure 1-1 shows

a simplified diagram of how an immediate-mode API works.

FIGURE 1-1: A diagram of how an immediate-mode API

works

A Retained-Mode API

A graphics library that exposes a retained-mode API

contains an internal model or scene graph with all the

objects that should be rendered. When the application calls

the API, it is the internal model that is updated, and the

library can then decide when the actual drawing to the

screen should be done. This means that the application that

uses the API does not need to issue drawing commands to

draw the complete scene on every frame. A retained-mode

API can in some ways be easier to use since the graphics

library does some work for you, so you don’t have to do it in

your application. Figure 1-2 shows a diagram of how a

retained-mode API works. An example of a retained-mode

API is Scalable Vector Graphics (SVG), which is described

briefly later in this chapter.

FIGURE 1-2: A diagram of how a retained-mode API works

AN OVERVIEW OF

GRAPHICS HARDWARE
WebGL is a low-level API and since it is based on OpenGL ES

2.0, it works closely with the actual graphics hardware. To

be able to understand the concepts in the rest of this book,

it is good to have a basic understanding of graphics

hardware and how it works. You probably already know most

of this, but to be sure you have the necessary knowledge,

this section offers a short overview of the basics.

Figure 1-3 shows a simplified example of a computer

system. The application (whether it is a WebGL application

that executes in the web browser or some other application)

executes on the CPU and uses the main memory (often

referred to simply as RAM). To display 3D graphics, the

application calls an API that in turn calls a low-level software

driver that sends the graphics data over a bus to the

graphics processing unit (GPU).

FIGURE 1-3: A simplified diagram of a graphics hardware

and its relation to other hardware

GPU

The GPU is a dedicated graphics-rendering device that is

specially designed to generate graphics that should be

displayed on the screen. A GPU is usually highly parallelized

and manipulates graphics data very quickly. The term GPU

was first coined and marketed by NVIDIA when they

released their GeForce 256 in 1999 as the first GPU in the

world.

The GPU is typically implemented as a pipeline where data

is moved from one stage in the pipeline to the next stage.

Later in this chapter you will learn the different steps of the

WebGL graphics pipeline, which consists of conceptual

pipeline stages that are then mapped to the physical

pipeline stages of the GPU.

Framebuffer

When the graphics data has traversed the complete GPU

pipeline, it is finally written to the framebuffer. The

framebuffer is memory that contains the information that is

needed to show the final image on the display. The physical

memory that is used for the framebuffer can be located in

different places. For a simple graphics system, the

framebuffer could actually be allocated as part of the usual

main memory, but modern graphics systems normally have

a framebuffer that is allocated in special fast graphics

memory on the GPU or possibly on a separate chip very

close to the GPU.

The framebuffer usually consists of at least three different

sub-buffers:

Color buffer

Z-buffer

Stencil buffer

Color Buffer

The color buffer is a rectangular array of memory that

contains the color in RGB or RGBA format for each pixel on

the screen. The color buffer has a certain number of bits

allocated for the colors red, green, and blue (RGB). It may

also have an alpha channel, which means that it has a

certain number of bits allocated to describe the

transparency (or opacity) of the pixel in the framebuffer. The

total number of bits available to represent one pixel is

referred to as the color depth of the framebuffer. Examples

of color depths are:

16 bits per pixel

24 bits per pixel

32 bits per pixel

A framebuffer with 16 bits per pixel is often used in

smaller devices such as some simpler mobile phones. When

you have 16 bits per pixel, a common allocation between

the different colors is to have 5 bits for red, 6 bits for green,

5 bits for blue, and no alpha channel in the framebuffer. This

format is often referred to as RGB565. The reason for

selecting green to have an additional bit is that the human

eye is most sensitive to green light. Allocating 16 bits for

your colors gives 216 = 65,536 colors in total.

In the same way, a framebuffer with a color depth of 24

bits per pixel usually allocates 8 bits for red, 8 bits for green,

and 8 bits for blue. This gives you more than 16 million

colors and no alpha channel in the framebuffer.

A framebuffer with 32 bits per pixel usually has the same

allocation of bits as a 24-bit framebuffer — i.e., 8 bits for

red, 8 bits for green, and 8 bits for blue. In addition, the 32-

bit framebuffer has 8 bits allocated for an alpha channel.

Here you should note that the alpha channel in the

framebuffer is not very commonly used. The alpha channel

in the framebuffer is usually referred to as the destination

alpha channel and is different from the source alpha channel

that represents the transparency of the incoming pixels. For

example, the process called alpha blending, which can be

used to create the illusion of transparent objects, needs the

source alpha channel but not the destination alpha channel

in the framebuffer.

You will learn more about alpha blending in Chapter 8.

Z-Buffer

The color buffer should normally contain the colors for the

objects that the viewer of the 3D scene can see at a certain

point in time. Some objects in a 3D scene might be hidden

by other objects and when the complete scene is rendered,

the pixels that belong to the hidden objects should not be

available in the color buffer.

Normally this is achieved in graphics hardware with the

help of the Z-buffer, which is also referred to as the depth

buffer. The Z-buffer has the same number of elements as

there are pixels in the color buffer. In each element, the Z-

buffer stores the distance from the viewer to the closest

primitive.

You will learn exactly how the Z-buffer is used to handle the depth in the

scene in the “Depth Buffer Test” section later in this chapter.

Stencil Buffer

In addition to the color buffer and the Z-buffer — which are

the two most commonly used buffers in the framebuffer —

modern graphics hardware also contains a stencil buffer.

The stencil buffer can be used to control where in the color

buffer something should be drawn. A practical example of

when it can be used is for handling shadows.

Texture Memory

An important operation in 3D graphics is applying a texture

to a surface. You can think of texturing as a process that

“glues” images onto geometrical objects. These images,

which are called textures, need to be stored so that the GPU

can access them quickly and efficiently. Usually the GPU has

a special texture memory to store the textures.

You will learn more about texturing in Chapter 5.

Video Controller

The video controller (also called a video generator) scans

through the color buffer line-by-line at a certain rate and

updates the display. The whole display is typically updated

60 times per second for an LCD display. This is referred to as

a refresh rate of 60 Hz.

UNDERSTANDING THE

WEBGL GRAPHICS

PIPELINE
A web application that uses WebGL typically consists of

HTML, CSS, and JavaScript files that execute within a web

browser. In addition to this classical web application content,

a WebGL application also contains source code for its

shaders and some sort of data representing the 3D (or

possibly 2D) models it displays.

The browser does not require a plug-in to execute WebGL;

the support is natively built into the browser. It is the

JavaScript that calls the WebGL API to send in information to

the WebGL pipeline for how the 3D models should be

rendered. This information consists of not only the source

code for the two programmable stages in the WebGL

pipeline, the vertex shader, and the fragment shader, but

also information about the 3D models that should be

rendered.

After the data has traversed the complete WebGL pipeline,

the result is written to something that WebGL calls the

drawing buffer. You can think of the drawing buffer as the

framebuffer for WebGL. It has a color buffer, a Z-buffer, and

a stencil buffer in the same way as the framebuffer.

However, the result in the drawing buffer is composited with

the rest of the HTML page before it ends up in the physical

framebuffer that is actually displayed on the screen.

In the following sections, you will learn about the different

stages of the WebGL pipeline that are shown in Figure 1-4.

As shown in the figure, there are several stages in the

pipeline. The most important stages for you as a WebGL

programmer are the vertex shader and the fragment shader.

You will be introduced to several new terms in the following

sections. Some will be explained in this chapter, while the

explanation for other terms and concepts will come in later

chapters. The following section is an introduction to the

WebGL graphics pipeline, which means that you do not need

to understand every detail presented here.

FIGURE 1-4: An overview of the WebGL graphics pipeline

Vertex Shader

To get a realistic 3D scene, it is not enough to render objects

at certain positions. You also need to take into account

things like how the objects will look when light sources shine

on them. The general term that is used for the process of

determining the effect of light on different materials is

called shading.

For WebGL, the shading is done in two stages:

Vertex shader

Fragment shader

The first stage is the vertex shader. (The fragment shader

comes later in the pipeline and is discussed in a later

section in this chapter.) The name vertex shader comes

from the fact that a 3D point that is a corner or intersection

of a geometric shape is often referred to as a vertex (or

vertices in plural). The vertex shader is the stage in the

pipeline that performs shading for a vertex. Figure 1-5

shows where the vertex shader is located in the WebGL

graphics pipeline.

FIGURE 1-5: The location of the vertex shader in the

WebGL graphics pipeline

The vertex shader is where the 3D modeling data (e.g., the

vertices) first ends up after it is sent in through the

JavaScript API. Since the vertex shader is programmable and

its source code is written by you and sent in through the

JavaScript API, it can actually manipulate a vertex in many

ways.

Before the actual shading starts, it often transforms the

vertex by multiplying it with a transformation matrix. By

multiplying all vertices of an object with the transformation

matrix, the object can be placed at a specific position in

your scene. You will learn more about transformations later

in this chapter and also in Chapter 4, so don’t worry if you

do not understand exactly what this means now.

The vertex shader uses the following input:

The actual source code that the vertex shader consists

of. This source code is written in OpenGL ES Shading

Language (GLSL ES).

Attributes that are user-defined variables that normally

contain data specific to each vertex. (There is also a

feature called constant vertex attributes that you can

use if you want to specify the same attribute value for

multiple vertices.) Examples of attributes are vertex

positions and vertex colors.

Uniforms that are data that is constant for all vertices.

Examples of uniforms are transformation matrices or the

position of a light source. (As covered later in this

chapter, you can change the value for a uniform

between WebGL draw calls, so it is only during a draw

call that the uniform needs to be constant.)

The output from the vertex shader is shown at the bottom

of Figure 1-6 and consists of user-defined varying variables

and some built-in special variables.

FIGURE 1-6: An overview of the vertex shader

The varying variables are a way for the vertex shader to

send information to the fragment shader. You will take a

closer look at the built-in special variables in later chapters.

For now, it is enough to understand that the built-in variable

gl_Position is the most important one, and it contains the

position for the vertex after the vertex shader is finished

with its job.

The following source code snippet shows an example of a

basic vertex shader. Again, you learn more about vertex

shaders in later chapters; this source code simply shows you

what it looks like:

 attribute vec3 aVertexPos;

 attribute vec4 aVertexColor;

 uniform mat4 uMVMatrix;

 uniform mat4 uPMatrix;

 varying vec4 vColor;

 void main() {

 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPos,

1.0);

 vColor = aVertexColor;

 }

As previously mentioned, this source code is written in

OpenGL ES Shading Language. As you can see, the syntax is

quite similar to the C programming language. There are

some differences in, for example, the supported data types,

but if you have programmed using C before, then many

things will be familiar to you. Although you don’t need to

understand every last detail of how this works at this

particular time, the following snippets provide a bit more

insight.

Starting from the top of the code, the first two lines

declare two attribute variables:

 attribute vec3 aVertexPos;

 attribute vec4 aVertexColor;

Once again, the attributes are user-defined variables that

contain data specific to each vertex. The actual values for

the attribute variables are sent in through the WebGL

JavaScript API.

The first variable is called aVertexPos and is a vector with

three elements. It contains the position for a single vertex.

The second variable is named aVertexColor and is a vector

with four elements. It contains the color for a single vertex.

The next two lines of source code define two uniform

variables of the type mat4:

 uniform mat4 uMVMatrix;

 uniform mat4 uPMatrix;

The type mat4 represents a 4 × 4 matrix. The two uniform

variables in this example contain the transformations that

should be applied to each vertex. In the same way as for the

attribute variables, the uniforms are set from the WebGL

JavaScript API. The difference is that uniforms normally

contain data that are constant for all vertices.

The last declaration is the varying variable that is named

vColor; it contains the output color from the vertex shader:

varying vec4 vColor;

This varying variable will be input to the fragment shader.

After the declarations of all the variables comes the entry

point for the vertex shader:

 void main() {

 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPos,

1.0);

Both for the vertex shader and the fragment shader, the

entry point is the main() function. The first statement in the

main() function takes the vertex position aVertexPos and

multiplies it by the two transformation matrices to perform

the transformation. The result is written to the special built-

in variable gl_Position that contains the position of a single

vertex after the vertex shader is finished with it. The last

thing the vertex shader does is to take the attribute that

contains the color and that was sent in through the WebGL

JavaScript API and write this to varying variable vColor so it

can be read by the fragment shader:

 vColor = aVertexColor;

 }

Primitive Assembly

In the step after the vertex shader — known as primitive

assembly (see Figure 1-7) — the WebGL pipeline needs to

assemble the shaded vertices into individual geometric

primitives such as triangles, lines, or point sprites. Then for

each triangle, line, or point sprite, WebGL needs to decide

whether the primitive is within the 3D region that is visible

on the screen for the moment. In the most common case,

the visible 3D region is called the view frustum and is a

truncated pyramid with a rectangular base.

FIGURE 1-7: The location of the primitive assembly stage

in the WebGL graphics pipeline

Primitives inside the view frustum are sent to the next step

in the pipeline. Primitives outside the view frustum are

completely removed, and primitives partly in the view

frustum are clipped so the parts that are outside the view

frustum are removed. Figure 1-8 shows an example of a

view frustum with a cube that is inside the view frustum and

a cylinder that is outside the view frustum. The primitives

that build up the cube are sent to the next stage in the

pipeline, while the primitives that build up the cylinder are

removed during this stage.

FIGURE 1-8: A view frustum with a cube that is inside the

frustum and a cylinder that is outside the frustum

Rasterization

The next step in the pipeline is to convert the primitives

(lines, triangles, and point sprites) to fragments that should

be sent to the fragment shader. You can think of a fragment

as a pixel that can finally be drawn on the screen. This

conversion to fragments happens in the rasterization stage

(see Figure 1-9).

FIGURE 1-9: The location of rasterization in the WebGL

graphics pipeline

Fragment Shader

The fragments from the rasterization are sent to the second

programmable stage of the pipeline, which is the fragment

shader (see Figure 1-10). As mentioned earlier, a fragment

basically corresponds to a pixel on the screen. However, not

all fragments become pixels in the drawing buffer since the

per-fragment operations (which are described next) might

discard some fragments in the last steps of the pipeline. So

WebGL differentiates between fragments and pixels.

Fragments are called pixels when they are finally written to

the drawing buffer.

FIGURE 1-10: The Location of the fragment shader in the

WebGL graphics pipeline

In other 3D rendering APIs, such as Direct3D from

Microsoft, the fragment shader is actually called a pixel

shader. Figure 1-11 shows the input and output of the

fragment shader.

