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Preface

The eleventh annual symposium on Environmental Issues and Waste Management Technologies in the ceramic
and nuclear industry took place in Baltimore, MD, April 10 - 13, 2005. The symposium was held in conjunc-
tion with the 107th Annual Meeting of The American Ceramic Society, and was sponsored by the Nuclear and
Environmental Technology Division, Legislative and Public Affairs Division, Environmental Stewardship
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arena were held, including a panel discussion on nuclear waste form durability. This volume documents a
number of papers that were presented at the symposium.
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support of the staff at The American Ceramic Society and the other organizers of the program. The assistance
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INDOOR AIR POLLUTION CONTROL:
FORMALDEHYDE ADSORPTION BY ZEOLITE RICH MATERIALS

Maria del Carmen Cazorla A.
The Pennsylvania State University
mxc528@psu.edu

Michael Grutzeck
The Pennsylvania State University
104 MRL University Park PA, 16802

ABSTRACT

Formaldehyde is a carcinogenic byproduct emitted from resins in plywood, hardwood
paneling, and carpets. This pollutant is commonly found in indoor environments and as such is
purported to be the main causative agent of sick building syndrome. Building materials such as
paneling and coating with highly adsorptive properties given by zeolites incorporated into their
composition can help curb indoor air pollution. In this research zeolites were synthesized and
tested for their ability to adsorb formaldehyde from the air. Class F fly ash, a waste product from
coal combustion, and metakaolinite, a clay material, were mixed with sodium hydroxide
solutions to produce zeolites. Samples were mixed as pastes and reacted as a function of time
and temperature. Zeolite A, faujasite, analcime, and other mixed phases were obtained. Samples
were characterized by X-ray diffraction and scanning electron microscopy. To test the ability of
materials at cleaning formaldehyde from the air, samples were put in contact with a “polluted”
air stream. Compressed air was mixed with the gas phase above a volume of a 10% formalin
solution used as permanent source of formaldehyde. Air passed through an adsorption cell
consisting of concentric layers coated with zeolite powders. Formaldehyde removal was
monitored by observing the change of its infrared spectrum with time by means of Fourier
transform infrared spectroscopy. Formaldehyde spectral peaks completely disappeared within
few minutes of contact, dropping to “zero” percent formaldehyde. Results obtained from this
preliminary study demonstrate the feasibility of using synthesized zeolites to improve indoor air
quality.

INTRODUCTION

In order to conserve energy, current practice limits the amount of fresh air that is mixed
with recirculated air in tightly sealed buildings. Although energy savings are substantial, the
potential risk of pollutant buildup has increased. Some studies show that indoor air can be more
polluted than outdoor air" 2. In fact, as a result of energy efficient building designs, a medical
condition called sick bui]din§ syndrome (SBS), has become a major public health concern since
it first appeared in the 1970s™ *. In the indoor environment there is a large spectrum of pollutants
rangin§ from carcinogenic volatile organic compounds to combustion products and biological
agents” * 7. Formaldehyde, emitted from resins in plywood, particleboard, hardwood paneling,
and carpets is one of the toxic organic compounds present in indoor air and potential causative
agent of symptoms of SBS® °. Health effects due to formaldehyde exposure range from skin
irritation to upper respiratory system cancers'. Appropriate ventilation supply as well as the
installation of air filters tend to improve air quality, but do not specifically address the problem
of the presence of formaldehyde in indoor environments; therefore, novel solutions to clean this
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contaminant from air are needed. Studies demonstrate the existence of a “sink” effect of polar
and non polar gaseous compounds on building materials, i.e. VOC sorption on wall surfaces''.
Some configurations of air purifiers have been tested using zeolites as sorptlve media'Z.
Formaldehyde removal has also been tested with TiO2-zeolite composite materials'®. The work
reported here describes the development of zeolite rich materials to adsorb formaldehyde from
indoor air. Zeolites are naturally occurring minerals composed of crystalline aluminosilicates of
alkali and alkaline earth elements such as sodium, potassium and calcium. Synthesis of zeolites
is possible since geological conditions of high pressure and temperature needed for their
formation can be reproduced and accelerated at a laboratory level. Synthesized zeolitic materials
could be used as air purifiers to be placed inside air ducts. Finely divided zeolite materials could
also be used for sorptive wall and ceiling coatings. Furthermore, these materials could be
fabricated as stand alone zeolite rich panels for use in walls and ceilings thus providing both
function and air purification, i.e. multitasking building materials. In this study zeolite materials
are synthesized from Class F fly ash. Using a waste product to manufacture materials with an
environmental application makes the product environmentally friendly. Such characteristic
confers an additional level of attractiveness to promote potential products in the marketplace.
The study reported below is a preliminary effort to addresses the feasibility of curbing
formaldehyde indoor pollution with zeolites, and opens up the door for further research on
indoor air quality improvement with highly adsorptive building materials

EXPERIMENTAL
Zeolite Synthesis

Zeolite synthesis from Class F fly ash by hydrothermal alkaline conversion has been
studied previously'® '> 1617 and is relatively straight forward. In the present work, four kinds of
zeolite materials were prepared and tested for their ability to adsorb gaseous formaldehyde from
air. Class F fly ash from the Fort Martin Power Station (part of Allegheny Power in Maidsville,
West Virginia) was dry blended with metakaolinite (thermally treated Troy clay from Troy
Idaho) in proportions 1:1 and 5:1 and then mixed to a paste-like consistency with 4M and 8M
sodium hydroxide solutions. All mixtures were aged at 40°C for 12 hours, and cured at 185°C
for 12 hours in pressurized Teflon lined vessels (Parr bombs). In addition, fly ash was also mixed
with an 8M NaOH solution, aged at 40°C for 12 hours, and then cured at 185°C for 12 and 36
hours. Materials characterization was done by scanning electron microscopy (SEM) and X-ray
diffractometry (XRD).

Formaldehyde Generation and Detection

Gaseous formaldehyde was generated using a commercial 10% formalin solution as a
source. Such solutions contain 3.7 wt% of formaldehyde gas dissolved in water and stabilized
with methanol. Formaldehyde is very reactive and tends to polymerize spontaneously in agueous
solution!®. To promote gaseous formaldehyde release from the liquid phase, the temperature of
the generator was set at 40°C. Formaldehyde’s presence in the gaseous phase was detected using
infrared (IR) spectrosco?y Formaldehyde contains a carbonyl group that undergoes stretching
vibrations at 1737.5 cm™ that can be used as characteristic peak for IR data analysis. Change in
the intensity of this peak was used as a measure of formaldehyde presence in air, and adsorption
efficiencies by materials. Figure 1 shows the experimental set-up, including formaldehyde gas
production, the adsorption apparatus and IR detector.
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Figure 2. Configuration of adsorption cell

Formaldehyde Adsorption by Zeolite Materials

Solid material was finely ground, dried at 110°C for 1 hour, and then placed in the
adsorption cell. To provide with a large contact area for adsorption, powdered zeolites were
evenly distributed on the surface of seven concentric cylinders made from one side sticky paper
(shelf liner), as shown in Figure 2. The cylinders were 18.5 cm long and had radii starting at 1.9
cm, and ending at 4.9 cm with differences of 0.5 cm. Total surface area was 2766.5 cm’ (429
in%). A compressed air cylinder was used as the source of air that continuously flowed into and
out of the air space over the formaldehyde solution in the generator. Once the air was “polluted”,
the air flow was passed through the adsorption cell at a constant rate of 3.2 ml/s. After contact
with the zeolite material, IR scans on the exiting gaseous flow were performed over time in a
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Fourier Transform Infrared Spectrometer (FTIR). Formaldehyde adsorption was monitored by
observing variation of formaldehyde’s spectra with time. Spectral peaks completely disappeared
within few minutes of initial contact. Time to reach 0% of formaldehyde in air (100%
formaldehyde adsorption), total time for 0% formaldehyde in air, and breakthrough times (the
time it took for the air to begin to once again show signs of formaldehyde) were recorded.

Formaldehyde concentration in the gas phase was approximated through equilibrium
calculations. For all cases, the maximum possible concentration of formaldehyde in air is that
corresponding to equilibrium at 40°C. A liquid solution of 10% formalin contains 3.7% (weightg
of formaldehyde that corresponds to 1.23 M. Henry’s law for solubility of gases in water"
relates concentration of compounds in the liquid phase with partial pressures in the gaseous
phase. The maximum possible concentration of formaldehyde in the system is 665 ppm. A mass
balance of formaldehyde, considering steady state and perfect mixing, was applied to estimate
formaldehyde generation rate (311 pg/min). This value was used as a reference to calculate
formaldehyde uptake by materials.

RESULTS AND DISCUSSION
Synthesized Zeolites

Samples were characterized by X-ray diffraction and SEM. The following crystalline
phases were found: Zeolite A (ZA), in the 50:50 sample (SOFASOMK) made with 4M NaOH;,
phillipsite, analcime, AIPO4, and zeolite P-C (Z P-C), in the 5:1 sample (83FA17MK) made with
8M NaOH; and faujasite and analcime in two fly ash samples hydrated for 12 and 36 hours,
respectively (FA12h and FA36h). Curing temperature was 185°C for all samples as well as 40°C
for 12 hours for precursor aging. Preliminary experimentation was performed to choose the best
synthesis conditions (temperatures, solid mixture proportions and caustic solution strengths) for
final materials to be tested with formaldehyde. The data here are representative of all of the
samples tested, but decidedly better than their counterparts made with different NaOH solutions.
Data are summarized in Table 1.

Table I. Summary of samples and crystalline phases

- = -
Sample ID M;."i\me (“Icﬂ/? N(;%H T(i::lreuzﬁ) Crystalline Phases
50FASOMK 50 50 4 12 Zeolite A
83FA1TMK 83 17 8 12 Phillipsite, analcime, AIPO4, Z P-C
FA12h 100 - 8 12 Faujasite, analcime
FA36h 100 - 8 36 Faujasite, analcime

Aging at 40°C for 12 hours for all samples. Curing temperature: 185°C
FA=Fly Ash, MK=Metakaolinite
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Figure 3. XRD pattern and SEM of sample SOFAS0MK. XRD peaks correspond to
Zeolite A except for Q=quartz. Morphology shows cubic Zeolite A crystals.

Figure 4. XRD pattern and SEM of sample 83FA17MK. XRD peaks: P=Phillipsite,
A=Analcime, P-C=Zeolite P-C, and AIPO4. Morphology suggests mixed crystalline
phases and porous surface.

Figure 5. XRD pattern and SEM of sample FA12h. XRD peaks: Fanjasite-Na, and
A=Analcime-C. Morphology shows needle like crystals for mixed analcime and faujasite
phases.
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Figure 6. XRD pattern and SEM of sample FA36h. XRD peaks: Faujasite-Na, and
=Analcime-C. Microscopy of sample shows larger hexagonal faujasite crystals.

In terms of synthesis, metakaolinite and fly ash in proportions 1:1 (50FA50MK)
resulted into an enhanced solid mixture to produce Zeolite A using a 4M NaOH solution.
In fact, SEM picture in Figure 3 shows even formation of Zeolite A cubic crystals.
Lower concentration of metakaolinite with stronger NaOH solution (83FA17MK)
produced mixed crystalline zeolite phases. Figure 4 shows a very crystalline XRD pattern
yet mixed. Morphology suggests a very porous surface for this second sample. Fly ash
only mixed with an 8M NaOH solution (FA12h and FA36h) produce faujasite and
analcime as it can be observed in XRD patterns in Figures 5 (FA12h) and 6 (FA36h).
However, sample cured over 36 hours (FA36h) resulted in larger crystal growth as it can
be compared from electron micrographs. In fact, SEM in Figures 5 shows needle like
crystals of size approximately 0.2 p (thickness) versus 6 p hexagonal crystals shown in
Figure 6. Curing temperature was 185°C for all samples as well as 40°C for 12 hours for
precursor aging. Preliminary experimentation was performed to choose synthesis
conditions (temperatures, solid mixture proportions and caustic solution strengths) for
final materials to be tested with formaldehyde.

Formaldehyde Adsorption

Synthesized materials were tested with an air flow polluted with formaldehyde.
Adsorption is evident from change in formaldehyde infrared spectra at the breakthrough
point. Infrared spectrum of the gaseous phase was monitored over time. In all cases, after
zeolite contact, infrared spectrum of the gaseous phase went from the typical
formaldehyde pattern to a more or less flat line as can be observed in spectra in Figures 7
(50FA50MK), 8 (83FA17MK), 9 (FA12h), and 10 (FA36h). Breakthrough curves were
generated plotting change of absorbance peak intensity at 1737.5 cm™ (stretching
vibration of the carbonyl group) over time. Figures 7 to 10 show breakthrough curves
next to infrared spectra for every case.
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Figure 7. Adsorption of formaldehyde by synthesized zeolite A (SOFASOMK). Peak of
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adsorption occurs over 13 minutes.
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Figure 9. Adsorption of formaldehyde by faujasite and analcime cured over 12 hours.
(FA12h). Peak of formaldehyde completely disappears after 4 minutes of contact with
sample and total adsorption occurs over 8 minutes.
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Figure 10. Adsorption of formaldehyde by faujasite and analcime cured over 36 hours.
(FA36h). Peak of formaldehyde completely disappears after 10 minutes of contact with
sample and total adsorption occurs over 25 minutes.

For analysis purposes, amount of formaldehyde taken up by materials were
calculated as approximate values to compare zeolites’ performance. From a mass balance
of formaldehyde performed in the system it was theoretically determined that 311 pg/min
of pollutant were continuously generated by the formaldehyde source. Using the time of
total adsorption by samples, and normalizing by weight of samples used (about 11 grams
for all cases), the uptake of formaldehyde by every sample was approximated. Summary
of samples adsorption performance is shown in Table II. The percentage of enhancement
in formaldehyde adsorption with respect to starting materials was also calculated. Results
obtained for samples were compared with uptake of fly ash (109.8 ug formaldehyde/g
sample) and metakaolinite (207.3 pg formaldehyde /g sample).

Table II. Synthesized zeolite materials formaldehyde adsorption performance

Time | Time | Time
Sample ID i 2 3 Uptake % Enhancement
(min) | (min) | (min) | pg formaldehyde/g sample
S0FASOMK 5 8 13 270.8 70.8
83FA17TMK 7 14 21 414.7 220.8
FA12h 4 4 8 108.2 0.0
FA36h 10 15 25 311.0 183.2

Time 1: Time to reach “zero %" formaldehyde in air (100% adsorption)

Time 2: Time for 100% adsorption.

Time 3: Breakthrough time or time when formaldehyde reappears in air

(*) Uptake of formaldehyde calculated

(**) Enhancement in formaldehyde adsorption with respect to starting materials

Zeolite A (SOFASOMK) is fast at adsorbing formaldehyde and enhances
reasonably well the adsorption ability of starting materials. If compared to other zeolites,
Zeolite A has a void fraction of 0.43 and a window size of 4.2 A versus, for example,
Faujasite that has a void fraction of 0.53 with size of open window of 7.4 A% 2 These
main differences in framework structures seem to be the reason for sample SOFASOMK
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adsorb less formaldehyde than, for example, third sample (FA36h). Sample FA12h did
not enhance the adsorption uptake of fly ash. However, the same sample cured over 36
hours adsorbs about three times as much formaldehyde compared with fly ash. Both
samples, FA12h and FA36h, contain faujasite and analcime according with XRD. In the
case of sample FA12h, probably 12 hours were not enough to grow sufficient amount of
zeolites and little crystals were rapidly saturated. Longer curing time allowed crystals to
grow in larger amount and size to provide with enough internal porosity and better
network of cavities and tunnels available for retention of compound. Also it might have
happened that sample FA36h was richer in faujasite. In fact, if internal porosity is
considered it is clear that faujasite has a void fraction of 0.53 while the value for
analcime is 0.18 2% 2!, Considering uptake of formaldehyde (Table II) and sample
composition, the best synthesized materials are samples 83FA17MK and FA36h. Sample
83FAITMK is very effective at adsorbing formaldehyde since probably the mixed
crystalline phases offer large internal porosity of crystals distributed in a network of
internal cavities suitable for retention of formaldehyde. It is of industrial and
environmental interest to produce materials with high content of fly ash in order to divert
disposal of this waste product from ordinary landfilling. Furthermore, it is important that
samples are rich in fly ash because its pozzolanic properties enhance the mechanical
characteristics of synthesized products. In this preliminary study, the concentration of
formaldehyde used in air for all the tests was the maximum possible for the system, a
calculated value of 665 ppm. However, concentrations found in indoor environments
usually range in the order of ppb. Therefore, at low concentrations zeolites synthesized
from high concentrations of fly ash would make excellent air cleaners either on wall and
ceiling surfaces or in air filters and purifiers. Having obtained results that confirm the
potential of zeolites to clean air from formaldehyde, future work will be directed to
design zeolite rich air cleaning devices and test them at indoor air conditions.

CONCLUSIONS

Zeolite A was synthesized using a 4M sodium hydroxide solution and a solid
mixture containing metakaolinite and 50% fly ash. A second mixture of metakaolinite,
83% fly ash and a sodium hydroxide solution twice as stronger resulted in mixed phases
of phillipsite, analcime, zeolite P-C, and AIPO4. Pure fly ash and an 8M NaOH solution
cured for 12 and 36 hours resulted in Faujasite-Na, and Analcime-C synthesis. All
synthesized zeolites adsorbed formaldehyde from air due to molecular sieve properties
and affinity for polar molecules. The best adsorbents are those materials synthesized from
high contents of fly ash. Results obtained from this preliminary study demonstrate the
technical feasibility of applying zeolites to clean formaldehyde from air.
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ABSTRACT

The ability of molybdenum trioxide to absorb uranium from water was investigated. It was
found that MoO3 could absorb up to 165 % by weight of uranium via a chemical reaction that
produces an insoluble uranium molybdenum oxide mineral oxide called umohoite,UMoOs-2H,0.
The rate of reaction between MoO; and a slight excess (43 mole %) of 0.100 M uranyl acetate
was found to be zero order with a rate constant of 0.42 mmol/hr. A cyclic process was developed
whereby MoO; adsorbed uranium from aqueous solution and then the uranium and molybdenum
trioxide were separated by treatment with aqueous ammonia. Solid ammonium uranate was
isolated by filtration and the aqueous ammonium molybdate was converted back to MoO; by
heating. The recovery of uranium from the separation was 98.9%.

INTRODUCTION

Uranium is a common contaminant of ground water and can arise from natural and
anthropogenic sources. Uranium occurs naturally in the earth's crust and in surface and ground
water. When bedrock consisting mainly of uranium-rich granitoids and granites comes in contact
with soft, slightly alkaline bicarbonate waters under oxidizing conditions uranium will solubilize
over a wide pH range. These conditions occur widely throughout the world. For example, in
Finland exceptlonally high uranium concentrations up to 12,000 ppb are found in wells drilled i m
bedrock'. Concentrations of uranium up to 700 ppb have been found in private wells in Canada’
while a survey in the United States of drinking water from 978 sites found a mean concentration
of 2.55 ppb®. However, some sites in the United States have serious contamination with uranium.
For example, in the Slmpsonvrlle -Greenville area of South Carolina, high amounts of uranium
(30 to 9900 ppb) were found in 31 drinking water wells®. The contamination with uranium is
believed to be the result of veins of pegmatite that occur in the area. Besides entering drinking
water from naturally occurring deposits, uranium can also contaminate the water supply as the
result of human activity, such as uranium mining, mill tailings, and even agriculture™ S,
Phosphate fertilizers often contain uranium at an average concentration of 150 ppm and therefore
are an important contributor of uranium to groundwater ’. The Fry Canyon site in Utah is a good
example of the dangers of uranium mine tailings. The uranium concentrations measured in
groundwater at this site were as hlgh as 16,300 ppb with a median concentration of 840 ppb
before remedial actions were taken®. Depleted uranium ammunition used in several military
conflicts has also been demonstrated as a source of drinking water contamination®.

Animal testing and studies of occupationally-exposed people, have shown that the major
health effect of uranium is chemical kidney toxicity, rather than a radiation hazard'®. Both
functronal and histologic damage to the proximal tubulus of the kidney have been demonstrated

!, Little is known about the effects of long-term environmental uranium exposure in humans but
there is an association of uranium exposure with increased urinary glucose, alkalme phosphatase,
and B-microglobulin excretion'?, as well as increased urinary albumin levels'’. As a result of
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such studies, the World Health Organization has proposed a guideline value of 2 ppb for uranium
in drinking water while the US EPA has specified a limit of 30 ppb.

Current municipal treatment practices are not effective in removing uranium. However,
experimentation indicates, that uranium removal can be accomplished by a variety of processes
such as modification of pH or chemical treatment (often with alum) or a combination of the two
14 Geveral sorbants have been shown to be useful for removal of uranium from water. Activated
carbon, iron powder, magnetite, anion exchange resin and cation exchange resin were shown to
be capable of adsorbing more than 90% of the uranium and radium from drinking water.
However, two common household treatment devices were found not to be totally effective for
uranium removal 4,

Besides treatment of well water, there is also a strong need for prevention of the spread of
uranium contamination from concentrated source such as uranium mine tailings. Commonly used
above-ground water treatment processes are not cost-effective and do not provide an adequate
solution to this problem. However, permeable reactive barriers (Figure 1) have been
demonstrated to be a financially-viable and elegant alternatives to active pump and treat
remediation systems. Such barriers composed of metallic iron, ferric oxyhydroxide, and bone
char phosphate have been designed and proven effective for uranium®. Tron metal performed the
best and consistently lowered the input uranium concentration by more than 99.9 percent after
the contaminated groundwater had traveled 1.5 ft into the permeable reactive barrier.
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Figure 1. Operation of a Permeable Reactive Barrier
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