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Preface 

At the intuitive level, any practicing mathematician or computer scientist —indeed 
any student of these two fields of study— will have no difficulty at all to recognize a 
computation or an algorithm, as soon as they see one, the latter defining, in a finite 
manner, computations for any given input. It is also an expectation that students of 
computer science (and, increasingly nowadays, of mathematics) will acquire the skill 
to devise algorithms (normally expressed as computer programs) that solve a variety 
of problems. 

But how does one tackle the questions "is there an algorithm that solves such 
and such a problem for all possible inputs?" —a question with a potentially "no" 
answer— and also "is there an algorithm that solves such and such a problem via 
computations that take no more steps than some (fixed) polynomial function of the 
input length?" —this, too, being a question with a, potentially, "no" answer. 

Typical (and tangible, indeed "interesting" and practically important) examples 
that fit the above questions, respectively, are 

• "is there an algorithm which can determine whether or not a given computer 
program (the latter written in, say, the C-language) is correct!"1 

*A "correct" program produces, for every input, precisely the output that is expected by an a priori 
specification. 

XI 
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and 

• "is there an algorithm that will determine whether or not any given Boolean 
formula is a tautology, doing so via computations that take no more steps than 
some (fixed) polynomial function of the input length?" 

For the first question we have a definitive "no" answer,2 while for the second one 
we simply do not know, at the present state of knowledge and understanding of what 
"computing" means.3 

But what do we mean when we say that "there is no algorithm that solves a given 
problem" —with or without restrictions on the algorithm's computation lengths? 
This appears to be a much harder statement to validate than "there is an algorithm 
that solves such and such a problem" —for the latter, all we have to do is to produce 
such an algorithm and a proof that it works as claimed. By contrast, the former 
statement implies a, mathematically speaking, provably failed search over the entire 
set of all algorithms, while we were looking for one that solves our problem. 

One evidently needs a precise definition of the concept of algorithm that is neither 
experiential, nor technology-dependent in order to assert that we encountered such a 
failed "search". This directly calls for a mathematical theory whose objects of study 
include algorithms (and, correspondingly, computations) in order to construct such 
sets of (all) algorithms within the theory and be able to reason about the membership 
problem of such sets. This theory we call the theory of computation. It contains tools 
which, in principle, can "search"4 the set of all algorithms to see whether a problem 
is solvable by one; or, more ambitiously, to see if it can be solved by an algorithm 
whose computations are "efficient" —under some suitable definition of efficiency. 

The theory of computation is the metatheory of computing. In the field of comput-
ing one computes: that is, develops programs and large scale software that are well-

2There is some interesting "small print" here! As long as the concept of algorithm is identified with that 
of, say, the Shepherdson-Sturgis "machines" of this volume —or for that matter with Turing machines— 
then the answer is definitely a "no": There is a simple mathematical proof that we will see later on, 
that no Shepherdson-Sturgis machine (nor a Turing machine) exists that solves the problem. Now, such 
an identification has been advocated by Alonzo Church as part of his famous belief known as "Church's 
Thesis". If one accepts this identification, then the result about the non-existence of a Shepherdson-Sturgis 
machine that solves the problem is tantamount to the non-existence of an algorithm that does so. However, 
Church's "thesis" is empirical, rather than provable, and is not without detractors; cf. Kalmar (1957). 
Suffice it to say that this statement is mathematically valid: No program, written in any programming 
language, which is equivalent in expressive power to that of our Shepherdson-Sturgis machines, exists that 
solves the problem. 
3There is substantial evidence that the answer, if discovered, will likely be "no". 
4The quotes are necessary since it is not precisely a search that one performs. For example, the unsolvability 
—by any algorithm— of the program correctness problem is based on a so-called reduction technique that 
we will learn in this volume. A reduction basically establishes that a problem A is solvable by algorithmic 
means if we assume that we have a "black-box" algorithmic solution —that we may "call" just as we 
call a built-in function— of another problem, B. We say that "A is reduced (or reducible) to B". If we 
now know (say via a previous mathematical proof of the fact) that A cannot be algorithmically solved, 
then nor can B! We will, as a starting point, show the unsolvability by algorithmic means, certainly not 
by any Shepherdson-Sturgis machine, of a certain "prototype" problem, known as the halting problem, 
"x G KT. This will be done by a technique akin to Cantor's diagonalization. After this, many reduction 
arguments are effected by showing that K is reducible to a problem A. This renders A unsolvable! 
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documented, correct, efficient, reliable and easily maintainable. In the (meta)theory 
of computing one tackles the fundamental questions of the limitations of computing, 
limitations that are intrinsic rather than technology-dependent.5 These limitations 
may rule out outright the existence of algorithmic solutions for some problems, while 
for others they rule out efficient solutions. 

Our approach is anchored on the concrete (and assumed) practical knowledge 
about general computer programming attained by the reader in a first year program-
ming course, as well as the knowledge of discrete mathematics at the same level. The 
next natural step then is to develop the metatheory of general computing, building on 
the computing experience that we have assumed the reader attained. This will be our 
chapter on computability, that is, the most general metatheory of computing. We de-
velop this metatheory via the programming formalism known as Shepherdson-Sturgis 
Unbounded Register Machines (URM) —which is a straightforward abstraction of 
modern high level programming languages. Within that chapter we will also explore a 
restriction of the URM programming language, that of the loop programs of A. Meyer 
and D. Ritchie. We will learn that while these loop programs can only compute a 
very small subset of "all the computable functions", nevertheless are significantly 
more than adequate for programming solutions of any "practical", computationally 
solvable, problem. For example, even restricting the nesting of loop instructions to 
as low as two, we can compute —in principle— enormously large functions, which 
with input x can produce outputs such as 

• , X l l 0 3 5 0 0 0 0 2 ' s 
22 J (1) 

The qualification above, "in principle", stems from the enormity of the output dis-
played in (1) —even for the input x = 0— that renders the above function way 
beyond "practical". 

The chapter —after spending considerable care in developing the technique of re-
ductions— concludes by demonstrating the intimate connection between the unsolv-
ability phenomenon of computing on one hand, and the unprovability phenomenon 
of proving within first-order logic (cf. Godel (1931)) on the other, when the latter 
is called upon to reason about "rich" theories such as (Peano's) arithmetic —that is, 
the theory of natural numbers, equipped with: the standard operations (plus, times); 
relations (less than); as well as with the principle of mathematical induction. 

What to include and what not to include in an introductory book on the theory of 
computation is a challenge that, to some extend, is resolved by the preferences of the 
author. But I should like to think that the choices of topics made in this volume are 
more rational than simply being manifestations of "preference". 

The overarching goal is to develop for the reader a "first-order" grounding in the 
fundamentals, that is, the theoretical limitations of computing in its various models 
of computation, from the most general model —the URM— down to the finite 
automaton. 

5However this metatheory is called by most people "theory". Hence the title of this volume. 



XIV PREFACE 

We view the technique of reductions as fundamental in the analysis of limita-
tions of computing, and we spend a good deal of space on this topic, a variant of 
which (polynomial-time reductions) the student of computer science will encounter 
in Subsection 5.1.2 and will re-encounter in later studies as well, for example, in a 
course on algorithms and complexity. On the other hand, we do not hesitate to omit 
combinatorial topics such as "Post's correspondence problem", which only leads 
to specialized results (e.g., the algorithmic unsolvability of detecting ambiguity in 
context free languages) that we feel embody a less fundamental technical interest. 
Our emphasis is on laying the foundational tools and concepts that allow us to carry 
out a mathematical analysis of, and acquire a thorough understanding of, theoretical 
limitations of computing in both their absolute manifestation (uncomputability) and 
also in their relative manifestation (complexity and "intractability"). 

Consistent with our stated goal and emphasis, we purposely give short shrift to 
the area of so-called "positive" results, apart from a few familiarization examples 
of "programming" with URMs, loop programs, FA, NFA, and PDA. This is not a 
course about writing algorithms, but mostly about what algorithms cannot do at all 
and about what they have a lot of trouble doing. For example, results of Chapter 5 
immediately imply that, in general, FORTRAN-like programs that allow nesting of 
the loop instruction equal to just three have highly impractical run times; certainly 
as high as6 

Thus, we leave out "applications" such as lexical scanners via finite automata; 
automata-minimization; parsing of context free languages using LL, LR, recursive-
descend, and other parsers; and defer them to a later course on compiler writing 
tools —these topics do not belong here. We would rather concentrate on what is 
foundationally important and omit what is not. 

Another challenge is where to start building this metatheory. What should be our 
abstraction of a computer program? It should be a straightforward observation that 
since this metatheory, or "theory" as we nickname it, abstracts computing practices 
—in order to analyze and study said abstractions mathematically— the student must 
have encountered in the first instance the concrete counterparts of these abstractions 
for the latter to make any sense. 

It is hardly the case that, prior to the second year of study, students have "pro-
grammed" scanners or parsers. Rather, students have programmed solutions for less 
specialized problems, using a high level general purpose language such as C/C++, 
Java, possibly Pascal, etc. They never programmed an automaton, a push-down 
automaton, or anything like a Turing machine (unless they have taken up machine 
language in the first year). 

Yet the overwhelming majority of the literature develops the "theory of compu-
tation", in a manner of speaking, backwards —invariably starting with the theory of 

6See 5.2.0.47 and 5.2.0.49. L3 programs have run times bounded by Ackermann's A%(x), for some 
k > 0. 
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finite automata, as if automata is precisely what the reader was programming in his7 

first university course on programming. We apply this principle: Before the student 
studies the (meta)theory, he must have attained a good grasp of the practice that this 
theory attempts to dissect and discuss. Thus, it is natural to start our story with the 
(meta)theory of general purpose computer programs. 

Because of these considerations, our first chapter is on URMs and computability. 
The choice of URMs as an abstraction of general-purpose computing —a relative 
latecomer (cf. Shepherdson and Sturgis (1963)) in the search for a good answer 
to "what would be a good technology-independent model of computation?"— also 
connects well with the experience of the student who will come to this course to learn 
what makes things tick in programming, and why some things do not tick at all. He 
most likely learned his programming via a high level language like C or Java rather 
than through machine language. The ubiquitous Turing machine (Turing (1936, 
1937)) is more like machine language, indeed, is rather even less user-friendly.8 It 
offers no advantage at this level of exposition, and rather presents an obscure and 
hard-to-use (and hard to "arithmetize"9) model of computation that one need not use 
as the basis of computability. On the other hand it lends itself well to certain studies 
in complexity theory and is an eminently usable tool in the proof of Cook's theorem 
(cf. Subsection 5.1.3). So we will not totally avoid the Turing machine! 

We turn to the formulaic topics of a book on Automata and Languages — 
Chapter 3— only after we become familiar, to some extent, with the (general) 
computability theory, including the special computability theory of more "practi-
cal" functions, the primitive recursive functions. Automata are introduced as a very 
restricted programming formalism, and their limitations (in expressivity) and their 
associated languages are studied. 

It is often said, with justification, that a course in theory of computation has as side-
effect the firming up of the student's grasp of (discrete) mathematical techniques and 
mathematical reasoning, as well as the ability to apply such techniques in computer 
science and beyond. Of course, it cannot be emphasized enough that the student of a 
theory of computation course must be equipped already with the knowledge expected 
to be acquired by the successful completion of a one-semester course on discrete 
mathematics. This required background knowledge is often encapsulated, retold, 
and aspects of it are emphasized, in the space of a few pages at the front-end of a 
book like this. This is the ubiquitous "Chapter 0" of many books on the subject. In 
the case of the present book I would like, most of all, to retell two stories, logic and 
induction, that I often found being insufficiently developed in the student's "toolbox", 
notwithstanding earlier courses he may have taken. Thus, in Subsection 1.1.1 we 
develop the notational and how-to parts of elementary predicate logic in the space 
of some 20 pages, paying special attention to correctness of exposition. Section 1.4 
presents the induction principle on the natural numbers in two steps: One, how 

7Pronouns such as "he", "his", "him" are, by definition, gender-neutral in this volume and are used solely 
for textual convenience. 
8Machine language can manipulate numbers, whereas a Turing machine can only manipulate digitsl 
9This verb will make sense later. 
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to use its various forms, and a proof of their equivalence to the least (positive) 
integer principle. Two, we argue, at the intuitive level, why induction must be a valid 
principle after all!10 We also go over concepts about sets and related notation, as well 
as relations and functions, very quickly since they do not need much retelling. We will 
also introduce quickly and in an elementary fashion a topic likely not encountered by 
the reader in the typical "discrete math" course: the distinction between two infinities 
—countable and uncountable— so that we can have an excuse to introduce the reader 
to Cantor's ingenious (and simple) diagonalization argument, that recurs in one or 
another shape and form, over and over, in the computabiHty and complexity part of 
the theory of computation. 

On intuitive arguments; i(formalization,y and why a course in theory cannot 
be taught exclusively by hand-waving: The main reason that compels us to teach 
(meta)theory in a computer science curriculum is not so much to prevent the innocent 
from trying to program a solution for the halting problem (cf. 2.5.0.16), just as we 
do not teach courses in geometry just to prevent circle-squaring "research". Rather, 
formal mathematical methods used in a course in the theory of computation, more so 
than the results themselves, are transferable skills that the student becomes endowed 
with, which equip him to model and mathematically analyze concrete phenomena 
that occur in computation, and through a mathematical process of reasoning to be 
able to recognize, understand, and correlate such phenomena. These formal methods, 
skills and results, put the "science" keyword into computer science. 

Intuition, obtained through experience, is invaluable, of course, and we often 
argue intuitively before we offer a proof of a fact. But: one cannot have "proof-by-
intuition". 

We have included in this volume a good amount of complexity theory that will 
likely be mostly skipped whenever the book is called upon to serve a second year 
course on the theory of computation. There are a few "high level complexity" results 
already in Section 2.7 using diagonalization (cf. 2.7.1.9 and 2.7.1.11). Later, quite 
a bit is developed in Chapter 5, including the concept of JY^-completeness and 
Cook's theorem; an account of Cobham's class of feasibly computable functions 
(mostly delegated to the Exercises section, 5.3); and some elements of the hierarchy 
theory of the primitive recursive functions culminating in the rather startling fact that 
we cannot algorithmically solve the correctness problem of FORTRAN-like programs 
even if we restrict the nesting of loops to just two levels. FORTRAN-like languages 
have as abstract counterpart the loop programs of Meyer and Ritchie (1967) that we 
study in the chapters on computabiHty (2nd) and complexity (5th). 

Were I to use this book in a second year course in the theory of computation I 
would skim quickly over the mathematical "prerequisites" chapter, and then cover 
2.1-2.7, parts of 2.10, certainly Godel's incompleteness theorem and its relation to 
uncomputability: 2.11 —but not 2.11.1. I would then cover only as much as time 
permits from Chapter 3 on finite automata; certainly the pumping lemma, consistent 

10In so doing I will be sure to let the student know that I am not squaring the circle: Induction is not a 
provable principle of the arithmetic of Peano, it is an axiom. However, this will not stop us from arguing 
its plausibility, i.e., why it is a reasonable, "natural" axiom. 
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with my view that this is a "course" about what cannot be done, or cannot be done 
"easily", rather than a toolbox for how to do things. The latter is deferred to a course 
and book on algorithms. 

In a more advanced course where one can proceed faster, I would want also to 
cover the sections on creative sets and the recursion theorem, and also as much 
complexity theory as possible from Chapter 5, starting with the material leading to 
Cook's theorem. 

The reader will forgive the many footnotes, which some will assess as bad style! 
There is always a story within a story, the " . . . and another thing . . . ", that is best 
delegated to footnotes. 

The style of exposition that I prefer is informal and conversational and is expected 
to serve well not only the readers who who have the guidance of an instructor, but 
also those readers who wish to learn the elements of the theory of computation on 
their own. I use several devices to promote understanding, such as frequent "pauses" 
that anticipate questions and encourage the reader to rethink an issue that might 
be misunderstood if read but not studied and reflected upon. Additionally, I have 
included numerous remarks, examples and embedded exercises (the latter in addition 
to the end-of-chapter exercises) that reflect on a preceding definition or theorem. All 
pauses are delimited by "Pause." and A ^^ 

The stylized "winding road ahead" warning, JL , that I first saw in Bourbaki's 
books (Bourbaki (1966)) and have used in my other books, delimits a passage that is 
too important to skim over. <£><£> 

On the other hand, I am using JL JL to delimit passages that I could not resist 
including, but, frankly, can be skipped (unless you are curious). 

There are over 200 end-of-chapter exercises and 41 embedded ones. Many have 
hints and thus I refrained from (subjectively) flagging them for level of difficulty. 
After all, as one of my mentors, Alan Borodin, used to say to us (when I was a 
graduate student at the University of Toronto), "attempt all exercises; but definitely 
do the ones you cannot do". 

GEORGE TOURLAKIS 

Toronto 
November 2011 





CHAPTER 1 

MATHEMATICAL FOUNDATIONS 

In this chapter we will briefly review tools, methods and notation from mathematics 
and logic, which we will directly apply throughout the remaining of this volume. 

1.1 SETS AND LOGIC; NAIVELY 

The most elementary elements from "set theory" and logic are a good starting point 
for our review. The quotes are necessary since the term set theory as it is understood 
today applies to the axiomatic version, which is a vast field of knowledge, methods, 
tools and research [cf. Shoenfield (1967); Tourlakis (2003b)]—and this is not what we 
outline here. Rather, we present the standard notation and the elementary operations 
on sets, on one hand, and take a brief look at infinity and the diagonal method 
of Cantor's, on the other. Diagonalization is a tool of significant importance in 
computability. The tiny fragment of concepts from set theory that you will find in 
this section (and then see them applied throughout this volume) are framed within 
Cantor's original "naive set theory", good expositions of which (but far exceeding 
our needs) can be found in Halmos (1960) and Kamke (1950). 

We will be forced to interweave our exposition of concepts from set theory with 
concepts—and notation—from elementary logic, since all mathematics is based on 
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2 MATHEMATICAL FOUNDATIONS 

logical deductions, and the vast majority of the literature, from the most elementary 
to the most advanced, employs logical notation; e.g., symbols such as "V" and "3" . 

The term "set" is not defined,11 in either the modern or in the naive Cantorian 
version of the theory. Expositions of the latter, however, often ask the reader to 
think of a set as just a synonym for the words "class",12 "collection", or "aggregate". 
Intuitively, a set is a "container" along with its contents—its elements or members. 
Taken together, contents and container, are viewed as a single mathematical object. 
In mathematics one deals only with sets that contain mathematical objects (so we are 
not interested in sets of mice or fish). 

Since a set is itself an object, a set may contain sets as elements. 

All the reasoning that one does in order to develop set theory—even that of 
the naive variety—or any part of mathematics, including all our reasoning in this 
book, utilizes mathematical logic. Logic is the mathematics of reasoning and its 
"objects" of study are predominantly mathematical "statements" or "assertions"— 
technically known as formulae13—and mathematical proofs. Logic can be applied to 
mathematics either experientially and informally—learned via practice as it were— 
or formally. The predominance of mathematical writings apply logic informally as 
a vehicle toward reaching their objectives.14 Examples of writings where logic is 
formally applied to mathematics are the volumes that Bourbaki wrote, starting here 
[Bourbaki (1966)]. More recent examples at the undergraduate and graduate levels 
are Gries and Schneider (1994) and Tourlakis (2003b) respectively. 

In this volume we apply logic informally. An overview is provided in the next 
subsection. 

1.1.1 A Detour via Logic 

As is customary in mathematics, we utilize letters, upper or lower case, usually 
from near the end of the alphabet (u, v, y, x, z, S, T, V) to denote, that is, to name 
mathematical objects—in particular, sets. 

By abuse of language we say that u,v,y,x,z,S,T,V are (rather than denote or 
name) objects. These letters function just like the variables in algebra do; they are 
object-variables. 

11 The reader who has taken Euclidean geometry in high school will be familiar with this parallel: The 
terms "point", "line", and "plane" are not defined either, but we get to know them intimately through their 
properties that we develop through mathematical proofs, starting from Euclid's axioms. 
12In axiomatic set theory a "class" is a kind of collection that may be so "large" that it technically fails to 
be a set. The axioms force sets to be "small" classes. 
13More accurately, a "statement" and a formula are two different things. However, the latter mathematically 
"encodes" the former. 
14Despite the dangers this entails, as Godel's incompleteness theorems exposed [Godel (1931)], modern 
mathematicians are confident that their subject and tools have matured enough, to the point that one 
can safely apply logic, once again, post-Godel, informally. For example, Kunen states in his article on 
set-theoretic combinatorics, Kunen (1978), "A knowledge of [formal] logic is neither necessary, nor even 
desirable". 
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As is the case in algebra, the variables x, y1 z are not the only objects set theory 
studies. It also studies numbers such as 0,1, —7 and 7r, matrices such as (° *) and 
objects that are the results of function applications such as 723000, xyZ and 2X. 

Unlike axiomatic set theory, which introduces its objects via formal constructions, 
naive set theory allows us to use, "off the shelf", all the mathematical objects such as 
the above, as well as, of course, objects that are sets such as {2,3, {1}} and A U B.15 

Logicians like to call mathematical objects terms. We utilize in this book the generic 
names t and s (with primes or subscripts, whenever we need more than two such 
names) to refer to arbitrary terms that we do not want to be specific about. 

1.1.1.1 Definition. The simplest possible relations of set theory are of just two forms: 
t e s—read "t is a member of s" or "£ belongs to s"—and t — s, read "t is equal to 
s", where, as we indicated above, t and s are any terms whatsoever. 

These relations are the atomic formulae (of set theory). The qualifier "atomic" 
refers to two facts: 

• These two types cannot be expressed (simulated) in terms of simpler relations 
by using the notation and tools of logic. 

• Using these two relations as building blocks we can construct every possible 
formula of set theory as we will explain shortly. □ 

1.1.1.2 Example, x £ y,u = v, z e S and 3 e z and 2Z = y3 are atomic formulae. 
N, the set of all natural numbers (i.e., all the numbers that we obtain by starting 

at 0 and repeatedly adding 1: 0, 1, 2, 3, 4 , . . . ) , is an important constant in naive set 
theory. 

By "N . . . is an important constant" we mean, of course, via the habitual abuse of 
language exercised by mathematicians, the accurate "N . . . denotes (or names) an 
important constant". 

Here is an example that uses N in an atomic formula: — 7 G N. Incidentally, this 
formula makes (i.e., encodes) a false statement; we say the formula is false. 

One may form this basic formula as well, N = \J^0{i}, where the meaning of 
the symbols " { . . . } " and " U ^ o " w ^ ^e introduced later in this section. 

Yet another example is {1} £ {2,1}—a false statement (formula) as we will be 
able to determine soon. □ 

Logic (and mathematics) contain much more complex formulae than those of the 
atomic variety. The added complexity is achieved by repeatedly "gluing" atomic 
formulae together employing as glue the logical, or Boolean, connectives 

- i , A , V , - > , = 

15 Notation for objects such as {...} and xUy will be reviewed shortly. 
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and the quantifiers 
V,3 

As we have noted already, unlike the case of naive set theory—where we take for 
granted the a priori presence of all objects of mathematics, such as 3, — 7, N and 
xy — axiomatic set theory needs no a priori existence of any objects. Starting just 
with the relations x € y and x = y it uses powerful rules, which can be used to build 
not only all formulae of set theory, but also all the objects of mathematics that we are 
familiar with, such as the above-mentioned and many others. 

What about arithmetic? The arithmetical objects of "pure" (Peano) arithmetic are 
the variables, constants, and outputs of functions applied on objects that we have 
already built. What are its formulae? If we are thinking of pure arithmetic, which 
is studied outside set theory, then we may choose as atomic formulae all those that 
can be built from the three start-up relations z = x + y, z = x x y and z = xy: new 
atomic formulae result by substituting arbitrary (arithmetical) objects for variables. 
Note that the equality relation is obtained from z = x + y by substituting 0 for y. 

All formulae of arithmetic can be built, starting from the atomic ones, as ex-
plained in the general Definition 1.1.1.3 below. This assertion is revisited in Subsec-
tion 2.11.1. 

Godel showed in Godel (1931) that the atomic formula z = xy is, well, not atomic: 
It can be simulated (built) within pure arithmetic starting just with z — x + y and 
z — x x y. 

The "practicing mathematician" prefers to work within an "impure" arithmetic, where 
he has access to sets and their notations, operations, and properties. In particular, this 
impure arithmetic employs set variables and, more generally, set objects in addition 
to number variables and number objects. 

Throughout this volume a formula (whether specific to set theory or to any other 
area in mathematics, such as arithmetic—pure or impure) will be denoted by an upper 
case calligraphic letter, such as si, 33, &, <S. 

We now indicate how formulae are put together using brackets, connectives, and 
quantifiers, employing atomic formulae as basic building blocks. The definition be-
low is generic, thus unified: it applies to the structure of all formulae of mathematics. 
The choice of atomic formulae (which presupposes an a priori choice of mathemat-
ical symbols, such as 0, -f, G) and of types of variables is what determines whether 
we build set theory formulae, pure or impure arithmetic formulae, or "other". 

1.1.1.3 Definition. A set theory formula is one of: 

(1) An atomic formula (1.1.1.1). 

(2) (-i&i), where si is known to be16 a formula. 

16I.e., to stand for one. Thus, the expression " ( -u^)" is constructed by writing "(", followed by writing 
"-■", followed by writing in full whatever srf names, and finally writing ")". 
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(3) {si A SS), where si and SS are known to be formulae. 

(4) {si V SS), where si and SS are known to be formulae. 

(5) {si —> SS), where si and SS are known to be formulae. 

(6) {si = SS), where si and SS are known to be formulae. 

(7) {(\fx)si), where si is known to be a formula and x is any variable. 

(8) {{3x)si), where si is known to be a formula and x is any variable. We say in 
the last two cases that "si is the scope of Qx, where Q is V or 3". 

We call V the universal and 3 the existential quantifiers. We will extend the termi-
nology "quantifier" to apply to the compound symbols (Var) or (3). □ 

1.1.1.4 Definition. (Immediate Predecessors) Let & be a formula. By 1.1.1.3 it has 
one of the forms (l)-(8). If it is of type (1), then it has no immediate predecessors— 
i.e., it was not built using connectives or quantifiers from simper formulae. If it has 
the forms (2)-(8), then in each case its immediate predecessors are the formulae si 
and SS [the latter enters in cases (3)-(6)] that were used to build it. We use the 
acronym ip for immediate predecessors. □ 

The presence of brackets guarantees that the decomposition or deconstruction of a 
formula into its immediate predecessors is unique. This fact can be proved, but it is 
beyond our aims so we will not do so here [see Bourbaki (1966); Enderton (1972); 
Tourlakis (2008, 2003a)]. Logicians refer to it as the unique readability of a formula. 

1.1.1.5 Example. Here are some formulae: 
x e y, 3 = z, z = xw—by (1), 
(-*x = y)—by (1), followed by an application of (2); we usually write this more 

simply as "x ^ y", 
(x G yV z = xw)—by (1), followed by an application of (4), 
{{Vx)z = xw)—by (1), followed by an application of (7), 
(x — 0 -» x = 0)—by (1), followed by an application of (5), and 
{x = 0 —>• ((\/x)x = 0))—by (1), followed by an application of (7) to obtain 

((Vx)x = 0), and then by an application of (5). 
The reader should check that we inserted brackets precisely as prescribed by 

Definition 1.1.1.3. □ 

1.1.1.6 Remark. (Building a formula) If & is (stands for, that is) a formula we can 
deconstruct it according to Definition 1.1.1.3 using a natural process. 

Initialize'. Write down &. Flag it pending. 
Repeat this process until it cannot be carried further: 

{ 
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Write down, above whatever you have written so far, the ip of all pending formulae 
(if they have ip); and remove the flag "pending" from the latter. Add the flag to the 
ones you have just written. 

} 
The process is terminating since we write shorter and shorter formulae at every 

step {and remove the flags); we cannot do this forever! 
Clearly, if we now review from top to bottom the sequence that we wrote, we 

realize that it traces forward the process of constructing & by repeated application 
of Definition 1.1.1.3. This top-down view of our "deconstruction" is a formula-
construction sequence for &. 

For example, applying the process to the last formula of the preceding example 
we get: 

x = 0 
x = 0 
((Va?)x = 0) 
(x = 0 -> ((Vx)x - 0)) 

where one copy of x = 0 was contributed by the bottom formula and the other (at 
the top) by ((\/x)x = 0). 

Going forward we can discard copies that we do not need. Thus a valid formula 
construction is also this one: 

x = 0 
((Vx)x = 0) 
[x = 0 -> ((\fx)x = 0)) 
Indeed, we validate the first formula in the sequence via (1) of 1.1.1.3; the second 

using the first and (7); and the last one using the first two and (5). □ 

A term such as x2 has x as its only input variable. An atomic formula such a s z G N 
has z as its only input variable, while the (atomic) formula x + y = yw has x, y and w 
as input variables. Whenever we want to draw attention to the input variables—say, 
x, u, S and z—of a term t or a formula srf we will write t(x, u, S, z) ovsrf{x, -u, S, z), 
respectively. This is entirely analogous to writing " / (# , z) = x2 + sin z" in order to 
name the expression (term) x2 +sin z as a function f{x,z) of the two listed variables. 

1.1.1.7 Definition. (Input Variables—in Terms) All the variables that occur in a 
term—other than an x that occurs in a term of the form {x : . . .} (which is a set 
object that will be introduced shortly)—are input variables. □ 

1.1.1.8 Example. Thus, the term x has x as its only input variable; while the term 3 
has no input variables. xz has x, z, y as its input variables. We will soon introduce 
terms (set objects) such as {x : x = 0}. This object, which the reader may recognize 
as a fancy way to simply write {0}, has no input variables. □ 
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1.1.1.9 Definition. (Input Variables—in Formulae) A variable occurrence17 in an 
atomic formula t e s or t — s is an input occurrence precisely if it is an input 
occurrence in one of the terms t and s. Thus, "0 e {x : x = 0}" has no input 
variables while "x — 0" has one. 

Formation rules (2)-(6) in Definition 1.1.1.3 "preserve" the input occurrences of 
variables in the constituent formulae si and SS that we join together using one of 
-i, A, V, —>►, = as glue. On the other hand, each quantifier (\/z) or (3z) forces each 
occurrence of a variable as described below to become non-input: 

• The occurrence z in the quantifier 

• Any occurrence of z in the scope of said (Vz) or (3z) 

Thus, if we start with s/(x, y, z), of inputs x, y, z, the new formula {(Qy)st{x, y, z)), 
where Q stands here for one of V, 3, has only x and z as input variables. □ 

We have carefully referred to occurrences, rather than variables, in the above defi-
nition. A variable can be both input and non-input. An occurrence cannot be both. 
For example, in (x = 0 —> (\/x)x = 0) the first x-occurrence is input; the last two 
are non-input. The variable x is both. 

Thus "x is an input/non-input variable" (of a formula) means that there are 
occurrences ofx that are input/non-input. 

The standard name utilized in the literature for input variables is free variables. 
Non-input variable occurrences are technically called bound occurrences, but are 
also called apparent occurrences, since even though they are visible, they are not 
allowed—indeed it makes no sense—to receive arguments (input). This is analogous 
to the "S-notation" for sums: J2i=i i means 1 + 2 + 3. While we can "see" the 
variable i, it is not really there!18 It cannot accept inputs. For example, "^2=1 ̂ " *s 

total nonsense. 
The jargon input/non-input is deliberately chosen: We may substitute terms only 

in those variable occurrences that are free (input). 

If & is some formula and x, y, z,... is the complete list of variables that occur 
in it, we can draw attention to this fact by writing &(x, y,z,...). If x, y, z,... is a 
list of variables such that some19 among them occur in &, then we indicate this by 
&[x,y,z,...]. 

In the context of ^ [ x , y, z,...] [or<^(x,y, z,...)], ^"[ t i , t 2 , t 3 , . . . ] [correspond-
ingly &(ti, £2, 3̂> • • •)] stands for the formula obtained from & by replacing each 
original occurrence of x, y, z , . . . in & by the terms £1, £2, £3, . . . respectively. 

Some people call this operation simultaneous or parallel substitution. Thus, if 
J^*[x, y] names "x = y", whereas t\ is y +1, and £2 is 5, then J^"[£i, £2] is "2/ + 1 — 5" 
and not "5 + 1 = 5". The latter result would have been obtained if we first substituted 

17For example, in x = x the variable x has two occurrences. 
18 A fact demonstrated strongly by the explicit form of the sum, 1 + 2 + 3. 
19"Some" includes "none" and "all" as special cases. 
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t\ in x to obtain y + 1 = y, and then substituted £2 in y to obtain 5 + 1 = 5. If we 
are to do this "simultaneous substitution" right, then we must not substitute t<i into 
the y to the left of "="; this y is not "original". 

Observe also that if x does not occur in ^[x]9 then &\b] is just the original &'. 

Before we turn to the meaning (and naming) of the connectives and quantifiers, 
let us agree that we can get away with much fewer brackets than Definition 1.1.1.3 
prescribes. The procedure to do so is to agree on connective and quantifier "priorities" 
so that we know, in the absence of brackets, which of the two connectives/quantifiers 
is supposed to "win" if they both compete to apply on the same part in a formula. 

By analogy, a high school student learns the convention that "x has a higher 
priority than +", thus 2 + 3 x 4 means 2 + (3 x 4)—that is, x rather than + claims 
the part "3". 

Our convention is this: The connective -■ as well as the quantifiers V and 3 have the 
highest priority, equal among the three. In order of decreasing priority, the remaining 
binary connectives20 are listed as A, V, —>, =. If two binary connectives compete to 
glue with a subformula, then the higher-priority one wins. For example, assuming that 
si has already in place all the brackets that are prescribed by Definition 1.1.1.3, then 
. . . —> si V • • • means . . . —> (si V • • •, while . . . ^si A • • • means . . . (^si J A • • •. 

If two instances of the same binary connective compete to glue with a subformula, 
then the one to the right wins. For example, assuming that si has all the brackets 
prescribed by Definition 1.1.1.3 in place, then . . . —>- si —> • • • means ...—>■ (s/-± 

Similarly, if any of ->, V, 3 compete for a part of a formula, again the one to the 

right wins. E.g., . . . ->(yx)(3y)si - • • means . . . I -if (\/x)((3y)si) ) ) • • •> where 

once again we assumed that si has all the brackets prescribed by Definition 1.1.1.3 
already in place. 

How do we "compute" the truth or falsehood of a formula? To begin with, to 
succeed in this we must realize that just as a function gives, in general, different 
outputs for different inputs, in the same way the "output" of a formula, its truth-
value, can only be computed, in general, if we "freeze" the input variables. For each 
such frozen instance of the input side, we can compute the output side: true or false. 

But where do the inputs come from? For areas of study like calculus or arithmetic 
the answers are easy: From the set of real numbers—denoted by R—and the set of 
natural numbers respectively. 

For set theory it sounds easy too: From the set of all sets! 

If it were not for the unfortunate fact that "the set of all sets" does not exist, or, 
to put it differently, it is a non-set class due to its enormity, we could have left it 

'"Binary" since they each glue two subformulae. 
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at that. To avoid paradoxes such as "a set that is not a set"—cf. Section 1.3 on 
diagonalization for an insight into why some collections cannot be sets—we will 
want to take our inputs from a (comfortably large) set in any given set-theoretic 
discussion: the so-called reference set or domain. 

1.1.1.10 Remark. The mathematician's intuitive understanding of the statement "^* 
is true (resp. false)" is that " ^ is true (resp. false) for all the possible values of the 
free (input) variables of &". 

Thus, if we are working in arithmetic, "2n + 1 is odd" means the same thing as 
"it is true that, for all n £ N, 2n 4-1 is odd". "2n > n" again omits an implied prefix 
"it is true that, for all n e N". An example of a false statement with input variables 
is "2n is odd". □ 

1.1.1.11 Definition. An instance of a formula ^ \ in symbols &\ is a formula 
obtained from & by replacing each of its variables by some value from the relevant 
reference set. 

Clearly, &' is variable-free—a so-called closed formula or sentence—and there-
fore it has a well-defined truth-value: exactly one of true or false. 

Sometimes we use more explicit notation: An instance of Sf (x, y,z,...) or of 
Sf [x, y,z,...] is Sf (i, j , fc, . . .) or W[i, j , &,...], respectively, where i, j , k,... are 
objects (constants) from the reference set. 

&' and S?' are consistent or common instances of & and ^ if every free variable 
that appears in both of the latter receives the same value in both instances. □ 

1.1.1.12 Example. Let srf stand for "x(x + 1) is even", 38 stand for "2x + 1 is even" 
and ^ stand for "x is even", where x is a variable over N. Then, 

£? is true, 
^ is false, and 
^ is neither true, nor false. 

The lesson from this is that if the truth-value of a formula depends on variables, then 
not true is not necessarily the same as false. D 

We will not be concerned with how the truth-value of atomic formulae is "com-
puted"; one can think of them as entities analogous to "built-in functions" of computer 
programming: Somehow, the way to compute their true/false output is a matter that 
a hidden procedure (alternatively, our math knowledge and sophistication) can do 
for us. 

Our purpose here rather is to describe how the connectives and quantifiers behave 
toward determining the truth-value of a complex formula. 

In view of Remark 1.1.1.10, the road toward the semantics of srf V 38, ((\/x)^/)9 
etc., passes through the semantics of arbitrary instances of these; namely, we need to 
only define the meaning of srf' V 38', ((Vx)^/)', etc., respectively. 
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1.1.1.13 Definition. (Computing with Connectives and Quantifiers) Let si and 38 
be any formulae, and si' and 38' be arbitrary common instances (1.1.1.11). 

(1) -^si'—pronounced "not si'"—is true iff21 si' is false. 

(2) si' V ^'—pronounced W or 3%'"—is true iff either si' is true or 38' is true, 
or both (so-called inclusive or). 

(3) si' A ^'—pronounced W and 38'"—is true iff .etf7 is true arcd ^ ' is true. 

(4) si' -> ^'—pronounced "if j * 7 , then ^ '"—is true iff either si' is false or 3$' is 
true, or both?1 

(5) ^ = ^'—pronounced ' V iff <^'"—is true just in case23 si' and 38' are both 
true or both false. 

(6) The instance (\/x)s/(ii,..., im , x, j \ , . . . , jn)—which is pronounced "for all x, 
si(ii,..., im , x, j i , . . . , jn) (holds)"24— is true iff, for all possible values k of 
x from the domain, si{i\,..., i m , k, j \ , . . . , jn) is true. 

(7) The instance (3x)s/(ii,..., im, x, j i , . . . , j n ) —which is pronounced "for some 
x, si(i\,..., im, #, i i , • • •, jn) (holds)"—is true iff, for some value k of x from 
the domain, si(i\,..., im , /c, j i , . . . , jn) is true. D 

1.1.1.14 Remark. (Truth Tables) The content of the preceding definition—cases 
(l)-(5)—is normally captured more visually in table form (we have removed the 
primes for readability): 

si 3$ 
f f 
f t 
t f 
t t 

1 -i si 
t 
t 
f 
f 

s/V 38 
f 
t 
t 
t 

si r\S8 
f 
f 
f 
t 

si"-> & 
t 
t 
f 
t 

si = si 
t 
f 
f 
t 

We read the table as follows: First, the symbols t and f stand for the values "true" 
and "false" respectively. Second, the two columns to the left of the vertical line || give 
all possible pairs of values (outputs) of si and 38. Third, below -^si, si M 38, etc., 
we list the computed truth-values (of the formulae of the first row) that correspond 
to the assumed si and 38 values. 

The odd alignment under —*si is consistent with all the others: It emphasizes the 
placement of the "result" under the "operator"—here -i —that causes it. □ 

21 ifand only if 
22Other approaches to "implication" are possible. For example, the Intuitionists have a different under-
standing for —> than that of the majority of mathematicians, who adopt the classical definition above. 
23 A synonym of "iff". 
24The verb "holds" means "is true". 


