

Theory of Computation

Theory of Computation

George Tourlakis
York University
Toronto, Canada

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic formats. For more information about Wiley products, visit
our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Tourlakis, George J.
Theory of computation / George Tourlakis.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-118-01478-3 (hardback)

1. Computable functions. 2. Functional programming languages. I. Title.
QA9.59.T684 2012
511.3*52—dc23 2011051088

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To my parents

CONTENTS

Preface xi

1 Mathematical Foundations 1
1.1 Sets and Logic; Naively 1

1.1.1 A Detour via Logic 2
1.1.2 Sets and their Operations 27
1.1.3 Alphabets, Strings and Languages 39

1.2 Relations and Functions 40
1.3 Big and Small Infinite Sets; Diagonahzation 51
1.4 Induction from a User's Perspective 61

1.4.1 Complete, or Course-of-Values, Induction 61
1.4.2 Simple Induction 64
1.4.3 The Least Principle 65
1.4.4 The Equivalence of Induction and the Least Principle 65

1.5 Why Induction Ticks 68
1.6 Inductively Defined Sets 69
1.7 Recursive Definitions of Functions 78
1.8 Additional Exercises 85

vii

ViN CONTENTS

Algorithms, Computable Functions and Computations 91
2.1 A Theory of Computability 91

2.1.1 A Programming Framework for Computable Functions 92
2.1.2 Primitive Recursive Functions 103
2.1.3 Simultaneous Primitive Recursion 116
2.1.4 Pairing Functions 118
2.1.5 Iteration 123

2.2 A Programming Formalism for the Primitive Recursive
Functions 125
2.2.1 VIZ vs. C 135
2.2.2 Incompleteness of VIZ 139

2.3 URM Computations and their Arithmetization 141
2.4 A Double Recursion that Leads Outside the Primitive Recursive

Function Class 147
2.4.1 The Ackermann Function 148
2.4.2 Properties of the Ackermann Function 149
2.4.3 The Ackermann Function Majorizes All the Functions

ofVTZ 153
2.4.4 The Graph of the Ackermann Function is in VIZ* 155

2.5 Semi-computable Relations; Unsolvability 158
2.6 The Iteration Theorem of Kleene 172
2.7 Diagonalization Revisited; Unsolvability via Reductions 175

2.7.1 More Diagonalization 176
2.7.2 Reducibility via the S-m-n Theorem 183
2.7.3 More Dovetailing 196
2.7.4 Recursive Enumerations 202

2.8 Productive and Creative Sets 209
2.9 The Recursion Theorem 212

2.9.1 Applications of the Recursion Theorem 214
2.10 Completeness 217
2.11 Unprovability from Unsolvability 221

2.11.1 Supplement: (j>x{x) t is Expressible in the Language
of Arithmetic 229

2.12 Additional Exercises 234

A Subset of the URM Language; FA and NFA 241
3.1 Deterministic Finite Automata and their Languages 243

3.1.1 The Flow-Diagram Model 243

CONTENTS JX

3.1.2 Some Closure Properties 251
3.1.3 How to Prove that a Set is Not Acceptable by a FA;

Pumping Lemma 253
3.2 Nondeterministic Finite Automata 257

3.2.1 From FA to NFA and Back 260
3.3 Regular Expressions 266

3.3.1 From a Regular Expression to NFA and Back 268
3.4 Regular Grammars and Languages 277

3.4.1 From a Regular Grammar to a NFA and Back 282
3.4.2 Epilogue on Regular Languages 285

3.5 Additional Exercises 287

4 Adding a Stack to a NFA: Pushdown Automata 293
4.1 The PDA 294
4.2 PDA Computations 295

4.2.1 ES vs AS vs ES+AS 300
4.3 The PDA-acceptable Languages are the Context Free Languages 305
4.4 Non Context Free Languages; Another Pumping Lemma 312
4.5 Additional Exercises 322

5 Computational Complexity 325
5.1 Adding a Second Stack; Turing Machines 325

5.1.1 Turing Machines 330
5.1.2 ^^-Completeness 338
5.1.3 Cook's Theorem 342

5.2 Axt, Loop Program, and Grzegorczyk Hierarchies 350
5.3 Additional Exercises 370

Bibliography 375

Index 379

Preface

At the intuitive level, any practicing mathematician or computer scientist —indeed
any student of these two fields of study— will have no difficulty at all to recognize a
computation or an algorithm, as soon as they see one, the latter defining, in a finite
manner, computations for any given input. It is also an expectation that students of
computer science (and, increasingly nowadays, of mathematics) will acquire the skill
to devise algorithms (normally expressed as computer programs) that solve a variety
of problems.

But how does one tackle the questions "is there an algorithm that solves such
and such a problem for all possible inputs?" —a question with a potentially "no"
answer— and also "is there an algorithm that solves such and such a problem via
computations that take no more steps than some (fixed) polynomial function of the
input length?" —this, too, being a question with a, potentially, "no" answer.

Typical (and tangible, indeed "interesting" and practically important) examples
that fit the above questions, respectively, are

• "is there an algorithm which can determine whether or not a given computer
program (the latter written in, say, the C-language) is correct!"1

*A "correct" program produces, for every input, precisely the output that is expected by an a priori
specification.

XI

Xli PREFACE

and

• "is there an algorithm that will determine whether or not any given Boolean
formula is a tautology, doing so via computations that take no more steps than
some (fixed) polynomial function of the input length?"

For the first question we have a definitive "no" answer,2 while for the second one
we simply do not know, at the present state of knowledge and understanding of what
"computing" means.3

But what do we mean when we say that "there is no algorithm that solves a given
problem" —with or without restrictions on the algorithm's computation lengths?
This appears to be a much harder statement to validate than "there is an algorithm
that solves such and such a problem" —for the latter, all we have to do is to produce
such an algorithm and a proof that it works as claimed. By contrast, the former
statement implies a, mathematically speaking, provably failed search over the entire
set of all algorithms, while we were looking for one that solves our problem.

One evidently needs a precise definition of the concept of algorithm that is neither
experiential, nor technology-dependent in order to assert that we encountered such a
failed "search". This directly calls for a mathematical theory whose objects of study
include algorithms (and, correspondingly, computations) in order to construct such
sets of (all) algorithms within the theory and be able to reason about the membership
problem of such sets. This theory we call the theory of computation. It contains tools
which, in principle, can "search"4 the set of all algorithms to see whether a problem
is solvable by one; or, more ambitiously, to see if it can be solved by an algorithm
whose computations are "efficient" —under some suitable definition of efficiency.

The theory of computation is the metatheory of computing. In the field of comput-
ing one computes: that is, develops programs and large scale software that are well-

2There is some interesting "small print" here! As long as the concept of algorithm is identified with that
of, say, the Shepherdson-Sturgis "machines" of this volume —or for that matter with Turing machines—
then the answer is definitely a "no": There is a simple mathematical proof that we will see later on,
that no Shepherdson-Sturgis machine (nor a Turing machine) exists that solves the problem. Now, such
an identification has been advocated by Alonzo Church as part of his famous belief known as "Church's
Thesis". If one accepts this identification, then the result about the non-existence of a Shepherdson-Sturgis
machine that solves the problem is tantamount to the non-existence of an algorithm that does so. However,
Church's "thesis" is empirical, rather than provable, and is not without detractors; cf. Kalmar (1957).
Suffice it to say that this statement is mathematically valid: No program, written in any programming
language, which is equivalent in expressive power to that of our Shepherdson-Sturgis machines, exists that
solves the problem.
3There is substantial evidence that the answer, if discovered, will likely be "no".
4The quotes are necessary since it is not precisely a search that one performs. For example, the unsolvability
—by any algorithm— of the program correctness problem is based on a so-called reduction technique that
we will learn in this volume. A reduction basically establishes that a problem A is solvable by algorithmic
means if we assume that we have a "black-box" algorithmic solution —that we may "call" just as we
call a built-in function— of another problem, B. We say that "A is reduced (or reducible) to B". If we
now know (say via a previous mathematical proof of the fact) that A cannot be algorithmically solved,
then nor can B! We will, as a starting point, show the unsolvability by algorithmic means, certainly not
by any Shepherdson-Sturgis machine, of a certain "prototype" problem, known as the halting problem,
"x G KT. This will be done by a technique akin to Cantor's diagonalization. After this, many reduction
arguments are effected by showing that K is reducible to a problem A. This renders A unsolvable!

PREFACE Xiil

documented, correct, efficient, reliable and easily maintainable. In the (meta)theory
of computing one tackles the fundamental questions of the limitations of computing,
limitations that are intrinsic rather than technology-dependent.5 These limitations
may rule out outright the existence of algorithmic solutions for some problems, while
for others they rule out efficient solutions.

Our approach is anchored on the concrete (and assumed) practical knowledge
about general computer programming attained by the reader in a first year program-
ming course, as well as the knowledge of discrete mathematics at the same level. The
next natural step then is to develop the metatheory of general computing, building on
the computing experience that we have assumed the reader attained. This will be our
chapter on computability, that is, the most general metatheory of computing. We de-
velop this metatheory via the programming formalism known as Shepherdson-Sturgis
Unbounded Register Machines (URM) —which is a straightforward abstraction of
modern high level programming languages. Within that chapter we will also explore a
restriction of the URM programming language, that of the loop programs of A. Meyer
and D. Ritchie. We will learn that while these loop programs can only compute a
very small subset of "all the computable functions", nevertheless are significantly
more than adequate for programming solutions of any "practical", computationally
solvable, problem. For example, even restricting the nesting of loop instructions to
as low as two, we can compute —in principle— enormously large functions, which
with input x can produce outputs such as

• , X l l 0 3 5 0 0 0 0 2 ' s
22 J (1)

The qualification above, "in principle", stems from the enormity of the output dis-
played in (1) —even for the input x = 0— that renders the above function way
beyond "practical".

The chapter —after spending considerable care in developing the technique of re-
ductions— concludes by demonstrating the intimate connection between the unsolv-
ability phenomenon of computing on one hand, and the unprovability phenomenon
of proving within first-order logic (cf. Godel (1931)) on the other, when the latter
is called upon to reason about "rich" theories such as (Peano's) arithmetic —that is,
the theory of natural numbers, equipped with: the standard operations (plus, times);
relations (less than); as well as with the principle of mathematical induction.

What to include and what not to include in an introductory book on the theory of
computation is a challenge that, to some extend, is resolved by the preferences of the
author. But I should like to think that the choices of topics made in this volume are
more rational than simply being manifestations of "preference".

The overarching goal is to develop for the reader a "first-order" grounding in the
fundamentals, that is, the theoretical limitations of computing in its various models
of computation, from the most general model —the URM— down to the finite
automaton.

5However this metatheory is called by most people "theory". Hence the title of this volume.

XIV PREFACE

We view the technique of reductions as fundamental in the analysis of limita-
tions of computing, and we spend a good deal of space on this topic, a variant of
which (polynomial-time reductions) the student of computer science will encounter
in Subsection 5.1.2 and will re-encounter in later studies as well, for example, in a
course on algorithms and complexity. On the other hand, we do not hesitate to omit
combinatorial topics such as "Post's correspondence problem", which only leads
to specialized results (e.g., the algorithmic unsolvability of detecting ambiguity in
context free languages) that we feel embody a less fundamental technical interest.
Our emphasis is on laying the foundational tools and concepts that allow us to carry
out a mathematical analysis of, and acquire a thorough understanding of, theoretical
limitations of computing in both their absolute manifestation (uncomputability) and
also in their relative manifestation (complexity and "intractability").

Consistent with our stated goal and emphasis, we purposely give short shrift to
the area of so-called "positive" results, apart from a few familiarization examples
of "programming" with URMs, loop programs, FA, NFA, and PDA. This is not a
course about writing algorithms, but mostly about what algorithms cannot do at all
and about what they have a lot of trouble doing. For example, results of Chapter 5
immediately imply that, in general, FORTRAN-like programs that allow nesting of
the loop instruction equal to just three have highly impractical run times; certainly
as high as6

Thus, we leave out "applications" such as lexical scanners via finite automata;
automata-minimization; parsing of context free languages using LL, LR, recursive-
descend, and other parsers; and defer them to a later course on compiler writing
tools —these topics do not belong here. We would rather concentrate on what is
foundationally important and omit what is not.

Another challenge is where to start building this metatheory. What should be our
abstraction of a computer program? It should be a straightforward observation that
since this metatheory, or "theory" as we nickname it, abstracts computing practices
—in order to analyze and study said abstractions mathematically— the student must
have encountered in the first instance the concrete counterparts of these abstractions
for the latter to make any sense.

It is hardly the case that, prior to the second year of study, students have "pro-
grammed" scanners or parsers. Rather, students have programmed solutions for less
specialized problems, using a high level general purpose language such as C/C++,
Java, possibly Pascal, etc. They never programmed an automaton, a push-down
automaton, or anything like a Turing machine (unless they have taken up machine
language in the first year).

Yet the overwhelming majority of the literature develops the "theory of compu-
tation", in a manner of speaking, backwards —invariably starting with the theory of

6See 5.2.0.47 and 5.2.0.49. L3 programs have run times bounded by Ackermann's A%(x), for some
k > 0.

PREFACE XV

finite automata, as if automata is precisely what the reader was programming in his7

first university course on programming. We apply this principle: Before the student
studies the (meta)theory, he must have attained a good grasp of the practice that this
theory attempts to dissect and discuss. Thus, it is natural to start our story with the
(meta)theory of general purpose computer programs.

Because of these considerations, our first chapter is on URMs and computability.
The choice of URMs as an abstraction of general-purpose computing —a relative
latecomer (cf. Shepherdson and Sturgis (1963)) in the search for a good answer
to "what would be a good technology-independent model of computation?"— also
connects well with the experience of the student who will come to this course to learn
what makes things tick in programming, and why some things do not tick at all. He
most likely learned his programming via a high level language like C or Java rather
than through machine language. The ubiquitous Turing machine (Turing (1936,
1937)) is more like machine language, indeed, is rather even less user-friendly.8 It
offers no advantage at this level of exposition, and rather presents an obscure and
hard-to-use (and hard to "arithmetize"9) model of computation that one need not use
as the basis of computability. On the other hand it lends itself well to certain studies
in complexity theory and is an eminently usable tool in the proof of Cook's theorem
(cf. Subsection 5.1.3). So we will not totally avoid the Turing machine!

We turn to the formulaic topics of a book on Automata and Languages —
Chapter 3— only after we become familiar, to some extent, with the (general)
computability theory, including the special computability theory of more "practi-
cal" functions, the primitive recursive functions. Automata are introduced as a very
restricted programming formalism, and their limitations (in expressivity) and their
associated languages are studied.

It is often said, with justification, that a course in theory of computation has as side-
effect the firming up of the student's grasp of (discrete) mathematical techniques and
mathematical reasoning, as well as the ability to apply such techniques in computer
science and beyond. Of course, it cannot be emphasized enough that the student of a
theory of computation course must be equipped already with the knowledge expected
to be acquired by the successful completion of a one-semester course on discrete
mathematics. This required background knowledge is often encapsulated, retold,
and aspects of it are emphasized, in the space of a few pages at the front-end of a
book like this. This is the ubiquitous "Chapter 0" of many books on the subject. In
the case of the present book I would like, most of all, to retell two stories, logic and
induction, that I often found being insufficiently developed in the student's "toolbox",
notwithstanding earlier courses he may have taken. Thus, in Subsection 1.1.1 we
develop the notational and how-to parts of elementary predicate logic in the space
of some 20 pages, paying special attention to correctness of exposition. Section 1.4
presents the induction principle on the natural numbers in two steps: One, how

7Pronouns such as "he", "his", "him" are, by definition, gender-neutral in this volume and are used solely
for textual convenience.
8Machine language can manipulate numbers, whereas a Turing machine can only manipulate digitsl
9This verb will make sense later.

XVi PREFACE

to use its various forms, and a proof of their equivalence to the least (positive)
integer principle. Two, we argue, at the intuitive level, why induction must be a valid
principle after all!10 We also go over concepts about sets and related notation, as well
as relations and functions, very quickly since they do not need much retelling. We will
also introduce quickly and in an elementary fashion a topic likely not encountered by
the reader in the typical "discrete math" course: the distinction between two infinities
—countable and uncountable— so that we can have an excuse to introduce the reader
to Cantor's ingenious (and simple) diagonalization argument, that recurs in one or
another shape and form, over and over, in the computabiHty and complexity part of
the theory of computation.

On intuitive arguments; i(formalization,y and why a course in theory cannot
be taught exclusively by hand-waving: The main reason that compels us to teach
(meta)theory in a computer science curriculum is not so much to prevent the innocent
from trying to program a solution for the halting problem (cf. 2.5.0.16), just as we
do not teach courses in geometry just to prevent circle-squaring "research". Rather,
formal mathematical methods used in a course in the theory of computation, more so
than the results themselves, are transferable skills that the student becomes endowed
with, which equip him to model and mathematically analyze concrete phenomena
that occur in computation, and through a mathematical process of reasoning to be
able to recognize, understand, and correlate such phenomena. These formal methods,
skills and results, put the "science" keyword into computer science.

Intuition, obtained through experience, is invaluable, of course, and we often
argue intuitively before we offer a proof of a fact. But: one cannot have "proof-by-
intuition".

We have included in this volume a good amount of complexity theory that will
likely be mostly skipped whenever the book is called upon to serve a second year
course on the theory of computation. There are a few "high level complexity" results
already in Section 2.7 using diagonalization (cf. 2.7.1.9 and 2.7.1.11). Later, quite
a bit is developed in Chapter 5, including the concept of JY^-completeness and
Cook's theorem; an account of Cobham's class of feasibly computable functions
(mostly delegated to the Exercises section, 5.3); and some elements of the hierarchy
theory of the primitive recursive functions culminating in the rather startling fact that
we cannot algorithmically solve the correctness problem of FORTRAN-like programs
even if we restrict the nesting of loops to just two levels. FORTRAN-like languages
have as abstract counterpart the loop programs of Meyer and Ritchie (1967) that we
study in the chapters on computabiHty (2nd) and complexity (5th).

Were I to use this book in a second year course in the theory of computation I
would skim quickly over the mathematical "prerequisites" chapter, and then cover
2.1-2.7, parts of 2.10, certainly Godel's incompleteness theorem and its relation to
uncomputability: 2.11 —but not 2.11.1. I would then cover only as much as time
permits from Chapter 3 on finite automata; certainly the pumping lemma, consistent

10In so doing I will be sure to let the student know that I am not squaring the circle: Induction is not a
provable principle of the arithmetic of Peano, it is an axiom. However, this will not stop us from arguing
its plausibility, i.e., why it is a reasonable, "natural" axiom.

PREFACE XVII

with my view that this is a "course" about what cannot be done, or cannot be done
"easily", rather than a toolbox for how to do things. The latter is deferred to a course
and book on algorithms.

In a more advanced course where one can proceed faster, I would want also to
cover the sections on creative sets and the recursion theorem, and also as much
complexity theory as possible from Chapter 5, starting with the material leading to
Cook's theorem.

The reader will forgive the many footnotes, which some will assess as bad style!
There is always a story within a story, the " . . . and another thing . . . ", that is best
delegated to footnotes.

The style of exposition that I prefer is informal and conversational and is expected
to serve well not only the readers who who have the guidance of an instructor, but
also those readers who wish to learn the elements of the theory of computation on
their own. I use several devices to promote understanding, such as frequent "pauses"
that anticipate questions and encourage the reader to rethink an issue that might
be misunderstood if read but not studied and reflected upon. Additionally, I have
included numerous remarks, examples and embedded exercises (the latter in addition
to the end-of-chapter exercises) that reflect on a preceding definition or theorem. All
pauses are delimited by "Pause." and A ^^

The stylized "winding road ahead" warning, JL , that I first saw in Bourbaki's
books (Bourbaki (1966)) and have used in my other books, delimits a passage that is
too important to skim over. <£><£>

On the other hand, I am using JL JL to delimit passages that I could not resist
including, but, frankly, can be skipped (unless you are curious).

There are over 200 end-of-chapter exercises and 41 embedded ones. Many have
hints and thus I refrained from (subjectively) flagging them for level of difficulty.
After all, as one of my mentors, Alan Borodin, used to say to us (when I was a
graduate student at the University of Toronto), "attempt all exercises; but definitely
do the ones you cannot do".

GEORGE TOURLAKIS

Toronto
November 2011

CHAPTER 1

MATHEMATICAL FOUNDATIONS

In this chapter we will briefly review tools, methods and notation from mathematics
and logic, which we will directly apply throughout the remaining of this volume.

1.1 SETS AND LOGIC; NAIVELY

The most elementary elements from "set theory" and logic are a good starting point
for our review. The quotes are necessary since the term set theory as it is understood
today applies to the axiomatic version, which is a vast field of knowledge, methods,
tools and research [cf. Shoenfield (1967); Tourlakis (2003b)]—and this is not what we
outline here. Rather, we present the standard notation and the elementary operations
on sets, on one hand, and take a brief look at infinity and the diagonal method
of Cantor's, on the other. Diagonalization is a tool of significant importance in
computability. The tiny fragment of concepts from set theory that you will find in
this section (and then see them applied throughout this volume) are framed within
Cantor's original "naive set theory", good expositions of which (but far exceeding
our needs) can be found in Halmos (1960) and Kamke (1950).

We will be forced to interweave our exposition of concepts from set theory with
concepts—and notation—from elementary logic, since all mathematics is based on

Theory of Computation. By George Tourlakis
Copyright © 2012 John Wiley & Sons, Inc.

1

2 MATHEMATICAL FOUNDATIONS

logical deductions, and the vast majority of the literature, from the most elementary
to the most advanced, employs logical notation; e.g., symbols such as "V" and "3" .

The term "set" is not defined,11 in either the modern or in the naive Cantorian
version of the theory. Expositions of the latter, however, often ask the reader to
think of a set as just a synonym for the words "class",12 "collection", or "aggregate".
Intuitively, a set is a "container" along with its contents—its elements or members.
Taken together, contents and container, are viewed as a single mathematical object.
In mathematics one deals only with sets that contain mathematical objects (so we are
not interested in sets of mice or fish).

Since a set is itself an object, a set may contain sets as elements.

All the reasoning that one does in order to develop set theory—even that of
the naive variety—or any part of mathematics, including all our reasoning in this
book, utilizes mathematical logic. Logic is the mathematics of reasoning and its
"objects" of study are predominantly mathematical "statements" or "assertions"—
technically known as formulae13—and mathematical proofs. Logic can be applied to
mathematics either experientially and informally—learned via practice as it were—
or formally. The predominance of mathematical writings apply logic informally as
a vehicle toward reaching their objectives.14 Examples of writings where logic is
formally applied to mathematics are the volumes that Bourbaki wrote, starting here
[Bourbaki (1966)]. More recent examples at the undergraduate and graduate levels
are Gries and Schneider (1994) and Tourlakis (2003b) respectively.

In this volume we apply logic informally. An overview is provided in the next
subsection.

1.1.1 A Detour via Logic

As is customary in mathematics, we utilize letters, upper or lower case, usually
from near the end of the alphabet (u, v, y, x, z, S, T, V) to denote, that is, to name
mathematical objects—in particular, sets.

By abuse of language we say that u,v,y,x,z,S,T,V are (rather than denote or
name) objects. These letters function just like the variables in algebra do; they are
object-variables.

11 The reader who has taken Euclidean geometry in high school will be familiar with this parallel: The
terms "point", "line", and "plane" are not defined either, but we get to know them intimately through their
properties that we develop through mathematical proofs, starting from Euclid's axioms.
12In axiomatic set theory a "class" is a kind of collection that may be so "large" that it technically fails to
be a set. The axioms force sets to be "small" classes.
13More accurately, a "statement" and a formula are two different things. However, the latter mathematically
"encodes" the former.
14Despite the dangers this entails, as Godel's incompleteness theorems exposed [Godel (1931)], modern
mathematicians are confident that their subject and tools have matured enough, to the point that one
can safely apply logic, once again, post-Godel, informally. For example, Kunen states in his article on
set-theoretic combinatorics, Kunen (1978), "A knowledge of [formal] logic is neither necessary, nor even
desirable".

SETS AND LOGIC; NAIVELY 3

As is the case in algebra, the variables x, y1 z are not the only objects set theory
studies. It also studies numbers such as 0,1, —7 and 7r, matrices such as (° *) and
objects that are the results of function applications such as 723000, xyZ and 2X.

Unlike axiomatic set theory, which introduces its objects via formal constructions,
naive set theory allows us to use, "off the shelf", all the mathematical objects such as
the above, as well as, of course, objects that are sets such as {2,3, {1}} and A U B.15

Logicians like to call mathematical objects terms. We utilize in this book the generic
names t and s (with primes or subscripts, whenever we need more than two such
names) to refer to arbitrary terms that we do not want to be specific about.

1.1.1.1 Definition. The simplest possible relations of set theory are of just two forms:
t e s—read "t is a member of s" or "£ belongs to s"—and t — s, read "t is equal to
s", where, as we indicated above, t and s are any terms whatsoever.

These relations are the atomic formulae (of set theory). The qualifier "atomic"
refers to two facts:

• These two types cannot be expressed (simulated) in terms of simpler relations
by using the notation and tools of logic.

• Using these two relations as building blocks we can construct every possible
formula of set theory as we will explain shortly. □

1.1.1.2 Example, x £ y,u = v, z e S and 3 e z and 2Z = y3 are atomic formulae.
N, the set of all natural numbers (i.e., all the numbers that we obtain by starting

at 0 and repeatedly adding 1: 0, 1, 2, 3, 4 , . . .) , is an important constant in naive set
theory.

By "N . . . is an important constant" we mean, of course, via the habitual abuse of
language exercised by mathematicians, the accurate "N . . . denotes (or names) an
important constant".

Here is an example that uses N in an atomic formula: — 7 G N. Incidentally, this
formula makes (i.e., encodes) a false statement; we say the formula is false.

One may form this basic formula as well, N = \J^0{i}, where the meaning of
the symbols " { . . . } " and " U ^ o " w ^ ^e introduced later in this section.

Yet another example is {1} £ {2,1}—a false statement (formula) as we will be
able to determine soon. □

Logic (and mathematics) contain much more complex formulae than those of the
atomic variety. The added complexity is achieved by repeatedly "gluing" atomic
formulae together employing as glue the logical, or Boolean, connectives

- i , A , V , - > , =

15 Notation for objects such as {...} and xUy will be reviewed shortly.

4 MATHEMATICAL FOUNDATIONS

and the quantifiers
V,3

As we have noted already, unlike the case of naive set theory—where we take for
granted the a priori presence of all objects of mathematics, such as 3, — 7, N and
xy — axiomatic set theory needs no a priori existence of any objects. Starting just
with the relations x € y and x = y it uses powerful rules, which can be used to build
not only all formulae of set theory, but also all the objects of mathematics that we are
familiar with, such as the above-mentioned and many others.

What about arithmetic? The arithmetical objects of "pure" (Peano) arithmetic are
the variables, constants, and outputs of functions applied on objects that we have
already built. What are its formulae? If we are thinking of pure arithmetic, which
is studied outside set theory, then we may choose as atomic formulae all those that
can be built from the three start-up relations z = x + y, z = x x y and z = xy: new
atomic formulae result by substituting arbitrary (arithmetical) objects for variables.
Note that the equality relation is obtained from z = x + y by substituting 0 for y.

All formulae of arithmetic can be built, starting from the atomic ones, as ex-
plained in the general Definition 1.1.1.3 below. This assertion is revisited in Subsec-
tion 2.11.1.

Godel showed in Godel (1931) that the atomic formula z = xy is, well, not atomic:
It can be simulated (built) within pure arithmetic starting just with z — x + y and
z — x x y.

The "practicing mathematician" prefers to work within an "impure" arithmetic, where
he has access to sets and their notations, operations, and properties. In particular, this
impure arithmetic employs set variables and, more generally, set objects in addition
to number variables and number objects.

Throughout this volume a formula (whether specific to set theory or to any other
area in mathematics, such as arithmetic—pure or impure) will be denoted by an upper
case calligraphic letter, such as si, 33, &, <S.

We now indicate how formulae are put together using brackets, connectives, and
quantifiers, employing atomic formulae as basic building blocks. The definition be-
low is generic, thus unified: it applies to the structure of all formulae of mathematics.
The choice of atomic formulae (which presupposes an a priori choice of mathemat-
ical symbols, such as 0, -f, G) and of types of variables is what determines whether
we build set theory formulae, pure or impure arithmetic formulae, or "other".

1.1.1.3 Definition. A set theory formula is one of:

(1) An atomic formula (1.1.1.1).

(2) (-i&i), where si is known to be16 a formula.

16I.e., to stand for one. Thus, the expression " (-u^)" is constructed by writing "(", followed by writing
"-■", followed by writing in full whatever srf names, and finally writing ")".

SETS AND LOGIC; NAIVELY 5

(3) {si A SS), where si and SS are known to be formulae.

(4) {si V SS), where si and SS are known to be formulae.

(5) {si —> SS), where si and SS are known to be formulae.

(6) {si = SS), where si and SS are known to be formulae.

(7) {(\fx)si), where si is known to be a formula and x is any variable.

(8) {{3x)si), where si is known to be a formula and x is any variable. We say in
the last two cases that "si is the scope of Qx, where Q is V or 3".

We call V the universal and 3 the existential quantifiers. We will extend the termi-
nology "quantifier" to apply to the compound symbols (Var) or (3). □

1.1.1.4 Definition. (Immediate Predecessors) Let & be a formula. By 1.1.1.3 it has
one of the forms (l)-(8). If it is of type (1), then it has no immediate predecessors—
i.e., it was not built using connectives or quantifiers from simper formulae. If it has
the forms (2)-(8), then in each case its immediate predecessors are the formulae si
and SS [the latter enters in cases (3)-(6)] that were used to build it. We use the
acronym ip for immediate predecessors. □

The presence of brackets guarantees that the decomposition or deconstruction of a
formula into its immediate predecessors is unique. This fact can be proved, but it is
beyond our aims so we will not do so here [see Bourbaki (1966); Enderton (1972);
Tourlakis (2008, 2003a)]. Logicians refer to it as the unique readability of a formula.

1.1.1.5 Example. Here are some formulae:
x e y, 3 = z, z = xw—by (1),
(-*x = y)—by (1), followed by an application of (2); we usually write this more

simply as "x ^ y",
(x G yV z = xw)—by (1), followed by an application of (4),
{{Vx)z = xw)—by (1), followed by an application of (7),
(x — 0 -» x = 0)—by (1), followed by an application of (5), and
{x = 0 —>• ((\/x)x = 0))—by (1), followed by an application of (7) to obtain

((Vx)x = 0), and then by an application of (5).
The reader should check that we inserted brackets precisely as prescribed by

Definition 1.1.1.3. □

1.1.1.6 Remark. (Building a formula) If & is (stands for, that is) a formula we can
deconstruct it according to Definition 1.1.1.3 using a natural process.

Initialize'. Write down &. Flag it pending.
Repeat this process until it cannot be carried further:

{

6 MATHEMATICAL FOUNDATIONS

Write down, above whatever you have written so far, the ip of all pending formulae
(if they have ip); and remove the flag "pending" from the latter. Add the flag to the
ones you have just written.

}
The process is terminating since we write shorter and shorter formulae at every

step {and remove the flags); we cannot do this forever!
Clearly, if we now review from top to bottom the sequence that we wrote, we

realize that it traces forward the process of constructing & by repeated application
of Definition 1.1.1.3. This top-down view of our "deconstruction" is a formula-
construction sequence for &.

For example, applying the process to the last formula of the preceding example
we get:

x = 0
x = 0
((Va?)x = 0)
(x = 0 -> ((Vx)x - 0))

where one copy of x = 0 was contributed by the bottom formula and the other (at
the top) by ((\/x)x = 0).

Going forward we can discard copies that we do not need. Thus a valid formula
construction is also this one:

x = 0
((Vx)x = 0)
[x = 0 -> ((\fx)x = 0))
Indeed, we validate the first formula in the sequence via (1) of 1.1.1.3; the second

using the first and (7); and the last one using the first two and (5). □

A term such as x2 has x as its only input variable. An atomic formula such a s z G N
has z as its only input variable, while the (atomic) formula x + y = yw has x, y and w
as input variables. Whenever we want to draw attention to the input variables—say,
x, u, S and z—of a term t or a formula srf we will write t(x, u, S, z) ovsrf{x, -u, S, z),
respectively. This is entirely analogous to writing " / (# , z) = x2 + sin z" in order to
name the expression (term) x2 +sin z as a function f{x,z) of the two listed variables.

1.1.1.7 Definition. (Input Variables—in Terms) All the variables that occur in a
term—other than an x that occurs in a term of the form {x : . . .} (which is a set
object that will be introduced shortly)—are input variables. □

1.1.1.8 Example. Thus, the term x has x as its only input variable; while the term 3
has no input variables. xz has x, z, y as its input variables. We will soon introduce
terms (set objects) such as {x : x = 0}. This object, which the reader may recognize
as a fancy way to simply write {0}, has no input variables. □

SETS AND LOGIC; NAIVELY 7

1.1.1.9 Definition. (Input Variables—in Formulae) A variable occurrence17 in an
atomic formula t e s or t — s is an input occurrence precisely if it is an input
occurrence in one of the terms t and s. Thus, "0 e {x : x = 0}" has no input
variables while "x — 0" has one.

Formation rules (2)-(6) in Definition 1.1.1.3 "preserve" the input occurrences of
variables in the constituent formulae si and SS that we join together using one of
-i, A, V, —>►, = as glue. On the other hand, each quantifier (\/z) or (3z) forces each
occurrence of a variable as described below to become non-input:

• The occurrence z in the quantifier

• Any occurrence of z in the scope of said (Vz) or (3z)

Thus, if we start with s/(x, y, z), of inputs x, y, z, the new formula {(Qy)st{x, y, z)),
where Q stands here for one of V, 3, has only x and z as input variables. □

We have carefully referred to occurrences, rather than variables, in the above defi-
nition. A variable can be both input and non-input. An occurrence cannot be both.
For example, in (x = 0 —> (\/x)x = 0) the first x-occurrence is input; the last two
are non-input. The variable x is both.

Thus "x is an input/non-input variable" (of a formula) means that there are
occurrences ofx that are input/non-input.

The standard name utilized in the literature for input variables is free variables.
Non-input variable occurrences are technically called bound occurrences, but are
also called apparent occurrences, since even though they are visible, they are not
allowed—indeed it makes no sense—to receive arguments (input). This is analogous
to the "S-notation" for sums: J2i=i i means 1 + 2 + 3. While we can "see" the
variable i, it is not really there!18 It cannot accept inputs. For example, "^2=1 ̂ " *s

total nonsense.
The jargon input/non-input is deliberately chosen: We may substitute terms only

in those variable occurrences that are free (input).

If & is some formula and x, y, z,... is the complete list of variables that occur
in it, we can draw attention to this fact by writing &(x, y,z,...). If x, y, z,... is a
list of variables such that some19 among them occur in &, then we indicate this by
&[x,y,z,...].

In the context of ^ [x , y, z,...] [or<^(x,y, z,...)], ^"[t i , t 2 , t 3 , . . .] [correspond-
ingly &(ti, £2, 3̂> • • •)] stands for the formula obtained from & by replacing each
original occurrence of x, y, z , . . . in & by the terms £1, £2, £3, . . . respectively.

Some people call this operation simultaneous or parallel substitution. Thus, if
J^*[x, y] names "x = y", whereas t\ is y +1, and £2 is 5, then J^"[£i, £2] is "2/ + 1 — 5"
and not "5 + 1 = 5". The latter result would have been obtained if we first substituted

17For example, in x = x the variable x has two occurrences.
18 A fact demonstrated strongly by the explicit form of the sum, 1 + 2 + 3.
19"Some" includes "none" and "all" as special cases.

8 MATHEMATICAL FOUNDATIONS

t\ in x to obtain y + 1 = y, and then substituted £2 in y to obtain 5 + 1 = 5. If we
are to do this "simultaneous substitution" right, then we must not substitute t<i into
the y to the left of "="; this y is not "original".

Observe also that if x does not occur in ^[x]9 then &\b] is just the original &'.

Before we turn to the meaning (and naming) of the connectives and quantifiers,
let us agree that we can get away with much fewer brackets than Definition 1.1.1.3
prescribes. The procedure to do so is to agree on connective and quantifier "priorities"
so that we know, in the absence of brackets, which of the two connectives/quantifiers
is supposed to "win" if they both compete to apply on the same part in a formula.

By analogy, a high school student learns the convention that "x has a higher
priority than +", thus 2 + 3 x 4 means 2 + (3 x 4)—that is, x rather than + claims
the part "3".

Our convention is this: The connective -■ as well as the quantifiers V and 3 have the
highest priority, equal among the three. In order of decreasing priority, the remaining
binary connectives20 are listed as A, V, —>, =. If two binary connectives compete to
glue with a subformula, then the higher-priority one wins. For example, assuming that
si has already in place all the brackets that are prescribed by Definition 1.1.1.3, then
. . . —> si V • • • means . . . —> (si V • • •, while . . . ^si A • • • means . . . (^si J A • • •.

If two instances of the same binary connective compete to glue with a subformula,
then the one to the right wins. For example, assuming that si has all the brackets
prescribed by Definition 1.1.1.3 in place, then . . . —>- si —> • • • means ...—>■ (s/-±

Similarly, if any of ->, V, 3 compete for a part of a formula, again the one to the

right wins. E.g., . . . ->(yx)(3y)si - • • means . . . I -if (\/x)((3y)si))) • • •> where

once again we assumed that si has all the brackets prescribed by Definition 1.1.1.3
already in place.

How do we "compute" the truth or falsehood of a formula? To begin with, to
succeed in this we must realize that just as a function gives, in general, different
outputs for different inputs, in the same way the "output" of a formula, its truth-
value, can only be computed, in general, if we "freeze" the input variables. For each
such frozen instance of the input side, we can compute the output side: true or false.

But where do the inputs come from? For areas of study like calculus or arithmetic
the answers are easy: From the set of real numbers—denoted by R—and the set of
natural numbers respectively.

For set theory it sounds easy too: From the set of all sets!

If it were not for the unfortunate fact that "the set of all sets" does not exist, or,
to put it differently, it is a non-set class due to its enormity, we could have left it

'"Binary" since they each glue two subformulae.

SETS AND LOGIC; NAIVELY 9

at that. To avoid paradoxes such as "a set that is not a set"—cf. Section 1.3 on
diagonalization for an insight into why some collections cannot be sets—we will
want to take our inputs from a (comfortably large) set in any given set-theoretic
discussion: the so-called reference set or domain.

1.1.1.10 Remark. The mathematician's intuitive understanding of the statement "^*
is true (resp. false)" is that " ^ is true (resp. false) for all the possible values of the
free (input) variables of &".

Thus, if we are working in arithmetic, "2n + 1 is odd" means the same thing as
"it is true that, for all n £ N, 2n 4-1 is odd". "2n > n" again omits an implied prefix
"it is true that, for all n e N". An example of a false statement with input variables
is "2n is odd". □

1.1.1.11 Definition. An instance of a formula ^ \ in symbols &\ is a formula
obtained from & by replacing each of its variables by some value from the relevant
reference set.

Clearly, &' is variable-free—a so-called closed formula or sentence—and there-
fore it has a well-defined truth-value: exactly one of true or false.

Sometimes we use more explicit notation: An instance of Sf (x, y,z,...) or of
Sf [x, y,z,...] is Sf (i, j , fc, . . .) or W[i, j , &,...], respectively, where i, j , k,... are
objects (constants) from the reference set.

&' and S?' are consistent or common instances of & and ^ if every free variable
that appears in both of the latter receives the same value in both instances. □

1.1.1.12 Example. Let srf stand for "x(x + 1) is even", 38 stand for "2x + 1 is even"
and ^ stand for "x is even", where x is a variable over N. Then,

£? is true,
^ is false, and
^ is neither true, nor false.

The lesson from this is that if the truth-value of a formula depends on variables, then
not true is not necessarily the same as false. D

We will not be concerned with how the truth-value of atomic formulae is "com-
puted"; one can think of them as entities analogous to "built-in functions" of computer
programming: Somehow, the way to compute their true/false output is a matter that
a hidden procedure (alternatively, our math knowledge and sophistication) can do
for us.

Our purpose here rather is to describe how the connectives and quantifiers behave
toward determining the truth-value of a complex formula.

In view of Remark 1.1.1.10, the road toward the semantics of srf V 38, ((\/x)^/)9
etc., passes through the semantics of arbitrary instances of these; namely, we need to
only define the meaning of srf' V 38', ((Vx)^/)', etc., respectively.

10 MATHEMATICAL FOUNDATIONS

1.1.1.13 Definition. (Computing with Connectives and Quantifiers) Let si and 38
be any formulae, and si' and 38' be arbitrary common instances (1.1.1.11).

(1) -^si'—pronounced "not si'"—is true iff21 si' is false.

(2) si' V ^'—pronounced W or 3%'"—is true iff either si' is true or 38' is true,
or both (so-called inclusive or).

(3) si' A ^'—pronounced W and 38'"—is true iff .etf7 is true arcd ^ ' is true.

(4) si' -> ^'—pronounced "if j * 7 , then ^ '"—is true iff either si' is false or 3$' is
true, or both?1

(5) ^ = ^'—pronounced ' V iff <^'"—is true just in case23 si' and 38' are both
true or both false.

(6) The instance (\/x)s/(ii,..., im , x, j \ , . . . , jn)—which is pronounced "for all x,
si(ii,..., im , x, j i , . . . , jn) (holds)"24— is true iff, for all possible values k of
x from the domain, si{i\,..., i m , k, j \ , . . . , jn) is true.

(7) The instance (3x)s/(ii,..., im, x, j i , . . . , j n) —which is pronounced "for some
x, si(i\,..., im, #, i i , • • •, jn) (holds)"—is true iff, for some value k of x from
the domain, si(i\,..., im , /c, j i , . . . , jn) is true. D

1.1.1.14 Remark. (Truth Tables) The content of the preceding definition—cases
(l)-(5)—is normally captured more visually in table form (we have removed the
primes for readability):

si 3$
f f
f t
t f
t t

1 -i si
t
t
f
f

s/V 38
f
t
t
t

si r\S8
f
f
f
t

si"-> &
t
t
f
t

si = si
t
f
f
t

We read the table as follows: First, the symbols t and f stand for the values "true"
and "false" respectively. Second, the two columns to the left of the vertical line || give
all possible pairs of values (outputs) of si and 38. Third, below -^si, si M 38, etc.,
we list the computed truth-values (of the formulae of the first row) that correspond
to the assumed si and 38 values.

The odd alignment under —*si is consistent with all the others: It emphasizes the
placement of the "result" under the "operator"—here -i —that causes it. □

21 ifand only if
22Other approaches to "implication" are possible. For example, the Intuitionists have a different under-
standing for —> than that of the majority of mathematicians, who adopt the classical definition above.
23 A synonym of "iff".
24The verb "holds" means "is true".

