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Yung-Fen Huang, Véronique Cheynier and Nancy Terrier

7.1 Tools available on grape to study PA biosynthesis 161
7.1.1 Grape PAs 162

7.1.1.1 Grape PA structure 162
7.1.1.2 Grape PA variations according to genotype, tissue and

development 164
7.1.2 Grape genetic and genomic tools 166

7.2 Biosynthesis 167
7.2.1 Enzymes of the pathway 167
7.2.2 Transport and storage of PAs 169
7.2.3 PA polymerisation 174

7.2.3.1 Nature of the extension units 174
7.2.3.2 Enzymatic or chemical polymerisation 175
7.2.3.3 Subcellular localisation of polymerisation 176

7.3 Regulation of the pathway 176
References 182

8 Phenolic Compounds in Plant Defense and Pathogen Counter-defense
Mechanisms 191
Fouad Daayf, Abdelbasset El Hadrami, Ahmed F. El-Bebany,
Maria A. Henriquez, Zhen Yao, Holly Derksen,
Ismaı̈l El-Hadrami and Lorne R. Adam

8.1 Introduction 191
8.2 Plant defenses and pathogen counter-defenses 192
8.3 Phenolic-related plant responses to pathogens 194

8.3.1 Cotton–Verticillium dahliae 194
8.3.2 Cucumber—Sphaerotheca fuliginea 195
8.3.3 Chickpea—Fusarium oxysporum f. sp. ciceris 196
8.3.4 Potato–Verticillium dahliae 196
8.3.5 Potato–Phytophthora infestans 197
8.3.6 Sunflower–Verticillium dahliae 198
8.3.7 Date palm–Fusarium oxysporum f. sp. albedinis 199
8.3.8 Canola–Leptosphaeria maculans 199
8.3.9 Saskatoons–Entomosporium mespili 200



P1: SFK/UKS P2: SFK

BLBK411-fm BLBK411-Cheynier February 8, 2012 18:14 Trim: 244mm×172mm

Contents xi

8.4 Pathogens counter-defense against plants’ phenolic-related defenses 200
8.4.1 Phytophthora infestans 201
8.4.2 Verticillium dahliae 201

8.5 Concluding remarks 202
Acknowledgments 203
References 203

9 Absorption and Metabolism of Dietary Chlorogenic Acids and Procyanidins 209
Gary Williamson and Angelique Stalmach

9.1 Introduction 209
9.2 Procyanidins 210

9.2.1 Gut lumen stability of procyanidins 211
9.2.2 Absorption of intact procyanidins from the small intestine 211
9.2.3 Mechanism of absorption across small intestine 212
9.2.4 Absorption from the colon after microbial metabolism 212

9.3 Chlorogenic acids and hydroxycinnamates 214
9.3.1 Transport of chlorogenic acids 214
9.3.2 Chlorogenic acid absorption in humans 215
9.3.3 Chlorogenic acid metabolism 217
References 218

10 Extra-Virgin Olive Oil—Healthful Properties of Its Phenolic Constituents 223
Francesco Visioli and Elena Bernardini

10.1 Introduction 223
10.2 Epidemiological studies 225
10.3 In vitro studies on olive oil’s phenolics 225
10.4 In vivo studies 228
10.5 Olive oil and cancer 231
10.6 Potential mechanisms of action of olive phenols—to be elucidated 232
10.7 Focus on hydroxytyrosol 233
10.8 Olive mill waste water as a source of olive phenols 236
10.9 Conclusions 240

Acknowledgments 244
References 244

11 Analysis and Characterisation of Flavonoid Phase II Metabolites 249
Celestino Santos-Buelga, Susana González-Manzano, Montserrat Dueñas and
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B.P. 2390, 40 000 Marrakech, Morocco
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Preface

Plant polyphenolics are secondary metabolites that constitute one of the most common and
widespread groups of substances in plants. They are structurally diverse, from rather simple
compounds (e.g., anthocyanins, flavonols, isoflavones, catechins, and resveratrol) to highly
complex polymeric species, and exhibit a large and diverse array of biological properties,
for both plants and humans. Synthesis of polyphenolic compounds, which contribute to
the pigmentation of flowers, fruits, leaves, or seeds, and play protective roles against biotic
and abiotic stresses, is part of the adaptative strategies of plants. Polyphenolic compounds
also contribute to the development of color and taste properties of plant-based foods and
beverages, such as tea, wine, or chocolate, and they may play a part in the health protecting
effects associated with the dietary consumption of such food products, although the actual
benefit and mechanisms involved are yet to be proven. Finally, they are potentially helpful
as therapeutic agents against various pathologies.

The list of plant (poly) phenolic compounds is constantly expanding, and, in spite of
recent progress in the development of analytical methods, in particular for metabolomics,
these molecules still present a considerable challenge to the analyst. Biological studies
are aimed at understanding their role and status in planta, but also their fate in vivo after
ingestion from food and beverages. Most of the work is sustained by the analysis of their
chemical characteristics and physicochemical properties. There has been much effort over
the last years to understand polyphenol biosynthesis and build the knowledge required to
engineer or better harness their production in plants. Alternative strategies rely on organic
synthesis to prepare polyphenolic target compounds in sufficient quantities to explore their
properties and use them in various applications.

The diversity of structure and activity of (poly) phenolic compounds resulted in a mul-
tiplicity of research areas such as chemistry, biotechnology, ecology, physiology, nutrition,
medicine, and cosmetics. The International Conference on Polyphenols, organized un-
der the auspices of “Groupe Polyphénols,” every other year, is a unique opportunity for
scientists in these and other fields to get together and exchange their ideas and new findings.

The 25th edition of this conference (ICP2010) was held in Montpellier, France,
from August 24 to 27, 2010, and organized by the Polyphenols and Interactions group
of UMR1083—Sciences pour l’Oenologie (INRA Montpellier), in partnership with
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UMR47—Diversité, Adaptation et Développement des Plantes (Université Montpellier
II). Five topics were covered:

(1) Chemistry and physicochemistry: structure, reactivity, physicochemical properties, syn-
thesis, . . .

(2) Biosynthesis, genetics, and metabolomic engineering: molecular biology, enzymology,
gene expression and regulation, transport, biotechnology, . . .

(3) Roles in plants and ecosystems: plant growth and development, plant–insect relation-
ships, biotic and abiotic stress, resistance, . . .

(4) Health and nutrition: medicinal properties, bioavailability and metabolism, mode of
action, nutraceuticals, cosmetics, . . .

(5) Analysis and metabolomics: analytical methods, omics, . . .

Some 365 participants, from government institutional research and private business,
representing 44 countries from all over the world, attended ICP2010, where 40 oral com-
munications and 300 posters were presented. The present and third volume of Recent
Advances in Polyphenol Research (RAPRIII), a series initiated by Groupe Polyphenols in
2008, includes chapters from the 11 guest speakers and some invited contributors. Essential
complement to Polyphenols Communications 2010, the proceedings of ICP2010, RAPRIII
offers in-depth knowledge on selected aspects of current polyphenol research, pursuing the
role of ICP in being a base for debates and exchange on all research topics related to plant
polyphenols.

In conclusion, we are pleased to observe that research advances in polyphenol science,
enabling progress of our understanding of polyphenols at both the chemical and biological
levels, are based on different approaches from different research areas and interactions
between them. This would not be possible without the constant involvement of “Groupe
Polyphénols” in maintaining ICP and coordinating this book series. So, we wish to thank
deeply its Board and the scientific committee of ICP2010 for their contribution to the
advancement of polyphenol research worldwide.

This 25th International Conference on Polyphenols would not have been possible without
the generous support of public donors such as the French Région Languedoc Roussillon,
Montpellier Agglomération, INRA, and Université Montpellier II. Grants from Groupe
Polyphénols and from the Phytochemical Society of Europe for junior and senior attendees
are also gratefully acknowledged. Other sponsors included Agilent Technology, Glaxo-
SmithKine, Indena, L’Oréal, PhenoFarm, Sanofi Aventis, and Waters.

Last, but not least, ICP2010 and RAPRIII would not be without the members of the
local organizing committee, as well as many other “volunteers,” whose dedicated effort and
support ensured a smooth and eventless scientific and logistic organization. Our sincere
thanks to all of them.

Véronique Cheynier
Pascale Sarni-Manchado

Stéphane Quideau
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Chapter 1

Plant Phenolics: A Biochemical and
Physiological Perspective

Vincenzo Lattanzio, Angela Cardinali and Vito Linsalata

Abstract: The plant polyphenols are a very heterogeneous group, some universally
and others widely distributed among plants, and often present in surprisingly high
concentrations. During the evolutionary adaptation of plants to land, the biosynthesis
of different phenolics classes in plants has evolved in response to changes in the
external environment. Besides a bulk of phenolic substances having cell wall struc-
tural roles, a great diversity of non-structural constituents was also formed, having
such various roles as defending plants, establishing flower colour and contributing
substantially to certain flavours. The accumulation of phenolics in plant tissues is con-
sidered a common adaptive response of plants to adverse environmental conditions,
therefore increasing evolutionary fitness. In addition, these secondary metabolites
may still be physiologically important as a means of channelling and storing car-
bon compounds, accumulated from photosynthesis, during periods when nitrogen is
limiting or whenever leaf growth is curtailed.

Keywords: phenolics; abiotic/biotic stress; primary/secondary metabolism rela-
tionships; metabolic costs of resistance

1.1 The general phenolic metabolism in plants

Phenolic compounds are found throughout the plant kingdom but the type of compound
present varies considerably according to phylum. Phenolics are uncommon in bacteria,
fungi and algae, and few classes of phenols are recorded: flavonoids are almost completely
absent. Bryophytes are regular producers of polyphenols including flavonoids, but it is in
the vascular plants that the full range of polyphenols is found (Swain, 1975; Harborne,
1980; Stafford, 1991). The plant polyphenols are a very heterogeneous group; some are
universally and others widely distributed among plants, and they are often present in sur-
prisingly high concentrations. They are not distributed evenly throughout the plant – either

Recent Advances in Polyphenol Research, Volume 3, First Edition. Edited by Véronique Cheynier,

Pascale Sarni-Manchado and Stéphane Quideau.
C© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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quantitatively or qualitatively – in space and in time. The pattern of secondary metabolites
in a given plant is complex because it changes in a tissue- and organ-specific way. Differ-
ences can regularly be seen between different developmental stages (e.g. organs important
for survival and reproduction have the highest and most potent secondary metabolites),
and between individuals and populations and these differences are subject to environmental
as well as genetic control (Swain, 1977; Harborne, 1980; Wink, 1988; Osbourn et al.,
2003; Wink, 2003; Noel et al., 2005; Singh & Bharate, 2006; Yu & Jez, 2008). Phenolic
metabolism in plants is a complex process resulting from the interaction of at least five
different pathways. The glycolytic pathway that produces phosphoenolpyruvate; the pen-
tose phosphate pathway that produces erythrose-4-phosphate; the shikimate pathway that
synthesises phenylalanine; the general phenylpropanoid metabolism that produces the ac-
tivated cinnamic acid derivatives and the plant structural component lignin, and the diverse
specific flavonoid pathways (Boudet et al., 1985; Hrazdina, 1994; Schmid & Amrhein,
1995; Winkel-Shirley, 2001; Austin & Noel, 2003) (Fig. 1.1). Phenolic metabolism must
be regarded as a dynamic system involving steady-state concentrations of the various phe-
nolic compounds, which during certain phases of growth and development are subject to
substantial qualitative and quantitative changes. This turnover may involve three types of
reactions: (i) interconversions which are involved in biosynthetic sequences; (ii) catabolic
reactions where the products are converted to primary metabolic constituents and (iii) ox-
idative polymerisation reactions leading to insoluble structures of high molecular weight
(Barz & Hoesel, 1975, 1979).

Plants, as sessile organisms, evolve and exploit metabolic systems to produce a vast and
diverse array of phenolic and polyphenolic compounds with a variety of ecological and phys-
iological roles. The ability to synthesise phenolic compounds has been selected throughout
the course of evolution in different plant lineages when such compounds addressed specific
needs, thus permitting plants to cope with the constantly changing environmental chal-
lenges over evolutionary time (Pichersky & Gang, 2000; Noel et al., 2005). For example,
the successful adaptation to land by some higher members of the Charophyceae – which are
regarded as prototypes of amphibious plants that presumably preceded true land plants when
they emerged from an aquatic environment onto the land – was achieved largely by massive
formation of ‘phenolic UV light screens’ (Swain, 1975; Lowry et al., 1980; Stafford, 1991;
Graham et al., 2000). Regarding the structure of phenolic compounds involved in this pho-
toprotective role of plant phenolics, there was an exciting discussion between Tony Swain
and Brian Lowry. Lowry’s speculative viewpoint was that ‘when plants invaded the land
habitat and were exposed to solar-ultraviolet radiation more intense than that found today,
an early obvious protective adaptation strategy used by plants would be the accumulation
of substituted cinnamic acids from the deamination of aromatic amino acids’ (Lowry et al.,
1980). Swain’s objection to this speculative hypothesis was that ‘cinnamic acids absorbing
at 310–325 nm do not have the right absorption characteristics to enable them to act effi-
ciently in this way and thus prevent UV photodestruction of either nucleic acids or proteins
(λmax ca 260 and 280 nm, respectively)’. Swain’s opinion was that flavonoids (λmax ca 260
and 330 nm), cell wall polysaccharide acylation by cinnamic acids and suberin could all
presumably have aided in the success of land plants (Swain, 1981). Lowry’s reply was that,
‘given the presence of even trace amounts of ozone in the atmosphere during the time
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Fig. 1.1 Carbon fluxes towards the phenolic metabolism.
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leading up to the Silurian and early Devonian (starting some 420 million years ago), it is
extremely unlikely that terrestrial organisms would have been exposed to UV-C radiation
(less than 280 nm)’ and that DNA and proteins are both damaged by radiation in the UV-B
region (280–315 nm) (Lowry et al., 1983). A wide array of flavones have been reported for
Takakia lepidozioides, believed to be amongst the most primitive of extant liverworts and
the possible ancestor of modern bryophytes. This suggested that metabolic pathways lead-
ing to flavonoid synthesis appeared quite early in the evolutionary record of plants, perhaps
even before the development of vascular tissues (Markham & Porter, 1979). Bryophyte
lines that mainly synthesised flavones and flavonols, branched off within populations of
pioneering land plants. Within other populations of early land plants, the evolution of the
enzymes unique to the lignin pathway permitted the evolution of vascular plants, the tra-
cheophytes. Proanthocyanidins and flavan-3-ols became widespread in some fern groups,
while these and 3-hydroxyanthocyanidins became dominant flavonoids in gymnosperms
and, especially, in angiosperms. Proanthocyanidins remained as major constitutive defence
compounds in leaves of long-lived woody plants, but became relatively rare in short-lived
herbaceous angiosperms, except in the seed coats of some of these plants. The pterocarpan
pathways producing inducible phytoalexins for chemical defence purposes were evolved in
a few angiosperm taxons (Stafford, 1991). Broadly, it is now well known that charophyte
green algae can inhabit extreme habitats (highly saline and acidic waters with high levels of
heavy metals) and that green algae are also common on land. Terrestrial algae grow in some
of the most difficult habitats on earth, such as desert soils. Morphological and molecular
analyses of some of these charophyte green algae have indicated multiple transitions to arid
habitats from aquatic ancestors. During the evolutionary adaptation of plants to land, the
biosynthesis of different phenolics classes in plants has evolved in response to changes in
the external environment. In addition to a bulk of phenolic substances with cell wall struc-
tural roles, an amazing diversity of non-structural constituents was also formed, having
such various roles as defending plants, determining the durability of different woods and
barks, establishing flower colour and contributing substantially to certain flavours. In addi-
tion, phenolics – and ultimately flavonoids – were also selected for their protection against
ultraviolet damage and autotoxicity. All these diverse functions performed by the differ-
ent classes of phenolic compounds are essential for the continued survival of all types of
vascular plants (Lowry et al., 1980; Cooper-Driver & Bhattacharya, 1998; Flechtner et al.,
1998; Croteau et al. 2000; Bieza & Lois, 2001; Lewis & Mccourt, 2004; Teklemariam &
Blake, 2004; Caldwell et al., 2007; Lattanzio et al., 2008).

However, it is not true that all plants lack mobility, although, plants are generally rooted
and unable to move from place to place by themselves. Some plants are now known to be
able to move in certain ways; some plants are known to open their leaves in the daytime
and ‘sleep’ at night with their leaves folded. This circadian rhythmic leaf movement known
as nyctinasty is widely observed in leguminous plants. It was thought that nyctinastic
movement was controlled by Schildknecht’s turgorins (chemical factors controlling the
turgor changes in plants which induce turgor-controlled movements including nyctinasty),
which induce leaf-closing movement of the plants (Schildknecht & Schumacher, 1982;
Schildknecht, 1983). Ueda and his collaborators found that nyctinastic plants have a pair of
endogenous bioactive substances that control nyctinastic leaf movement (Ueda & Yamamura
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Fig. 1.2 Leaf-movement factors from nyctinasic plants.

2000; Ueda & Nakamura 2006). One of these is a leaf-opening factor that ‘awakens’ plant
leaves, and the other is a leaf-closing factor that reverses this process, so that the plant
leaves ‘sleep’ (Fig. 1.2). All leaf-opening factors, which are effective under physiological
pH and in a physiological concentration, have the common structural feature of p-coumaroyl
moiety, and this result suggests that this structural feature is deeply involved in the common
mechanism for leaf-opening (Ueda & Nakamura, 2010).

The highly ordered interactions between plants and their biotic and abiotic environments
have been a major driving force behind the emergence of specific natural products. The
accumulation of phenolics in plant tissues is considered a common adaptive response
of plants to adverse environmental conditions, increasing evolutionary fitness. In addition,
these secondary metabolites may still be physiologically important as a means of channelling
and storing carbon compounds, accumulated from photosynthesis, during periods when
nitrogen is limiting or whenever leaf growth is curtailed. Large increases in the amount
of phenolic compounds can occur in stressed plants and those undergoing mechanical
damage. Plant phenolics are considered to have a key role as defence compounds when
environmental stresses such as bright light, low temperatures, pathogen infection, herbivores
and nutrient deficiency can lead to increased production of free radicals and other oxidative
species in plants. A growing body of evidence suggests that plants respond to these biotic
and abiotic stress factors by increasing their capacity to scavenge reactive oxygen species.
In addition, in order to establish a protective role for a given metabolite, it is necessary
to monitor concentrations over the life cycle of the plant, to survey plant populations, to
determine specific localisation within tissues and to carry out bioassays against insects and
microorganisms. Finally, changes in secondary chemistry may also occur during ontogeny
and protection may be restricted to the most vulnerable plant organs (Robbins et al., 1985;
Harborne, 1990; Lattanzio et al., 1994; Dixon & Paiva, 1995; Facchini, 1999; Winkel-
Shirley, 2002, Blokhina et al., 2003).

The bewildering array of phenolic compounds produced by plant tissues (several thou-
sand different chemical structures have been characterised) belong to various classes,
such as esters, amides and glycosides of hydroxycinnamic acids, glycosylated flavonoids,
especially flavonols, proanthocyanidins and their relatives and the polymeric lignin and



P1: SFK/UKS P2: SFK

BLBK411-c01 BLBK411-Cheynier February 2, 2012 13:7 Trim: 244mm×172mm

6 Recent Advances in Polyphenol Research: Volume 3

suberin. Some soluble phenolics, for example chlorogenic acid, are widely distributed, but
the distribution of many other structures is restricted to specific genera or families making
them convenient biomarkers for taxonomic studies. Even if the potential value of plant sec-
ondary metabolites to taxonomy has been recognised for nearly 200 years, their practical
application has been restricted to the twentieth century and predominantly to the last 40
years. The use of secondary compounds has clear advantages over the use of primary com-
pounds in establishing phylogenetic relationships because differences in the complement
of secondary compounds are qualitative differences whereas differences in the concen-
trations of primary compounds are quantitative differences, and these are subject to both
environmental and genetic control. Phenolic compounds are often similar within members
of a clade and therefore the existence of a common pattern of secondary compounds may
indeed provide much clearer evidence of common ancestry than morphological similarities
attributable either to common ancestry or to convergent evolution (Bell, 1980; Lattanzio
et al., 1996; Wink, 2003).

1.2 Effect of non-freezing low temperature stress on phenolic
metabolism in crop plants

Of the various environmental stresses, exposure to non-freezing low temperatures is one
of the most important abiotic stress factors for plants. The precise way in which plants
adapt to low temperature is obviously of scientific interest, but there are also practical and
economic aspects. Many important crop plants of tropical and subtropical origin are, in
general, sensitive to low non-freezing temperatures less than 10◦C to 12◦C. Several studies
have suggested that exposure to low temperatures usually triggers a variety of biochemical,
physiological and molecular changes that allow the plants to adjust to stress conditions and
this response is characterised by a greater ability to resist injury or survive an otherwise
lethal low temperature stress. This process is known as cold acclimation (Lyons, 1973;
Graham & Patterson, 1982; Janas et al., 2000; Sharma et al., 2005). Lowering temperatures
will thermodynamically reduce the kinetics of metabolic reactions. Exposure to low tem-
peratures will shift the thermodynamic equilibrium so that there is an increased likelihood
of non-polar side chains of proteins becoming exposed to the aqueous medium of the cell.
This leads to a disturbance in the stability of proteins, or protein complexes and also to a
disturbance of the metabolic regulations. Lower temperatures induce rigidification of mem-
branes, leading to a disturbance of all membrane properties (permeability, electric field,
cation concentration and water ordering, and this leads to disturbance of the conformation
and thus the activity, of membrane-bound enzymes). Chilling is also associated with the ac-
cumulation of reactive oxygen species (ROS). The activities of the scavenging enzymes will
be lowered by low temperatures, and the scavenging systems will then be unable to counter-
balance the ROS formation that is always associated with mitochondrial and chloroplastic
electron transfer reactions. The accumulation of ROS has deleterious effects, especially on
membranes. Some plants are able to adapt through mechanisms based on protein synthe-
sis, membrane composition changes, and activation of active oxygen scavenging systems.
There is an increasing body of evidence that many of these biochemical and physiological
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changes are regulated by low temperature through changes in gene expression. In recent
years, a number of low temperature-responsive genes have been cloned from a range of both
dicotyledon and monocotyledon species (Wolfe, 1978; Howarth & Ougham, 1993; Hughes
& Dunn, 1996; Thomashow, 1998; Siddiqui & Cavicchioli, 2006; Ruelland et al., 2009).

Low temperature stress induces accumulation of phenolic compounds that protect chilled
tissues from damage by free radical-induced oxidative stress. It has also been observed that
cold stress increases the amount of water-soluble phenolics and their subsequent incorpora-
tion into the cell wall either as suberin or lignin (Chalker-Scott & Fuchigami, 1989; Ippolito
et al., 1997). Many papers report the effects of low temperature on phenolic metabolism,
and these have shown that phenolic metabolism is enhanced under chill stress and that the
behaviour of the same metabolism is further dependent on the storage temperature. There
is a low critical temperature below which an increase of phenylpropanoid metabolism
is stimulated during the storage of plant tissues and this temperature varies from com-
modity to commodity. The threshold temperature for increasing phenolic metabolism is
related to the threshold temperature at which chilling injury is also induced and it has
been shown that low temperature treatments stimulate phenylpropanoid metabolism as
well as flavonoid metabolism in various plant tissues, including artichoke, carrot, gherkin,
maize, olive, pea, pear, potato, tomato and watermelon (Rhodes & Wooltorton, 1977,
1978; Rhodes et al., 1981; Blankenship & Richardson, 1985; Lattanzio & Van Sumere,
1987; Lattanzio et al., 1989; Christie et al., 1994; Leyva et al., 1995; Chalker-Scott,
1999; Solecka et al., 1999; Gil-Izquierdo et al., 2001; Golding et al., 2001; Rivero et al.,
2001; Ortega-Garcı́a & Peragón, 2009). Figure 1.3a shows changes in the total flavonoid
(quercetin and phloretin glycosides) content in Golden Delicious apple skin during storage
at 2◦C. During the first 60 days of cold storage, there is a relevant increase in flavonoid
content, but flavonoid content gradually decreases in fruits stored for a longer period.
Similar changes have been observed in the levels of phenolic compounds, mono- and
di-caffeoylquinic acids, in artichoke heads stored at 4◦C (Fig. 1.3b). The timing of the
observed peak in the phenol level during cold storage depends on the species or cultivar,
the harvesting time and the storage conditions (Lattanzio et al., 1989, 2001; Lattanzio,
2003a, 2003b).

In connection with the increased synthesis of phenolic compounds at low tempera-
tures, some studies have been carried out on some enzymes of phenolic metabolism,
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Fig. 1.3 Changes in the total flavonoid content in apple skin during storage at 2◦C (a) and in the levels of
mono- and di-caffeoylquinic acids (as % of caffeic acid on dry weight) in artichoke heads stored at 4◦C (b).
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phenylalanine ammonia lyase (PAL, EC 4.3.1.5), cinnamic acid 4-hydroxylase (CA4H)
(1.14.13.11), p-coumarate CoA ligase (4CL, EC 6.2.1.12), hydroxycinnamoyl CoA quinate
hydroxycinnamoyl transferase (HQT, EC 2.3.1.133) and chalcone synthase (CHS, EC
2.3.1.74). Generally, this low temperature effect on the phenol level involves a cold-induced
stimulation of PAL, the branch point enzyme between primary (shikimate pathway) and
secondary (phenolic) metabolism. It is well known that activity of this key enzyme of
phenolic biosynthesis is induced in response to different external stimuli including low
temperature stress (Engelsma 1970; Camm & Towers, 1973; Engelsma, 1974; Jones, 1984;
Shaw et al., 1990; Orr et al. 1993; Leyva et al., 1995; Liu & McClure, 1995; Sarma
& Sharma, 1999; Campos-Vargas and Saltveit, 2002; Gomez-Vasquez et al., 2004; Tattini
et al., 2005). An enhanced PAL activity has been observed during cold storage of tomato and
potato (Rhodes & Wooltorton, 1977; Rhodes et al., 1981), citrus fruits (Sanchez-Ballesta
et al., 2000a; Lafuente et al., 2001), olive (Ortega-Garcı́a & Peragón, 2009) and onion
(Benkeblia, 2000). PAL activity increased about fivefold in stored artichoke heads during
the first days of storage at 4◦C, and thereafter this activity decreased again to a low level
(Lattanzio et al., 1989).

The observed increases in PAL activity induced by low temperature might involve
both enzyme de novo synthesis and release of PAL from a pre-existing but inactive
enzyme–inhibitor complex. In any case, stimulation of PAL activity and, in turn, of phenyl-
propanoid pathway has been considered as a part of the response mechanism of fruits and
vegetables to cold stress (Siriphanich & Kader, 1985a; Lattanzio & Van Sumere, 1987;
Christie et al., 1994; Dixon & Paiva, 1995; Leyva et al., 1995; Janas et al., 2000; Sanchez-
Ballesta et al., 2000a, 2000b; Lattanzio et al., 2001; Hannah et al., 2006; Olsen et al.,
2009; Ortega-Garcı́a & Peragón, 2009). It is likely that endogenous ethylene, produced in
plant tissue exposed to low temperature stress, promotes the induction of PAL activity and
this is consistent with data showing that cold-induced PAL activity is reduced by inhibitors
of ethylene production or by inhibitors of the action of ethylene. The onset of ethylene
production in stressed plant tissues occurs at approximately the same time as an increase
in PAL activity. Moreover, the effect of exogenously-added ethylene on most tissues is to
cause increased production of PAL. The concentration of ethylene that affects PAL levels
varies in different plants (Hyodo & Yang, 1971; Rhodes & Wooltorton, 1971; Chalutz,
1973; Hyodo et al., 1978; Blankenship & Richardson, 1985; Blankenship & Unrath, 1988;
Ke & Saltveit, 1989; Nigro et al., 2000; Lafuente et al., 2001).

Low temperature induction of PAL activity alone in plant tissues does not produce a
corresponding increase in phenol production. At low temperatures, it is possible that the
subsequent steps in the biosynthesis of phenolic compounds may limit their formation.
In this connection, reference must be made to some excellent papers showing that other
enzymes important in the phenolic biosynthetic pathway (e.g. CA4H, CQT, 4CL and CHS)
can be stimulated by low temperature treatments. This phenomenon is largely dependent on
the plant material studied, the storage temperature and the controlled or modified atmosphere
used. In tomatoes stored at 2◦C, besides PAL activity, during the first days of storage, a
sizeable increase was observed in the activity of CQT, an enzyme involved in chlorogenic
acid metabolism. A similar pattern of changes was observed in the enzymes CQT and
p-coumarate CoA ligase in potato tubers stored at 0◦C (Rhodes & Wooltorton, 1977, 1978;


