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Preface for the Second Edition 

The most primitive of herdsman used a pouch of stones to keep 
track of the number of sheep he had in the field. As each sheep 
would enter the field, the herdsman would place a stone in a pile. 
As the sheep would leave the field, the herdsman would place the 
stones back into the pouch. If there were stones left on the ground, 
then some sheep were missing. If there were no stones left, and no 
sheep left then all was well with the herd. And if there were no more 
stones but there were more sheep, then somehow the herdsman had 
picked up an ewe or two. 

This correspondence between pouch stones and sheep is one of 
the most primitive forms of counting known. In today's language, 
this is known as a one-to-one correspondence, or a bijection between 
pouch stones and sheep. This kind of counting is continued today 
when we make an attendance sheet. Each name on the sheet corre-
sponds to exactly one child in the class, and we know some child is 
missing if he or she does not respond to his or her name. A more 
important correspondence is found in the grocery store. There we 
associate a certain number called a price with each item we put 
in our cart. The items in the cart correspond to a number called 
the total price of the cart. When we compare our receipt with the 
objects in the cart, we are imitating the sheep herdsman's pouch 
stones. 

xi 
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Believe it or not, mathematicians count like the primitive herds-
men. The number 1 is all sets that match up in an exact manner 
to the set {•}. Thus, we say that card({«}) = 1, and we say that 
card({*}) = 1. The number 1 becomes all that we associate with 
one element. We use the convenient symbol 1 to denote all possible 
sets that match up perfectly with {•}. The symbol 1 is convenient 
because it is what we have been taught all these years. The number 
2 is defined to be all of those sets that match up perfectly with 

card({«, *}) = 2. 
This is 2 because we define it that way. It agrees with our training. 
It represents all possible sets that match up exactly with the set 
{•,*}. This is exactly what you have been taught. 

Next up is what we mean by matches up perfectly. This is the 
bijection we alluded to earlier. Sets A and B are called equivalent if 
there is a bijection between them. That is, they match up perfectly. 
In other words, there is a way of matching up elements between A 
and B, called a function or bijection 

f:A-+B 

such that 

1. different elements of A are mapped to different elements of B, 
and 

2. each element of B is associated with some element of A. 

For finite sets, this bijection can be drawn as a picture. Let A = 
{ai,a2,a3} and let B = { b i ^ ^ } - Then one bijection between A 
and B is 

di '—► h 

a>2 '—► &2 

«3 '—► h 
which matches A up with B in an exact manner. Here is another 
such bijection 

oi '—► h 
a<i "—► &2 

a 3 i—► &i 

between A and B. You see, the bijection you choose does not have 
to respect the subscripts. These mappings are bijections because 
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as you can see the elements a^ are sent to different elements 6̂ . 
Also each element in B is associated with an element in A. That is 
exactly how mathematicians count elements in sets. 

An impressive extension of this idea is that we can count infinite 
sets in the same manner, but you must use different symbols to 
denote caid(A). We let 

caid(A) = the cardinality of A, 

which is simply all sets B such that A is equivalent to B. That 
is, card(A) is all those sets B for which there exists a bijection 
/ : A —> B. Hence B G card(A) or card(^4) = card(5) exactly 
when there is a function / : A —> B such that 

1. different elements of A are mapped to different elements of £?, 
and 

2. each element of B is associated with some element of A. 

Notice that the definition of bijection has not changed. 
Since these sets are infinite we need a new symbol to denote 

card(A) of infinite sets. It is traditional to use the Hebrew letter 
aleph 

N 

to denote infinite cardinals. Let 

N = {0,1,2 ,3 , . . .} , 
R = {x | x is a real number}. 

So N is the set of whole, nonnegative numbers, and R is the set of 
all real numbers. These would be decimal expansions like 1.414 and 
3.14159. Then we write 

card(N) = N0 

and we say aleph naught It is quite a surprising mathematical 
(universal) truth that there is a cardinal Ni such that 

No < Ni. 

Indeed there is an infinite chain of infinite cardinals 

No < Ni < N2 < N3 < • • •. 
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We will have a chance to expand on this idea in the later chapters 
of this book. 

This second edition of The Mathematics of Infinity: A Guide to 
Great Ideas contains some new ideas about mathematics as logic. 
We begin with the binary logic that we all learn at an earlier age. 

It is well known that most statements P and Q can have logical 
states True or False. This is the basis for most legal conversations 
or in scientific argument or in mathematics in general. In fact, some 
years ago (up to 1920) several logicians tried to derive most of math-
ematics from binary logic. Four long and laborious volumes on their 
research were written. The best effort achieved a proof that 1 + 1 = 
2 after almost 2000 pages of logical symbolism. Shortly thereafter 
a German logician/mathematician Curt Godel (circa 1930) proved 
that this line of research was mathematically impossible, as no ef-
fort from logic could deduce all of mathematics. There would always 
be a mathematical statement that had been missed, or the authors 
would have made a mistake. 

We approach binary logic in a more traditional manner. We 
introduce the operations and, or, not, implies on statements in the 
way Aristotle must have defined them some 2600 years ago. We 
describe how statements lingually and logically combine under these 
operations, and we significantly reduce the importance of the more 
recently used charts of symbols P , Q, T, and F. We feel the chart 
has its place in the binary design of a computer and not as a form 
of conversation or argument between people. 

Thus, we define not P so that it changes the logical state from 
one state into another. This agrees with the modern chart. We 
say that Pand Q is True precisely when both P and Q are True. 
Implied in this is that Pand Q is False in case either statement is 
False. The same lingual manner is applied to defining Por Q, which 
is False precisely when both P and Q are False. The implication 
P => Q is False precisely when a Truth implies a Falsehood. 

The most compelling use of P =>> Q is to form the classic ar-
guments. So Truth with a correct argument leads to Truth, and a 
False premise P can lead us to either a Truth or a False conclusion 
Q. For this reason, any arguer that proceeds from a False premise 
cannot decide the Truth of his conclusions. We will avoid such 
arguments, but they do lead us to some fun as we investigate the 
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Epimenides Paradox (which is no paradox at all) and the World's 
Hardest Logic Puzzle (which we dispatch in a couple of lines). 

We provide an elementary investigation of the logical state of 
the Liar's Paradox This statement is False. Some have concluded 
that the Liar's Paradox is always False, which is a statement no se-
rious mathematician would make. For example, in the conversation 
All statements are False, This statement is False, the Liar's Para-
dox is True, but in the conversation All statements are True, This 
statement is False, the Liar's Paradox is False. We prove that the 
logical state of the Liar's Paradox is more like our cultural Walrus 
than Aristotle, our ancient Lord of Logic. 

The last results in the book are extensions of Godel's Theorem 
showing that if C is a set of True statements from some logical 
system, then there is some statement Q that is True over C but not 
deducible from C. This is used to prove that there can be no theory 
of everything for any logical intellectual endeavor. 





Chapter 1 

Logic 

The ideal writing style ascribed to by mathematicians is that in 
writing mathematics, less is more. If we can convey the exact idea 
of a concept with 5 words instead of 10, then we will use 5. Thus, 
we will use the statement Cardinal numbers form a well-ordered 
collection over the wordier statement The well-ordered property is 
enjoyed by the collection of cardinal numbers. The second statement 
is mathematically correct, but it is more than we need to convey 
the idea. 

I have tried to practice this ideal while writing the mathemat-
ics in this book. The only exceptions to this ideal are made on 
the basis of decisions on the educational value of sentence struc-
ture, the anecdotal comments, or discussions of this sort that occur 
between mathematical discourse. Sometimes it is good to sacrifice 
some mathematical austerity in the interest of getting an important 
point across to the reader. As the reader will clearly see, this econ-
omy of words in mathematical writings is not exercised in the text 
of a discussion. Discussions and intermediate anecdotes contain ex-
amples and illustrations that are the only tools we have to illustrate 
a concept. Since I have sacrificed a good bit of mathematical rigor 
in favor of clarity, examples and illustrations are necessary if I am 
to get some subtle ideas across to the reader. This form of person-
alized writing style is unavoidable when discussing advanced ideas 
from mathematics in the popular press. 

We have a bit of a mountain to climb in this book, so please be 
patient. Perhaps you can sit down in an overstuffed chair or at a ta-
ble and open the book. Maybe you have a pencil and paper handy. 
That's a good idea. Some of these topics need to be diagrammed. 

1 
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And certainly you have a cup of beverage, coffee would be my choice. 
Now turn on that lamp overhead and blend in that final inspiring 
ingredient: cream in your coffee. Good luck. 

1.1 Axiomatic Method 
The Axiomatic Method is how mathematicians apply logic. It is how 
we advance from one topic to the next, and so this is how future 
generations will discover more sophisticated forms of mathematics. 
The section will be brief, but it is how the mathematics in each 
successive chapter is treated. 

Axioms are mathematical statements that we assume are True. 
We do not prove axioms, they come to us as statements whose 
Truth we do not deduce. The use of axioms first comes to us from 
the Greek slave Euclid circa 300 BC in his book The Elements. 
The Elements begins by stating five axioms and five postulates to 
be taken as primitive Truths. By assuming these 10 statements, 
Euclid was building a foundation on which logic would be used to 
deduce the mathematics in the reminder of The Elements. Today, 
the method of applying logic to a small set of primitive Truths is 
called the axiomatic method. It is the way mathematics has been 
practiced for the last 2300 years. It has lasted essentially unchanged 
since Euclid wrote it, including the many editions printed in the 
various lands in which The Elements was read and studied. It is 
how mathematics will progress to find larger thoughts using today's 
theorems. 

For example, Euclid defines a right angle as the bisection of a 
line, and then he assumes that two right angles are equal. Today, 
we would say that it is obvious that any two right angles are equal, 
and so it was with Euclid's contemporaries. You might even suggest 
that you can prove it, but when you do you are assuming that any 
two lines represent an angle of the same measure, n. You have 
assumed what you wanted to prove. Euclid did not have angular 
measure, so he could not talk about ir radians, but he knew what he 
was assuming. Thus the fourth postulate of The Elements assumes 
that any two right angles have equal measure. 

A more subtle axiom is the fifth postulate, today called the 



1.2. TABULAR LOGIC 3 

parallel postulate. This was an attempt to describe the interior 
angles of two lines cut by a transversal. After thousands of years of 
investigation the parallel postulate has evolved into the equivalent 
form that we know today. It states that through a point P not on a 
line L there is a unique line LI that is parallel to L. Today's plane 
geometry is based on this parallel postulate. It is an interesting 
topic for further reading that one can change the parallel postulate 
into two different parallel postulates, and that each has its own use. 

1.2 Tabular Logic 
Formal logic is the logic used in Computer Science to design and 
construct the guts of your computer and its central processing chip. 
You have used this logic every time you analyzed regions in a Venn 
diagram. 

And then there is Aristotle's logic. This is the logic used by 
rational men to form rational arguments. This logic is used to form 
arguments to prove that something is, or to prove that something is 
not. While we will examine formal logic, we are most interested in 
Aristotle's logic. Before we use Aristotle's logic to construct argu-
ments we will introduce elementary or primitive logical statements. 

The statements P , Q, and R are variables. They represent all 
statements from the language we are speaking. They do not exclude 
values unless we state so. Thus, P represents something simple like 
The sky is blue, or 1 ^ 0, or something more complicated like 

The sum of the squares of the lengths of the legs in a 
right triangle is the square of the length of the hypothenuse. 

Even that last statement is a possible value for P. 
Aristotle's Logic begins with these statements and combines 

them using the elementary logical operations not, and, or. There 
might be other logical operations but they can be expressed as com-
binations of these three. The logical state of a statement formed by 
using P and Q is determined by the entries in a few tables. 

The operation not simply changes the logical state of P from one 
logical state into the other. In tabular form, not can be described 
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by the following. 
p 
T 
F 

notP 
F 
T 

In the first column of this table, we are considering all possible 
logical states for P. True T and False F are all of the logical states 
that P can achieve in this book. (We consider only binary logic 
here.) The second column is the logical state of the statement not P. 
We should be clear about this. We begin with a table and define 
what not means. That defined meaning reflects exactly what you 
have used not for in your life. We do not begin with a word not and 
then try to make up a table for it. We have tried to define a logical 
operation here, and that is what the table does. 

Notice that the table for not does just what we first stated not 
will do. It takes a logical states for P and changes it from True to 
False, or from False to True. Follow the logic for P today. 

1. P = The sky is blue is a True statement. 

2. notP = The sky is not blue is a False statement. 

Of course, if it is a slate gray sky, or if we are on Mars, then The 
sky is blue will be a False statement. This is what you mean when 
you say to someone What is the color of the sky in your Universe? 
You are asking for the logical state of the statement The sky is blue. 
You are asking that individual for a logical foundation from which 
the two of you can intelligently converse. 

Our operation not has a familiar property that comes from that 
early English class you had. Given a statement P , then not not P 
has the same logical states as P. That is, a double negative does 
not change the logical state of P. In terms of a table, we have 

p 
T 
F 

notP 
F 
T 

not not P 
T 
F 

The first and third columns of the table show that P and not notP 
have the same logical state. If P is True, then not not P is True, 
and if P is False, then not notP is False. Notice that the first way 
we described the double negative, the table we gave for it, and the 
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last couple of lines all describe the same operation. Prom input to 
ultimate output, not not does not change the logical state of the 
input statement. It does change P , though, doesn't it. If we let 
P =The sky is blue then one reading of not notP is It is False that 
the sky is not blue. This last statement will have the same logical 
state as P , but it is awkward in its presentation. We will avoid the 
double negative whenever possible but we will find that at times we 
are forced to deal with it. 

The operation and combines two statements P and Q and makes 
a compound statement PandQ. The statement PandQ is True 
exactly when both P and Q are True. So, of course, the other 
possible combinations of T and F for P and Q yield logical states 
False. Thus, if one or more of P , Q is False then the statement 
P and Q is False. If we let P = The sky is blue and if we let Q = 
/ am human then today P andQ is a True statement. The sky is 
blue and I am human is a True statement on the day this is written. 
But if it is a slate gray sky, then The sky is blue and I am human 
is a False statement. If I come from Mars then The sky is blue and 
I am human is a False statement. If I am writing this on Mars in 
January of 1900 then The sky is blue and I am human is a False 
statement because both P = The sky is blue and Q =1 am human 
are False statements. 

The table of values T, F for and will make the above discussion 
short and mechanical. That table is 

P Q 
T T 
T F 
F T 
F F 

P andQ 
T 
F 
F 
F 

In other words, PandQ is True exactly when both P and Q are 
True. In any other situation, P and Q is False. 

The first two columns of the above table gives us all of the pos-
sible pairs of logical states T, F for P and Q, and in the third 
column we read the corresponding logical states for the compound 
statement PandQ. Notice that PandQ is a True statement ex-
actly when both P and Q are True. Otherwise, P and Q is a False 
statement. This is an effective shorthand since once we know that 
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PandQ is True exactly when both P and Q are True, then the 
logical states in the rest of the table fall into place. 

Let us see how the logic of our discussion proceeds. It is ele-
mentary, but it also shows us what the undercurrent of our thought 
process is. 

1. Let P = The sky is blue and let Q = / am human. 

2. P is True, and Q is True. 

3. P and Q is then True. 

4. Thus The sky is blue and I am human is True. 
You may have skipped all of those thoughts but this list of 

thoughts fills in all of those nagging details about the logic of the 
compound statement. Actually, this linear discussion shows how 
logic is part of the structure of your language. We just don't think 
in that much detail, now do we? 

The third operation is the or operation. This operation takes 
two statements P and Q and assigns a True logical state to P or Q 
when at least one of them is True. Or to put it another way, P orQ 
is False exactly when both P and Q are False. The rest of the cases 
T, F for P and Q yield a True statement PorQ. 

So if we let P = The sky is blue, and if we let Q — I am human, 
then PorQ is a True statement. That is, The sky is blue or I am 
human is a True statement. That is because Q is True. The logical 
state of P in this case does not matter. If it is a slate gray sky, then 
The sky is blue or I am human is still a True statement. The True 
statement / am human makes the compound statement The sky is 
blue or I am human a Truth. But if I am writing this on Mars in 
January of 1900, then The sky is blue and I am human is a False 
statement because both P = The sky is blue and Q = / am human 
are False statements. 

The table for the operation or will again make the above discus-
sion short and mechanical. 

P Q 
T T 
T F 
F T 
F F 

PorQ 
T 
T 
T 
F 
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In other words, PorQ is False exactly when both P and Q are 
False. The other values T in the third column of the table are then 
forced. 

The first two columns give us all possible pairs of logical states 
for the statements P and Q. The third column gives us the logical 
states of PorQ that correspond to the first two columns of the 
table. Notice that the logical states in column three show that 
P orQ is False exactly when both P and Q are False. 

The next way to combine statements P and Q we will call im-
plication. We write 

P^Q 

when we want to say that P implies Q. In its simplest form, P => Q 
is False exactly when P is True and Q is False. In every other 
instance the statement P => Q is True. Its tabular description 
follows from this verbal description. 

P Q 
T T 
T F 
F T 
F F 

P^Q 
T 
F 
T 
T 

From the table defining implication, we see several important 
properties. The first row of the table for P => Q gives us the most 
important argument in mathematics, that of deductive reasoning. 
The first row shows us that if we make no mistake, that is, if P => Q 
is True, then the Truth of P implies the Truth of Q. Thus, if P is 
True and if we make no mistakes, that is, if P =» Q is True, then Q 
is True. We can find new Truths from old Truths in this way. 

The last row shows us that if we make no mistakes in our ar-
gument, then a Falsehood Q comes from a Falsehood P. Hence, if 
P => Q is True and if Q is False, then P is False. We will often 
work with this argument. It is called the indirect proof. 

The first line of the table allows us to deduce the second line. 
The Truth of P implies the Truth of Q if we make no mistakes in 
our argument P => Q. Therefore, if P is True and if Q is False, then 
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we made a mistake somewhere, and P => Q is False. If you have 
deduced a Falsehood from a Truth then you have made a mistake. 
That is what the False logical state of P => Q stands for: a mistake. 
Thus, the implication P => 1=0 is False if P is True. The conclusion 
1 = 0 is False, so the implication is a Falsehood. 

There is another interesting possibility for P => Q. A False-
hood P will imply anything. If we begin our argument with a False 
premise P, then subsequent deductions Q do not possess a pre-
dictable logical state. These deductions Q can be either True or 
False. If P is a Falsehood then P => Q is True no matter what the 
logical states of Q is. Thus, if P is False, you can deduce that 1 = 0, 
that All opinions are valid, and that there is a Universal Set. But, 
as we will prove later, each of these is a Falsehood. The conclusion 
drawn will have no logical weight whatsoever because your premise 
P was False 

After all, we can deduce that there are no prime numbers if 
we assume that 1 = 0, but of course the conclusion is False. The 
argument goes like this. Assume that 1 = 0. Then 1 + 1 = 0 + 0 
and so 2 = 0. In this manner, we can prove that n = 0 for each 
n G N. That is correct. From the premise 1 = 0 we can prove 
that there are no other natural numbers but 0. Since 0 is not a 
prime number, we have proved that there are no prime numbers. 
This is the kind of foolishness we can arrive at by proceeding from a 
False premise. However, the steps in our argument were all True, so 
that the implication 1=0 => there are no prime numbers is a True 
statement. Think about that for awhile. 

Exercise 1.2.1 Let P , Q, and R be statements. Make Truth Ta-
bles for the compound statements in the following exercises. 

1. not(PorQ) 

2. not (P and Q) 

3. Pand(QandR) 

4. Por(QorR) 

5. ((notP)orQ)and(Por{notQ)) 
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1.3 Tautology 
A tautology is a logical statement R that is always True. When its 
table is established, the output logical states, those values in the 
rightmost column, are all T. Let us examine a few tautologies. 

Consider Por(notP). We can see that this is tautological by 
observing that by the table for the not operation, either P or not P 
is a Truth. That is, one of P and notP is True. Examining the 
table for or shows us that Por(notP) is then True. In its tabular 
form, we have 

p 
T 
F 

notP 
F 
T 

Por(notP) 
T 
T 

Thus, PornotP is a tautology. PornotP is a True statement 
given any logical state for P . In other words, as the table suggests, 
no matter which statement is used for P, the output Por(notP) 
is a True statement. For example, The sky is blue or the sky is not 
blue is True, as is 1 = 0 or 1 ^ 0. Also, the statement There 
is a Universal Set or there is no Universal Set is True. We may 
not know what a Universal Set is, but we know that the statement 
There is a Universal Set or there is no Universal Set is True. That 
is, it either is or it is not. 

In the same way, the statement P and (notP) is False because by 
definition of not, the statements P and notP have different logical 
states. For instance, if P is True, then notP is False. Then by the 
the definition of and, P and (notP) is False. The next table shows 
all of this in tabular form. 

p 
T 
F 

notP 
F 
T 

P and (notP) 
F 
F 

For example, let X be a any statement. Given the statement P = 
X is valid then not P = X is not valid. Hence, the statement 

X is valid and X is not valid 

is a False statement. We will encounter this kind of Falsehood often 
as this chapter moves along. 
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A more common logical comparison of statements is the follow-
ing. Let X and Y be statements. We say that X and Y are logically 
equivalent iff X and Y have the same logical states. In terms of a 
Truth Table, the two right-hand columns in the table for X and Y 
have the same sequence of T's and F's. We saw above that P and 
not notP have the same logical values, so 

The statements P and not notP are logically equivalent 

A more complex example of logically equivalent statements is formed 
from an implication and its contrapositive. The contrapositive of the 
implication P => Q is the implication 

notQ ==> not P. 

Notice the reversal in the roles of P and Q. The Truth Table of the 
contrapositive of P => Q is given below. 

p 
T 
T 
F 
F 

Q 
T 
F 
T 
F 

notP 
F 
F 
T 
T 

notQ 
F 
T 
F 
T 

notQ =>■ notP 
T 
F 
T 
T 

Let us show that the implication and its contrapositive are log-
ically equivalent. We use a sizable Truth Table. 

p 
T 
T 
F 
F 

Q 
T 
F 
T 
F 

notQ 
F 
T 
F 
T 

notP 
F 
F 
T 
T 

P^Q 
T 
F 
T 
T 

notQ => notP 
T 
F 
T 
T 

Notice that the two right most columns have exactly the same en-
tries in the same order. Thus, P =$> Q and notQ => notP are 
logically equivalent. They are not the same statement. They differ 
in their sentence structure. They differ in the way they are written 
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in English. This is important. Logically equivalent statements do 
not have to look alike at all. 

Consider the statement 

Let a > 0 be a natural number. If a2 is odd, then a is odd. 

Its contrapositive is True when the implication is True and its con-
trapositive is False when the implication is False. That contraposi-
tive is 

Let a > 0 be a natural number. If a is even, then a2 is even. 

These two statements are logically equivalent even though their 
statements are different. 

Something more symbolic is the logical expression 

(notP) or Q. 

It is a simple combination of the operations not and or, and yet we 
will see that it is logically equivalent to a familiar statement. 

To begin, we argue verbally. The statement (notP) or Q is a 
False statement exactly when the twostatements notP and Q are 
False. This occurs when P is True and Q is False, and only when 
P and Q are in these logical states. For any other logical states, 
(not P) or Q is a True statement. There is a coincidence here. The 
implication P => Q is False only when P is True and Q is False. 
Given any other logical states for P and Q, P => Q is True. Hence 
(not P) or Q and P => Q have the same logical states. They are 
then logically equivalent. The relevant Truth Table looks like this. 

p 
T 
T 
F 
F 

Q 
T 
F 
T 
F 

notP 
F 
F 
T 
T 

(not P) or Q 
T 
F 
T 
T 

P=>Q 
T 
F 
T 
T 

We conclude that 

(not P) or Q and P => Q are logically equivalent. 
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At this point, we will abandon the use of Truth Tables. One 
can use them to discuss the other logical tautologies that we will 
bring out presently, but we feel that in our present setting, they 
are Baroque. The reader should feel free to translate our lingual 
discussion into a tabular one. The exercise will do you good. 

Some logical statements are combinations of two or more smaller 
statements. Let P , Q, and R be statements. Different ways to 
combine and manipulate these statements are from the following 
tautologies. 

associative law P and (Q and R) = (P and Q) and R 

distributive law P and (Q or R) = (P and Q) or (P and R) 

distributive law P or (Q and R) = (P or Q) and (P or R) 

the biconditional P <=> Q = (P => Q) and (Q => P) 

The associative law, for example, states that there is no reason to 
use parentheses in conjuncted statements using the and operation. 
The statement 

The sky is blue and the grass is green and I am human 

is unambiguous in the calculation of its logical state. The distribu-
tive laws simply give us reasons to replace commas with parentheses. 
For example, 

Either the sky is blue, or the grass is green and I am human 

can be rewritten as 

The sky is blue or the grass is green, 
and the sky is blue or I am human 

without changing the logical state of the compound statement. 
The biconditional is a short way of writing that P implies Q, 

and also that Q implies P . The biconditional P <& Q is read P 
if and only if Q. This means / / P then Q and / / Q then P . It is 
common to write 


