

CONTENTS
Chapter 1: Welcome to SQL Server
Integration Services

SQL Server SSIS Historical Overview
What’s New in SSIS
Tools of the Trade
SSIS Architecture
Editions of SQL Server
Summary

Chapter 2: The SSIS Tools
Import and Export Wizard
SQL Server Data Tools
Creating Your First Package
The Solution Explorer Window
The SSIS Package Designer
Management Studio
Summary

Chapter 3: SSIS Tasks
SSIS Task Objects
Looping and Sequence Tasks
Script Task (.NET)
Analysis Services Tasks
Data Flow Task
Data Preparation Tasks
RDBMS Server Tasks

Workflow Tasks
SMO Administration Tasks
Summary

Chapter 4: Containers
Task Host Containers
Sequence Containers
Groups
For Loop Container
Foreach Loop Container
Summary

Chapter 5: The Data Flow
Understanding the Data Flow
Data Viewers
Sources
Destinations
Common Transformations
Other Transformations
Data Flow Example
Summary

Chapter 6: Using Variables,
Parameters, and Expressions

Dynamic Package Objects
Understanding Data Types
Using Variables and Parameters
Working with Expressions
Summary

Chapter 7: Joining Data
The Lookup Transformation
Using the Merge Join Transformation
Contrasting SSIS and the Relational Join
Lookup Features
Building the Basic Package
Using the Lookup Transformation
Cache Connection Manager and Cache
Transform
Summary

Chapter 8: Creating an End-to-End
Package

Basic Transformation Tutorial
Typical Mainframe ETL with Data Scrubbing
Summary

Chapter 9: Scripting in SSIS
Introducing SSIS Scripting
Getting Started in SSIS Scripting
Using the Script Task
Using the Script Component
Essential Coding, Debugging, and
Troubleshooting Techniques
Summary

Chapter 10: Loading A Data
Warehouse

Data Profiling

Data Extraction and Cleansing
Dimension Table Loading
Fact Table Loading
SSAS Processing
Using a Master ETL Package
Summary

Chapter 11: Advanced Data Cleansing
in SSIS

Advanced Derived Column Use
Advanced Fuzzy Lookup and Fuzzy Grouping
DQS Cleansing
Summary

Chapter 12: Using The Relational
Engine

Data Extraction
SQL Server Change Data Capture
Data Loading
Summary

Chapter 13: Accessing Heterogeneous
Data

Excel and Access
Importing from Oracle
Using XML and Web Services
Flat Files
ODBC
Other Heterogeneous Sources

Summary

Chapter 14: Reliability and Scalability
Restarting Packages
Package Transactions
Error Outputs
Scaling Out
Summary

Chapter 15: Understanding and
Tuning the Data Flow Engine

The SSIS Engine
SSIS Data Flow Design and Tuning
Pipeline Performance Monitoring
Summary

Chapter 16: SSIS Software
Development Life Cycle

Introduction to Software Development Life
Cycles
Versioning and Source Code Control
Summary

Chapter 17: Error and Event Handling
Using Precedence Constraints
Event Handling
Breakpoints
Error Rows
Logging

Summary

Chapter 18: Programming and
Extending SSIS

The Sample Components
The Pipeline Component Methods
Building the Components
Using the Components
Upgrading to SQL Server 2012
Summary

Chapter 19: Adding a User Interface
to Your Component

Three Key Steps for Designing the UI: An
Overview
Building the User Interface
Extending the User Interface
Other UI Considerations
Summary

Chapter 20: External Management
and WMI Task Implementation

External Management of SSIS with
Managed Code
Package Operations
Application Object Maintenance Operations
Package Log Providers
Package Configurations

Windows Management Instrumentation
Tasks
Summary

Chapter 21: Using SSIS with External
Applications

InfoPath Documents
ASP.NET Applications
Winform .NET Applications
Summary

Chapter 22: Administering SSIS
Using the SSIS Catalog
Deployment Models
Using T-SQL with SSIS
Creating a Central SSIS Server
Clustering SSIS
Package Configuration
Command-Line Utilities
Security
Scheduling Packages
64-Bit Issues
Monitoring Package Executions
Performance Counters
Summary

Chapter 23: Case Study: A
Programmatic Example

What You Will Take Away

Background
Business Problem
Solution Summary
Solution Architecture
Data Architecture
Case Study Load Packages
Case Study Invoice Matching Process
Creating a Parent Driver Package
Summary

Introduction
Advertisements

Chapter 1

Welcome to SQL Server
Integration Services

WHAT’S IN THIS CHAPTER?
What’s new to this version of SSIS
Exploring tools you’ll be using in SSIS
Overviewing SSIS architecture
Considering your licensing options around BI with SQL
Server

SQL Server Integration Services (SSIS) is the anchor in a
growing suite of products that make up the Microsoft SQL
Server Business Intelligence (BI) platform. What makes SSIS
so important is without the data movement and cleansing
features that SSIS brings to the table, the other BI products
can’t operate. What’s the point of a cube, for example, with
bad or inconsistent data? In its simplest form, SSIS is an
enterprise-level, in-memory ETL tool. However, SSIS is not
just a fancy wrapper around an import wizard. In a drag-
and-drop development environment, ETL developers can
snap together intricate workflows and out-of-the-box data-
cleansing flows that rival custom coding and expensive
million-dollar, third-party tools. The best thing about SSIS is
that you have already paid for it when you license SQL
Server.

When we put together the first edition of this book, we
were blown away by the new architecture and capabilities of
SSIS. SSIS was a big change from the Data Transformation
Services (DTS) product that it replaced, and there was much

to learn. Since the first edition of SSIS, we have collectively
racked up many years of experience converting older DTS
packages and mind-sets over to using it, and trust us when
we say that no one who has made the change is asking to
go back. We’ve learned some things, too. If you run into an
issue getting up and running, converting older packages, or
creating new ones, we’ve probably run into that issue too
and have a solution for you in this book.

This new edition represents an entirely new book. Nothing
was considered sacred in this rewrite; we dug deeply to
mine the decades of cumulative experience working with
this product, adding our collective knowledge back into
these pages. We hope you will agree that the result makes
your experience with SSIS a more productive one. This
chapter starts from the beginning by providing an overview
of SSIS, describing where it fits within the BI product
platform and ETL development in general.

SQL SERVER SSIS HISTORICAL
OVERVIEW

In SQL Server 7.0, Microsoft had a small team of developers
work on a very understated feature of SQL Server called
Data Transformation Services (DTS). DTS was the backbone
of the Import/Export Wizard, and its primary purpose was to
transform data from almost any OLE DB–compliant data
source to almost any destination. It also had the ability to
execute programs and run scripts, making workflow a minor
feature.

By the time that SQL Server 2000 was released, DTS had a
strong following of DBAs and maybe a few developers.
Microsoft included in the release new features like the
Dynamic Properties Task that enabled you to alter the
package dynamically at runtime. Even though DTS utilized

extensive logging along with simple and complex
multiphase data pumps, usability studies still showed that
developers had to create elaborate scripts to extend DTS to
get what they wanted done. A typical use case was enabling
DTS to load data conditionally based on the existence of a
file. To accomplish this in DTS, you had to use the ActiveX
Script Task to code a solution using the file system object in
VBScript. The problem with that was DTS lacked some of the
common components needed to support typical ETL
processes. Although it was powerful if you knew how to
write scripting code, most DBAs didn’t have this type of
scripting experience (or time).

After five years, Microsoft released the much-touted SQL
Server 2005 and SSIS, which was no longer an understated
feature like DTS. With the SQL Server 2008 release, SSIS
was given extra scalability features to help it appeal more to
the enterprise. This is entirely appropriate because so much
has been added to SSIS. Microsoft made a huge investment
in usability, with simple enhancements to the toolbox that
allow newer users to ramp up easier. The main focus of the
newest release of SQL Server is on the management and
deployment of SSIS.

WHAT’S NEW IN SSIS
With the last release of SQL Server 2008 R2, the Microsoft
SSIS team did very few changes to further the product so
that it could focus on this latest release of SSIS. In this
release, Microsoft has focused on SSIS manageability,
making it easier to deploy and execute. The new product
isn’t all about the DBA, however. Also added are robust new
data cleansing components that help you standardize and
detect data anomalies. Furthermore, improvements to the
development tools will help make SSIS developers more

productive and help new developers get up to speed more
easily.

TOOLS OF THE TRADE
Most of this book will assume that you know nothing about
previous releases of SQL Server DTS or SSIS. Instead, it
takes a fresh look at SQL Server SSIS. As suggested earlier,
the abundance of new features reflects what is essentially a
new product, so knowledge about the old release is unlikely
to accelerate your learning of this one. The learning curve
can be considered steep at first, but once you figure out the
basics, you’ll be creating complex packages in no time. To
provide an idea of how easy SSIS is to use, the following
section looks at a staple tool in the ETL world: the Import
and Export Wizard.

Import and Export Wizard
If you need to move data quickly from almost any OLE DB–
compliant data source or flat file to a destination, you can
use the SSIS Import and Export Wizard (shown in Figure 1-
1). In fact, many SSIS packages are born this way, but most
packages you wish to keep in a BI solution should not be
created with the wizard. The wizard provides a quick way to
move data and perform very light transformations of data
but does not create packages that use best practices. The
wizard is available in all editions of SQL Server except the
Local Database edition and Express. It enables you to
persist the logic of the data movement into a package file.
The basic concept of an import/export wizard has not
changed substantially from the days of DTS. You still have
the option to check all the tables you want to transfer. In
addition, however, you can also encapsulate the entire
transfer of data into a single transaction.

FIGURE 1-1

Where do you find the wizard? It depends. If you just need
to perform a quick import or export, access the wizard
directly from the Start menu by navigating to Start
Microsoft SQL Server “2012” Import and Export Data. The
other option is to open a project in the SSIS development
environment and select Project SSIS Import and Export
Wizard. We cover this in detail in Chapter 2. Before we get
into all the mechanics for that, see Figure 1-1 for an
example of the wizard that has bulk loaded tables.

The SQL Server Data Tools Experience

The SQL Server Data Tools (SSDT) was previously called
Business Intelligence Development Studio (BIDS), and it is
the central environment in which you’ll spend most of your
time as an SSIS developer. SSDT is just a specialized use of
the familiar Visual Studio 2010 development environment.
Visual Studio can host many different project types, from
Console applications to Class Libraries and Windows
applications. Although you may see many project types
when you create a project, SSDT actually contains project
templates for only Analysis Services, Integration Services,
Report Server, and variants thereof. SSIS in particular uses a
BI project type called an Integration Services project (see
Figure 1-2), which provides a development design surface
with a completely ETL-based set of tools in the Toolbox
window.
FIGURE 1-2

This development environment is similar to the legacy DTS
Designer, but the approach is completely different. Most
important, this is a collaborative development environment
just like any Visual Studio development effort, with full
source code management, version control, and multi-user
project management. SSIS solutions are developed just like
all other .NET development solutions, including being
persisted to files — in this case, XML file structures with a
.DSTX file extension. You can even develop within the SSDT
environment without a connection to a SQL Server instance
using the offline mode. Once your solution is complete, it
can be built and deployed to one or multiple target SQL
servers. These changes from DTS to SSIS are crucial to
establishing the discipline and best practices of existing
software development methodologies as you develop
business intelligence solutions. We’ll discuss this SSDT
development interface in more detail in Chapter 2.

SSIS ARCHITECTURE
Microsoft has truly established SSIS as a major player in the
extraction, transformation, and loading (ETL) market. Not
only is the SSIS technology a complete code rewrite from
SQL Server 2000 DTS, it now rivals other third-party ETL
tools that can cost hundreds of thousands of dollars
depending on how you scale the software — and it is
included free with the purchase of SQL Server 2012. Free
always sounds great, but most free products can take you
only so far if the feature set is minimal or the toolset has
usability, scalability, or enterprise performance limitations.
SSIS, however, is the real deal, satisfying typical ETL
requirements with a new architecture that has evolved
dramatically from earlier incarnations. At the time of this
publication, SSIS held the world speed record of loading
more than 2 terabytes in a single hour.

Packages
A core component of SSIS is the notion of a package. A
package best parallels an executable program that you can
write that contains workflow and business logic. Essentially,
a package is a collection of tasks snapped together to
execute in an orderly fashion. A package is also a unit of
execution and development, much like a .NET developer
creates programs or DLL files. Precedence constraints are
used to connect the tasks together and manage the order in
which they execute, based on what happens in each task or
based on rules defined by the package developer. The
package is brought together into a .DTSX file that is actually
an XML-structured file with collections of properties. Just like
other .NET projects, the file-based code is marked up using
the development environment and can then be saved and
deployed to a SQL Server. The package XML structure
stripped down to the basic elements looks like this:

<?xml version="1.0"?>
<DTS:Executable xmlns:DTS="www.microsoft.com/SqlServer/Dts"
 DTS:refId="Package"
 DTS:CreationDate="8/8/2011 12:53:33 AM"
 DTS:CreationName="SSIS.Package.3"
 DTS:CreatorComputerName="SSISServer"
 DTS:CreatorName="SSIS\Brian"
 DTS:DTSID="{FF3E3020-E008-4FF4-AC27-085AA1D21E88}"
 DTS:ExecutableType="SSIS.Package.3"
 DTS:LastModifiedProductVersion="11.0.1445.2"
 DTS:LocaleID="1033"
 DTS:ObjectName="Package1"
 DTS:PackageType="5"
 DTS:VersionGUID="{B2C67EE6-3510-4AD1-B11F-AF84C8DCA75C}">
 <DTS:Property
 DTS:Name="PackageFormatVersion">6</DTS:Property>
 <DTS:Variables />
 <DTS:Executables />
</DTS:Executable>

Don’t worry; you won’t have to know how to write this
type of XML to create a package. That’s what the designer is
for. The point here is that the SSIS package is an XML-
structured file, much like .RDL files are to Reporting
Services. Of course, there is much more to packages than

that, and you’ll explore the other elements of packages,
such as event handlers, later in this chapter.

Control Flow
The brain of a package is its Control Flow, which
orchestrates the order of execution for all its components.
The components consist of tasks and containers and are
controlled by precedence constraints, discussed later in this
chapter. For example, Figure 1-3 shows three tasks that are
tied together with two precedence constraints.
FIGURE 1-3

Tasks
A task can best be described as an individual unit of work.
Tasks provide functionality to your package, in much the
same way that a method does in a programming language.
However, in SSIS, you aren’t coding the methods; rather,
you are dragging and dropping them onto a design surface

and configuring them. You can develop your own tasks, but
here are the current ETL tasks available to you out of the
box:

Analysis Services Execute DDL Task: Executes a
DDL Task in Analysis Services. For example, this can
create, drop, or alter a cube (Enterprise and Developer
Editions only).
Analysis Services Processing Task: This task
processes a SQL Server Analysis Services cube,
dimension, or mining model.
Bulk Insert Task: Loads data into a table by using the
BULK INSERT SQL command.
CDC Control Task: Maintains and interacts with the
change data capture (CDC) feature from SQL Server.
Data Flow Task: This very specialized task loads and
transforms data into an OLE DB and ADO.NET
destination.
Data Mining Query Task: Allows you to run predictive
queries against your Analysis Services data-mining
models.
Data Profiling Task: This exciting new task enables
the examination of data; it replaces your ad hoc data
profiling techniques.
Execute Package Task: Allows you to execute a
package from within a package, making your SSIS
packages modular.
Execute Process Task: Executes a program external
to your package, such as one to split your extract file
into many files before processing the individual files.
Execute SQL Task: Executes a SQL statement or
stored procedure.
Expression Task: Sets a variable to an expression at
runtime.
File System Task: This task can handle directory
operations such as creating, renaming, or deleting a

directory. It can also manage file operations such as
moving, copying, or deleting files.
FTP Task: Sends or receives files from an FTP site.
Message Queue Task: Sends or receives messages
from a Microsoft Message Queue (MSMQ).
Script Task: This task enables you to perform .NET-
based scripting in the Visual Studio Tools for
Applications programming environment.
Send Mail Task: Sends a mail message through SMTP.
Web Service Task: Executes a method on a web
service.
WMI Data Reader Task: This task can run WQL
queries against the Windows Management
Instrumentation. This enables you to read the event log,
get a list of applications that are installed, or determine
hardware that is installed, to name a few examples.
WMI Event Watcher Task: This task empowers SSIS to
wait for and respond to certain WMI events that occur in
the operating system.
XML Task: Parses or processes an XML file. It can
merge, split, or reformat an XML file.

Also included are a whole set of DBA-oriented tasks that
enable you to create packages that can be used to maintain
your SQL Server environment. These tasks perform
functions such as transferring your SQL Server databases,
backing up your database, or shrinking the database. Each
of the available tasks is described in Chapter 3 in much
more detail, and you will see them in other examples
throughout the book.

Tasks are extensible, and you can create your own custom
tasks in .NET if you need a workflow item that doesn’t exist
or if you have a common scripting function that can benefit
from reuse in your package development. To learn more
about this topic, see Chapter 18.

There’s a thriving ecosystem of third-party components that are
available for SSIS. If you are looking for a task or Data Flow
component that doesn’t exist out of box, be sure to first search
online before creating your own. Some examples of these
components include support for SFTP, SalesForce.com
communication, SharePoint integration, and compression of files
to name just a few.

Precedence Constraints
Precedence constraints are package components that direct
tasks to execute in a given order. In fact, precedence
constraints are the connectors that not only link tasks
together but also define the workflow of your SSIS package.
A constraint controls the execution of the two linked tasks
by executing the destination task based upon the final state
of the prior task and business rules that are defined using
special expressions. The expression language embedded in
SSIS essentially replaces the need to control workflow using
script-based methodologies that enable and disable tasks,
as was used in the DTS legacy solution. With expressions,
you can direct the workflow of your SSIS package based on
all manner of given conditions. You’ll look at many examples
of using these constraints throughout this book.

To set up a precedence constraint between two tasks, you
must set the constraint value; optionally, you can set an
expression. The following sections provide a brief overview
of the differences between the two.

Constraint values define how the package will react when
the prior task of two linked tasks completes an execution.
The options define whether the destination task of two
linked tasks should execute based solely on how the prior
task completes. Three constraint values are possible:

Success: A task that’s chained to another task with this
constraint will execute only if the prior task completes

http://salesforce.com/

successfully. These precedence constraints are colored
green.
Completion: A task that’s chained to another task with
this constraint will execute if the prior task completes,
whether or not the prior task succeeds or fails. These
precedence constraints are colored blue.
Failure: A task that’s chained to another task with this
constraint will execute only if the prior task fails to
complete. This type of constraint is usually used to
notify an operator of a failed event. These precedence
constraints are colored red.

You can also conditionally tie tasks together by writing
logic on a precedence constraint. This is done by placing an
SSIS expression language (resembles C#) on the
precedence constraint. For example, you might specify that
a task should run only at the end of each month. To do this,
you would add an expression that evaluated the runtime of
the package to determine if the next step should be run.
Much more about writing expressions can be found in
Chapter 6.

Containers
Containers are core units in the SSIS architecture for
grouping tasks together logically into units of work. Besides
providing visual consistency, containers enable you to
define variables and event handlers (these are discussed in
a moment) within the scope of the container, instead of the
package. There are four types of containers in SSIS:

Task Host Container: Not a visible element that you’ll
find in the Toolbox, but rather an abstract concept like
an interface.
Sequence Container: Allows you to group tasks into
logical subject areas. Within the development
environment, you can then collapse or expand this
container for usability.

For Loop Container: Loops through a series of tasks
until a condition is met.
Foreach Loop Container: Loops through a series of
files or records in a data set, and then executes the
tasks in the container for each record in the collection.

Because containers are so integral to SSIS development,
Chapter 4 is devoted to them. As you read through the
book, you’ll see many real-world examples that demonstrate
how to use each of these container types for typical ETL
development tasks.

Data Flow
The core strength of SSIS is its capability to extract data into
the server’s memory, transform it, and write it out to an
alternative destination. If the Control Flow is the brains of
SSIS, then the Data Flow would be its heart. The in-memory
architecture is what helps SSIS scale and what makes SSIS
run faster than staging data and running stored procedures.
Data sources are the conduit for these data pipelines, and
they are represented by connections that can be used by
sources or destinations once they’ve been defined. A data
source uses connections that are OLE DB–compliant and
ADO.NET data sources such as SQL Server, Oracle, DB2, or
even nontraditional data sources, such as Analysis Services
and Outlook. The data sources can be in scope to a single
SSIS package or shared across multiple packages in a
project.

All the characteristics of the connection are defined in the
Connection Manager. The Connection Manager dialog
options vary according to the type of connection you’re
trying to configure. Figure 1-4 shows you what a typical
connection to SQL Server would look like.
FIGURE 1-4

Connection Managers are used to centralize connection
strings to data sources and to abstract them from the SSIS
packages themselves. They can be shared across multiple
packages in a project or isolated to a single package.
Connection Managers also allow you to externalize the
configuration of them at runtime by your DBA with a
configuration file or parameters (which we’ll describe in
Chapter 22). SSIS will not use the connection until you begin
to instantiate it in the package. This provides the ultimate in
lightweight development portability for SSIS.

You learned earlier that the Data Flow Task is simply
another executable task in the package. The Data Flow Task
is the pipeline mechanism that moves data from source to
destination. However, in the case of SSIS, you have much

more control of what happens from start to finish. In fact,
you have a set of out-of-the-box transformation components
that you snap together to clean and manipulate the data
while it is in the data pipeline.

One confusing thing for new SSIS developers is that once
you drag and drop a Data Flow Task in the Control Flow, it
spawns a new Data Flow design surface with its own new
tab in the SSDT user interface. Each Data Flow Task has its
own design surface that you can access by double-clicking
the Data Flow Task or by clicking the Data Flow tab and
selecting the name of the Data Flow Task from the drop-
down list. Just as the Control Flow handles the main
workflow of the package, the Data Flow handles the
transformation of data in memory. Almost anything that
manipulates data falls into the Data Flow category. As data
moves through each step of the Data Flow, the data
changes, based on what the transform does. For example, in
Figure 1-5, a new column is derived using the Derived
Column Transformation, and that new column is then
available to subsequent transformations or to the
destination.
FIGURE 1-5

In this section, each of the sources, destinations, and
transformations are covered from an overview perspective.
These areas are covered in much more detail in later
chapters.

Sources
A source is a component that you add to the Data Flow
design surface to specify the location of the source data
that will send data to components downstream. Sources are
configured to use Connection Managers in order to enable
the reuse of connections throughout your package. SSIS
provides eight out-of-the-box sources:

OLE DB Source: Connects to nearly any OLE DB data
source, such as SQL Server, Access, Oracle, or DB2, to
name just a few.

Excel Source: Specializes in receiving data from Excel
spreadsheets. This source also makes it easy to run SQL
queries against your Excel spreadsheet to narrow the
scope of the data that you wish to pass through the
flow.
Flat File Source: Connects to a delimited or fixed-
width file.
Raw File Source: Produces a specialized binary file
format for data that is in transit; it is especially quick to
read by SSIS. This component is one of the only
components that does not use a Connection Manager.
Xml Source: Retrieves data from an XML document.
This source does not use a Connection Manager to
configure it.
ADO.NET Source: This source is just like the OLE DB
Source but only for ADO.NET-based sources. The internal
implementation uses an ADO.NET DataReader as the
source. The ADO.NET connection is much like the one
you see in the .NET Framework when hand-coding a
connection and retrieval from a database.
CDC Source: Reads data out of a table that has change
data capture (CDC) enabled. Used to retrieve only rows
that have changed over a duration of time.
ODBC Source: Reads data out of table by using an
ODBC provider instead of OLE DB. When you are given
the choice between OLE DB and ODBC, it is still
recommended in SSIS packages that you use OLE DB.

If the source components included in SSIS do not provide
the functionality required for your solution, you can write
code to connect to any data source that is accessible from a
.NET application. One method is to use the Script
Component to create a source stream using the existing
.NET libraries. This method is more practical for single-use
applications. If you need to reuse a custom source in

multiple packages, you can develop one by using the SSIS
.NET API and object model.

Transformations
Transformations are key components within the Data Flow
that allow changes to the data within the data pipeline. You
can use transformations to split, divert, and remerge data in
the data pipeline. Data can also be validated, cleansed, and
rejected using specific rules. For example, you may want
your dimension data to be sorted and validated. This can be
easily accomplished by dropping a Sort and a Lookup
Transformation onto the Data Flow design surface and
configuring them.

Transformation components in the SSIS Data Flow affect
data in the data pipe in memory. Because this process is
done in memory, it can be much faster than loading the
data into a staging environment and updating the staging
system with stored procedures. Here’s a complete list of
transformations and their purposes:

Aggregate: Aggregates data from transformation or
source.
Audit: Exposes auditing information from the package
to the data pipe, such as when the package was run and
by whom.
CDC Splitter: After data has been read out of a table
with CDC enabled, this transform sends data that should
be inserted, updated, and deleted down different paths.
Character Map: Makes common string data changes
for you, such as changing data from lowercase to
uppercase.
Conditional Split: Splits the data based on certain
conditions being met. For example, this transformation
could be instructed to send data down a different path if
the State column is equal to Florida.

Copy Column: Adds a copy of a column to the
transformation output. You can later transform the copy,
keeping the original for auditing purposes.
Data Conversion: Converts a column’s data type to
another data type.
Data Mining Query: Performs a data-mining query
against Analysis Services.
Derived Column: Creates a new derived column
calculated from an expression.
DQS Cleansing: Performs advanced data cleansing
using the Data Quality Services engine.
Export Column: Exports a column from the Data Flow
to the file system. For example, you can use this
transformation to write a column that contains an image
to a file.
Fuzzy Grouping: Performs data cleansing by finding
rows that are likely duplicates.
Fuzzy Lookup: Matches and standardizes data based
on fuzzy logic. For example, this can transform the
name Jon to John.
Import Column: Reads data from a file and adds it to a
Data Flow.
Lookup: Performs a lookup on data to be used later in a
transformation. For example, you can use this
transformation to look up a city based on the zip code.
Merge: Merges two sorted data sets into a single data
set in a Data Flow.
Merge Join: Merges two data sets into a single data set
using a join function.
Multicast: Sends a copy of the data to an additional
path in the workflow.
OLE DB Command: Executes an OLE DB command for
each row in the Data Flow.

Percentage Sampling: Captures a sampling of the
data from the Data Flow by using a percentage of the
Data Flow’s total rows.
Pivot: Pivots the data on a column into a more
nonrelational form. Pivoting a table means that you can
slice the data in multiple ways, much like in OLAP and
Excel.
Row Count: Stores the row count from the Data Flow
into a variable.
Row Sampling: Captures a sampling of the data from
the Data Flow by using a row count of the Data Flow’s
total rows.
Script Component: Uses a script to transform the
data. For example, you can use this to apply specialized
business logic to your Data Flow.
Slowly Changing Dimension: Coordinates the
conditional insert or update of data in a slowly changing
dimension.
Sort: Sorts the data in the Data Flow by a given
column.
Term Extraction: Looks up a noun or adjective in text
data.
Term Lookup: Looks up terms extracted from text and
references the value from a reference table.
Union All: Merges multiple data sets into a single data
set.
Unpivot: Unpivots the data from a non-normalized
format to a relational format.

Destinations
Inside the Data Flow, destinations consume the data after
the data pipe leaves the last transformation components.
The flexible architecture can send the data to nearly any
OLE DB–compliant, flat file, or ADO.NET data source. Like

