

71208_Kaner_FMI 11/28/01 11:30 AM Page vi

“Pick up this book, open it anywhere, read it for two minutes, and take one
lesson as a suggestion. Your testing, test planning, test management, or think-
ing about testing will improve dramatically.”

Johanna Rothman, Rothman Consulting Group, Inc.

“If you test software, or depend on people who do, then read this book. Each
page bubbles with hard-won advice for handling the practical problems you
encounter every day.”

Sam Guckenheimer
Senior Director of Automated Testing Technology

Rational Software Corporation

“Definitely a book worth reading and keeping around. Smart, practical,
insightful and thought-provoking.”

Ross Collard, Collard & Company

“These three distinguished test professionals have written a precisely-stated
and thought-provoking book that offers a distinctive and important perspec-
tive on testing and test project management.”

Rex Black, Author of Managing the Testing Process
and Critical Testing Processes

“This is the book the testing community has been looking for and didn’t real-
ize it. A must read for any test engineer or manager.”

George Hamblen Jr., Director of Software Quality Assurance
for a large financial services company

“This isn’t textbook stuff. It’s better. It’s real life under discussion and obser-
vation. I’m excited to see so many aspects of testing being brought together
into one book. I expect great discussions to be had because of this book.”

Steve Tolman, Manager of Software Quality, PowerQuest

“These lessons contain wonderful insights about software testing in the real
world, from the leading practical experts on software testing. Whether you
test software, or work with people who do, this book is great stuff.”

Alan Myrvold

71208_Kaner_FMI 11/28/01 11:30 AM Page i

“Clear and succinct. It has brought clarity to many of my own learning expe-
riences and provoked a lot of new thoughts.”

Fran McKain
Software Test Manager

Hewlett-Packard Company

“Reviewing this book was one of my greatest learning experiences. I warmly
recommend this as a must-have for any testing professional.”

Hans Buwalda, Author of Integrated Test Design and Automation

“The book is packed with nuggets of gold derived from years of practical
experience. The chapter on test automation alone is more useful than any
of the books I’ve seen on test automation. The chapter on techniques has
powerful ideas, simply stated!”

Doug Hoffman, Consultant, Software Quality Methods, LLC

“Lessons Learned in Software Testing is a must read for the beginner who needs
tried and true tips and for the mature test manager who is looking for more
refinements for his or her organization.”

Chris DeNardis, Supervisor of Software Engineering, Rockwell Automation

“ . . . offers an invaluable collection of real world practices based on years of
experience shared by the authors collectively and many of their colleagues
. . . an absolute must for anyone who has a serious interest in software testing.”

Hung Q. Nguyen, President and CEO, LogiGear Corporation
Author of Testing Applications on the Web

“The lessons format is simple and succinct, just the thing for us to use in late
night test planning sessions. Where other books have been long on theory
and are great for study, this is long on reality, practicality, and immediate use-
fulness.”

Mary Romero Sweeney, Author of Visual Basic for Testers

“This is an excellent book. I have had similar experiences as documented in
this book, without being able to learn the lessons whilst in the middle of the
problem.”

Ståle Amland, Amland Consulting, Norway

71208_Kaner_FMI 11/28/01 11:30 AM Page ii

Lessons Learned in
Software Testing

A Context-Driven Approach

Cem Kaner
James Bach

Bret Pettichord

John Wiley & Sons, Inc.

Wiley Computer Publishing

NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

71208_Kaner_FMI 11/28/01 11:30 AM Page iii

Publisher: Robert Ipsen
Editor: Margaret Eldridge
Assistant Editor: Adaobi Obi
Managing Editor: Micheline Frederick
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed
as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim,
the product names appear in initial capital or ALL CAPITAL LETTERS. Readers,
however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2002 by Cem Kaner, James Bach, Bret Pettichord. All rights reserved.
Published by John Wiley & Sons, Inc., New York.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605
Third Avenue, New York, NY 10158-0012, (212) 850-6011,
fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the
publisher is not engaged in professional services. If professional advice or other
expert assistance is required, the services of a competent professional person
should be sought.

Library of Congress Cataloging-in-Publication Data:

Kaner, Cem.
Lessons learned in software testing : a context-driven approach / Cem Kaner,

James Bach, Bret Pettichord.
p. cm.

“Wiley Computer Publishing.”
Includes bibliographical references and index.
ISBN 0-471-08112-4 (pbk. : alk. paper)

1. Computer software—Testing. I. Bach, James. II. Pettichord, Bret. III. Title.

QA76.76.T48 K34 2001
005.1'4—dc21 2001046886

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

71208_Kaner_FMI 11/28/01 11:30 AM Page iv

http://PERMREQ @ WILEY.COM

Installing Custom Controls VD E D I C AT I O N

To Brian Marick and Sam Guckenheimer, who set the spark for this book.

To Dave Gelperin, who believed in us and built a community.

To Jerry Weinberg, whose life and work embodies the highest ideals of an
expert tester.

In memoriam, Anna Allison, colleague and friend, September 30, 1952–
September 11, 2001.

71208_Kaner_FMI 11/28/01 11:30 AM Page v

71208_Kaner_FMI 11/28/01 11:30 AM Page vi

vii

C O N T E N TS

Lessons ix

Foreword xvii

Preface xix

Acknowledgments xxvii

Chapter 1 The Role of the Tester 1

Chapter 2 Thinking Like a Tester 11

Chapter 3 Testing Techniques 31

Chapter 4 Bug Advocacy 65

Chapter 5 Automating Testing 93

Chapter 6 Documenting Testing 129

Chapter 7 Interacting with Programmers 143

Chapter 8 Managing the Testing Project 151

Chapter 9 Managing the Testing Group 189

Chapter 10 Your Career in Software Testing 209

Chapter 11 Planning the Testing Strategy 231

Appendix The Context-Driven Approach to Software Testing 261

Bibliography 265

Index 275

71208_Kaner_FMI 11/28/01 11:30 AM Page vii

71208_Kaner_FMI 11/28/01 11:30 AM Page viii

L E S S O N S

Chapter 1 The Role of the Tester

Lesson 1 You are the headlights of the project 1
Lesson 2 Your mission drives everything you do 2
Lesson 3 You serve many clients 3
Lesson 4 You discover things that will “bug” someone whose opinion matters 4
Lesson 5 Find important bugs fast 4
Lesson 6 Run with the programmers 5
Lesson 7 Question everything, but not necessarily out loud 5
Lesson 8 You focus on failure, so your clients can focus on success 6
Lesson 9 You will not find all the bugs 6

Lesson 10 Beware of testing “completely” 7
Lesson 11 You don’t assure quality by testing 8
Lesson 12 Never be the gatekeeper! 8
Lesson 13 Beware of the not-my-job theory of testing 8
Lesson 14 Beware of becoming a process improvement group 9
Lesson 15 Don’t expect anyone to understand testing, or what you need

to do it well 10

Chapter 2 Thinking Like a Tester

Lesson 16 Testing is applied epistemology 11
Lesson 17 Studying epistemology helps you test better 12
Lesson 18 Testing is grounded in cognitive psychology 13
Lesson 19 Testing is in your head 14
Lesson 20 Testing requires inference, not just comparison of output to

expected results 14
Lesson 21 Good testers think technically, creatively, critically, and practically 15
Lesson 22 Black box testing is not ignorance-based testing 15
Lesson 23 A tester is more than a tourist 16
Lesson 24 All tests are an attempt to answer some question 16
Lesson 25 All testing is based on models 17
Lesson 26 Intuition is a fine beginning, but a lousy conclusion 17
Lesson 27 To test, you must explore 17
Lesson 28 Exploring involves a lot of thinking 18
Lesson 29 Use the logic of abductive inference to discover conjectures. 19
Lesson 30 Use the logic of conjecture and refutation to evaluate a product 20
Lesson 31 A requirement is a quality or condition that matters to someone

who matters 20

ix

71208_Kaner_FMI 11/28/01 11:30 AM Page ix

Lesson 32 You discover requirements by conference, inference, and reference 21
Lesson 33 Use implicit as well as explicit specifications 22
Lesson 34 “It works” really means it appears to meet some requirement to

some degree 23
Lesson 35 In the end, all you have is an impression of the product 23
Lesson 36 Don’t confuse the test with the testing 23
Lesson 37 When testing a complex product: plunge in and quit 24
Lesson 38 Use heuristics to quickly generate ideas for tests 25
Lesson 39 You can’t avoid bias, but you can manage it 25
Lesson 40 You’re harder to fool if you know you’re a fool 26
Lesson 41 When you miss a bug, check whether the miss is surprising or just

the natural outcome of your strategy 27
Lesson 42 Confusion is a test tool 27
Lesson 43 Fresh eyes find failure 28
Lesson 44 Avoid following procedures unless they followed you first 28
Lesson 45 When you do create test procedures, avoid “1287” 29
Lesson 46 One important outcome of a test process is a better, smarter tester 29
Lesson 47 You can’t master testing unless you reinvent it 30

Chapter 3 Testing Techniques

Lesson 48 Testing combines techniques that focus on testers, coverage,
potential problems, activities, and evaluation 32

Lesson 49 People-based techniques focus on who does the testing 34
Lesson 50 Coverage-based techniques focus on what gets tested 35
Lesson 51 Problems-based techniques focus on why you’re testing (the risks

you’re testing for) 39
Lesson 52 Activity-based techniques focus on how you test 40
Lesson 53 Evaluation-based techniques focus on how to tell whether the test

passed or failed 42
Lesson 54 The classification of a technique depends on how you think about it 43

Chapter 4 Bug Advocacy

Lesson 55 You are what you write 65
Lesson 56 Your advocacy drives the repair of the bugs you report 66
Lesson 57 Make your bug report an effective sales tool 66
Lesson 58 Your bug report is your representative 67
Lesson 59 Take the time to make your bug reports valuable 68
Lesson 60 Any stakeholder should be able to report a bug 68
Lesson 61 Be careful about rewording other people’s bug reports 69
Lesson 62 Report perceived quality gaps as bugs 69
Lesson 63 Some stakeholders cannot report bugs—you’re their proxy 69
Lesson 64 Draw the affected stakeholder’s attention to controversial bugs 70
Lesson 65 Never use the bug-tracking system to monitor programmers’ performance 70
Lesson 66 Never use the bug-tracking system to monitor testers’ performance 71
Lesson 67 Report defects promptly 71
Lesson 68 Never assume that an obvious bug has already been filed 71
Lesson 69 Report design errors 71

L E S S O N Sx

71208_Kaner_FMI 11/28/01 11:30 AM Page x

Lesson 70 Extreme-looking bugs are potential security flaws 73
Lesson 71 Uncorner your corner cases 73
Lesson 72 Minor bugs are worth reporting and fixing 74
Lesson 73 Keep clear the difference between severity and priority 75
Lesson 74 A failure is a symptom of an error, not the error itself 76
Lesson 75 Do follow-up testing on seemingly minor coding errors 76
Lesson 76 Always report nonreproducible errors; they may be time bombs 77
Lesson 77 Nonreproducible bugs are reproducible 78
Lesson 78 Be conscious of the processing cost of your bug reports 79
Lesson 79 Give special handling to bugs related to the tools or environment 80
Lesson 80 Ask before reporting bugs against prototypes or early private versions 81
Lesson 81 Duplicate bug reports are a self-correcting problem 82
Lesson 82 Every bug deserves its own report 82
Lesson 83 The summary line is the most important line in the bug report 83
Lesson 84 Never exaggerate your bugs 83
Lesson 85 Report the problem clearly, but don’t try to solve it 84
Lesson 86 Be careful of your tone. Every person you criticize will see the report 85
Lesson 87 Make your reports readable, even to people who are exhausted and cranky 85
Lesson 88 Improve your reporting skills 86
Lesson 89 Use market or support data when appropriate 86
Lesson 90 Review each other’s bug reports 87
Lesson 91 Meet the programmers who will read your reports 87
Lesson 92 The best approach may be to demonstrate your bugs to the programmers 88
Lesson 93 When the programmer says it’s fixed, make sure it isn’t still broken 88
Lesson 94 Verify bug fixes promptly 88
Lesson 95 When fixes fail, talk with the programmer 89
Lesson 96 Bug reports should be closed by testers 89
Lesson 97 Don’t insist that every bug be fixed. Pick your battles 90
Lesson 98 Don’t let deferred bugs disappear 90
Lesson 99 Testing inertia should never be the cause of bug deferral 91

Lesson 100 Appeal bug deferrals immediately 91
Lesson 101 When you decide to fight, decide to win! 91

Chapter 5 Automating Testing

Lesson 102 Speed the development process instead of trying to save a few
dollars on testing 94

Lesson 103 Expand your reach instead of trying to repeat the same tests over and over 95
Lesson 104 Select your automation strategy based on your context 96
Lesson 105 Don’t mandate 100 percent automation 97
Lesson 106 A test tool is not a strategy 98
Lesson 107 Don’t automate a mess 98
Lesson 108 Don’t equate manual testing to automated testing 99
Lesson 109 Don’t estimate the value of a test in terms of how often you run it 100
Lesson 110 Automated regression tests find a minority of the bugs 101
Lesson 111 Consider what bugs you aren’t finding while you automate tests 101
Lesson 112 The problem with bad automation is that no one may notice 102
Lesson 113 Capture replay fails 103

L E S S O N S xi

71208_Kaner_FMI 11/28/01 11:30 AM Page xi

Lesson 114 Test tools are buggy 104
Lesson 115 User interfaces change 106
Lesson 116 Select GUI test tools based on compatibility, familiarity, and service 107
Lesson 117 Automated regression tests die 108
Lesson 118 Test automation is a software development process 109
Lesson 119 Test automation is a significant investment 109
Lesson 120 Test automation projects require skills in programming, testing, and

project management 110
Lesson 121 Use pilot projects to prove feasibility 111
Lesson 122 Have testers and programmers charter automation projects 111
Lesson 123 Design automated tests to facilitate review 112
Lesson 124 Don’t skimp on automated test design 112
Lesson 125 Avoid complex logic in your test scripts 113
Lesson 126 Don’t build test libraries simply to avoid repeating code 113
Lesson 127 Data-driven test automation makes it easy to run lots of test variants 114
Lesson 128 Keyword-driven test automation makes it easy for nonprogrammers

to create tests 115
Lesson 129 Use automated techniques to generate test inputs 116
Lesson 130 Separate test generation from test execution 117
Lesson 131 Use standard scripting languages 117
Lesson 132 Automate tests using programming interfaces 119
Lesson 133 Encourage the development of unit test suites 120
Lesson 134 Beware of using automators who don’t understand testing 121
Lesson 135 Avoid automators who don’t respect testing 122
Lesson 136 Testability is often a better investment than automation 122
Lesson 137 Testability is visibility and control 123
Lesson 138 Start test automation early 124
Lesson 139 Give centralized automation teams clear charters 125
Lesson 140 Automate for immediate impact 126
Lesson 141 You may have more test tools than you realize 126

Chapter 6 Documenting Testing

Lesson 142 To apply a solution effectively, you need to understand the problem
clearly 131

Lesson 143 Don’t use test documentation templates: A template won’t help
unless you don’t need it 131

Lesson 144 Use test documentation templates: They foster consistent communication 132
Lesson 145 Use the IEEE Standard 829 for test documentation 132
Lesson 146 Don’t use the IEEE Standard 829 133
Lesson 147 Analyze your requirements before deciding what products to build;

this applies as much to your documentation as to your software 136
Lesson 148 To analyze your test documentation requirements, ask questions like

the ones in this list 136
Lesson 149 Summarize your core documentation requirements in one sentence

with no more than three components 141

L E S S O N Sxii

71208_Kaner_FMI 11/28/01 11:30 AM Page xii

Chapter 7 Interacting with Programmers

Lesson 150 Understand how programmers think 144
Lesson 151 Develop programmers’ trust 145
Lesson 152 Provide service 145
Lesson 153 Your integrity and competence will demand respect 146
Lesson 154 Focus on the work, not the person 147
Lesson 155 Programmers like to talk about their work. Ask them questions 148
Lesson 156 Programmers like to help with testability 149

Chapter 8 Managing the Testing Project

Lesson 157 Create a service culture 151
Lesson 158 Don’t try to create a control culture 152
Lesson 159 Develop the power of the king’s ear 152
Lesson 160 You manage the subproject that provides testing services, not the

development project 153
Lesson 161 All projects evolve. Well-run projects evolve well 154
Lesson 162 There are always late changes 154
Lesson 163 Projects involve a tradeoff among features, reliability, time, and money 155
Lesson 164 Let the project manager choose the project lifecycle 156
Lesson 165 Waterfall lifecycles pit reliability against time 156
Lesson 166 Evolutionary lifecycles pit features against time 158
Lesson 167 Be willing to allocate resources to the project early in development 159
Lesson 168 Contract-driven development is different from market-seeking

development 160
Lesson 169 Ask for testability features 161
Lesson 170 Negotiate the schedules for builds 161
Lesson 171 Understand what programmers do (and don’t do) before delivering builds 162
Lesson 172 Be prepared for the build 162
Lesson 173 Sometimes you should refuse to test a build 162
Lesson 174 Use smoke tests to qualify a build 163
Lesson 175 Sometimes, the right decision is to stop the test and fix cycle and

redesign the software 163
Lesson 176 Adapt your processes to the development practices that are actually in use 164
Lesson 177 “Project documents are interesting fictions: Useful, but never sufficient” 165
Lesson 178 Don’t ask for items unless you will use them 165
Lesson 179 Take advantage of other sources of information 166
Lesson 180 Flag configuration management problems to the project manager 167
Lesson 181 Programmers are like tornadoes 168
Lesson 182 Great test planning makes late changes easy 168
Lesson 183 Test opportunities arise whenever one person hands off an artifact to

another 170
Lesson 184 There is no universal formula for knowing how much testing is enough 170
Lesson 185 “Enough testing” means “enough information for my clients to make

good decisions” 170
Lesson 186 Never budget for just two testing cycles 171

L E S S O N S xiii

71208_Kaner_FMI 11/28/01 11:30 AM Page xiii

Lesson 187 To create a schedule for a set of tasks, estimate the amount of time
needed for each task 172

Lesson 188 The person who will do the work should tell you how long a task will take 173
Lesson 189 There is no right ratio of testers to other developers 174
Lesson 190 Trade tasks or transfer people from tasks that they are failing at 174
Lesson 191 Rotate testers across features 175
Lesson 192 Try testing in pairs 175
Lesson 193 Assign a bug hunter to the project 176
Lesson 194 Charter testing sessions, especially exploratory testing sessions 176
Lesson 195 Test in sessions 177
Lesson 196 Use activity logs to reveal the interruptions that plague testers’ work 177
Lesson 197 Regular status reports are powerful tools 178
Lesson 198 There’s nothing more dangerous than a vice president with statistics 179
Lesson 199 Be cautious about measuring the project’s progress in terms of bug counts 180
Lesson 200 The more independent coverage measures you use, the more you know 181
Lesson 201 Use a balanced scorecard to report status on multiple dimensions 182
Lesson 202 Here’s a suggested structure for a weekly status report 183
Lesson 203 A project dashboard is another useful way for showing status 184
Lesson 204 Milestone reports are useful when milestones are well defined 185
Lesson 205 Don’t sign-off to approve the release of a product 186
Lesson 206 Do sign-off that you have tested a product to your satisfaction 186
Lesson 207 If you write a release report, describe your testing work and results,

not your opinion of the product 187
Lesson 208 List unfixed bugs in the final release report 187
Lesson 209 A useful release report lists the 10 worst things critics might say 187

Chapter 9 Managing the Testing Group

Lesson 210 Mediocrity is a self-fulfilling prophecy 189
Lesson 211 Treat your staff as executives 190
Lesson 212 Read your staff’s bug reports 191
Lesson 213 Evaluate your staff as executives 191
Lesson 214 If you really want to know what’s going on, test with your staff 193
Lesson 215 Don’t expect people to handle multiple projects efficiently 193
Lesson 216 Build your testing staff’s domain expertise 194
Lesson 217 Build your testing staff’s expertise in the relevant technology 194
Lesson 218 Work actively on skills improvement 195
Lesson 219 Review technical support logs 195
Lesson 220 Help new testers succeed 195
Lesson 221 Have new testers check the documentation against the software 196
Lesson 222 Familiarize new testers with the product through positive testing 197
Lesson 223 Have novice testers edit old bug reports before writing new ones 197
Lesson 224 Have new testers retest old bugs before testing for new bugs 197
Lesson 225 Don’t put novice testers on nearly finished projects 198
Lesson 226 The morale of your staff is an important asset 199
Lesson 227 Don’t let yourself be abused 200
Lesson 228 Don’t abuse your staff with overtime 200
Lesson 229 Don’t let your staff be abused 202

L E S S O N Sxiv

71208_Kaner_FMI 11/28/01 11:30 AM Page xiv

Lesson 230 Create training opportunities 202
Lesson 231 Your hiring decisions are your most important decisions 203
Lesson 232 Hire contractors to give you breathing room during recruiting 203
Lesson 233 Rarely accept rejects from other groups into testing 203
Lesson 234 Plan in terms of the tasks you need to do in your group and the skills

needed to do them 204
Lesson 235 Staff the testing team with diverse backgrounds 204
Lesson 236 Hire opportunity candidates 205
Lesson 237 Hire by consensus 206
Lesson 238 Hire people who love their work 206
Lesson 239 Hire integrity 206
Lesson 240 During the interview, have the tester demonstrate the skills you’re

hiring him for 206
Lesson 241 During the interview, have the tester demonstrate skills he’ll actually

use on the job over informal aptitude tests 207
Lesson 242 When recruiting, ask for work samples 207
Lesson 243 Hire quickly after you make up your mind 208
Lesson 244 Put your hiring promises in writing and keep them 208

Chapter 10 Your Career in Software Testing

Lesson 245 Choose a career track and pursue it 209
Lesson 246 Testers’ incomes can be higher than programmers’ incomes 211
Lesson 247 Feel free to change your track and pursue something else 212
Lesson 248 Whatever path you take, pursue it actively 212
Lesson 249 Extend your career beyond software testing 213
Lesson 250 Extend your career beyond your company 213
Lesson 251 Conferences are for conferring 214
Lesson 252 Lots of other companies are as screwed up as yours 214
Lesson 253 If you don’t like your company, look for a different job 215
Lesson 254 Be prepared in case you have to bet your job (and lose) 215
Lesson 255 Build and maintain a list of companies where you’d like to work 216
Lesson 256 Build a portfolio 216
Lesson 257 Use your resume as a sales tool 217
Lesson 258 Get an inside referral 218
Lesson 259 Research salary data 218
Lesson 260 If you’re answering an advertisement, tailor your answer to the

advertisement 218
Lesson 261 Take advantage of opportunities to interview 218
Lesson 262 Learn about companies when you apply for jobs with them 219
Lesson 263 Ask questions during job interviews 220
Lesson 264 Negotiate your position 221
Lesson 265 Be cautious about Human Resources 223
Lesson 266 Learn Perl 223
Lesson 267 Learn Java or C++ 223
Lesson 268 Download demo copies of testing tools and try them out 224
Lesson 269 Improve your writing skills 224
Lesson 270 Improve your public speaking skills 224

L E S S O N S xv

71208_Kaner_FMI 11/28/01 11:30 AM Page xv

Lesson 271 Think about getting certified 224
Lesson 272 If you can get a black belt in only two weeks, avoid fights 226
Lesson 273 A warning about the efforts to license software engineers 226

Chapter 11 Planning the Testing Strategy

Lesson 274 Three basic questions to ask about test strategy are “why bother?”,
“who cares?”, and “how much?” 231

Lesson 275 There are many possible test strategies 232
Lesson 276 The real test plan is the set of ideas that guides your test process 233
Lesson 277 Design your test plan to fit your context 233
Lesson 278 Use the test plan to express choices about strategy, logistics, and work

products 234
Lesson 279 Don’t let logistics and work products blind you to strategy 235
Lesson 280 How to lie with test cases 235
Lesson 281 Your test strategy is more than your tests 236
Lesson 282 Your test strategy explains your testing 236
Lesson 283 Apply diverse half-measures 237
Lesson 284 Cultivate the raw materials of powerful test strategies 238
Lesson 285 Your first strategy on a project is always wrong 238
Lesson 286 At every phase of the project, ask yourself “what can I test now and how

can I test it?” 239
Lesson 287 Test to the maturity of the product 239
Lesson 288 Use test levels to simplify discussions of test complexity 241
Lesson 289 Test the gray box 242
Lesson 290 Beware of ancestor worship when reusing test materials 242
Lesson 291 Two testers testing the same thing are probably not duplicating efforts 243
Lesson 292 Design your test strategy in response to project factors as well as

product risks 243
Lesson 293 Treat test cycles as the heartbeat of the test process 244

L E S S O N Sxvi

71208_Kaner_FMI 11/28/01 11:30 AM Page xvi

F O R E WO R D

xvii

Imagine that you are holding a bottle of 50-year-old port. There is a way to
drink port. It is not the only way, but most folks who have enjoyed port for
many years have found some guidelines that help them maximize their port-
drinking experience. Here are just a few:

Lesson 1: Don’t drink straight from the bottle. If you have no glass, nor any
other possible containers available, pour a tiny amount of port into the
palm of your hand and sip from there. The port aroma should be smelled
as you sip. Let the port swirl over your tongue. Don’t gulp down the port.

Lesson 2: Don’t drink the entire bottle. If you are drinking because you are
thirsty, put down the port and drink a big glass of water. A small amount
of port each time maximizes the enjoyment of the entire bottle.

Lesson 3: Don’t pollute the port. If someone tells you that you ought to try a
new cocktail made with orange juice, seawater, and port, politely refuse.
With a big smile, say, “But I would enjoy a glass of port.”

Lesson 4: Don’t covet the port. Hoarding your port means that you will
never have the pleasure of gentle conversation while sipping. Port is best
shared with friends who also enjoy a glass. Remember, they have a bottle
somewhere, too.

You are not holding a bottle of port in your hands. You are holding Lessons
Learned in Software Testing, a very valuable book about software testing. This
book has been ripening to perfection throughout the 50 work-years of the
authors’ experiences. While port is for your taste buds, this book is for your
brain. I think that you will find any other differences to be marginal. I have

71208_Kaner_FMI 11/28/01 11:30 AM Page xvii

F O R E WO R Dxviii

savored this book and offer you this advice to maximize your reading experi-
ence.

Lesson 1. Don’t drink straight from the bottle. Bring your own vessel to the
reading of this book. That is, bring all of your experiences in software
development and testing. If you have never participated in a serious
software effort, this book will be too heady for you. It will leave you
confused and unable to operate heavy machinery for some time. If you are
experienced, savor the book’s contents in the context of your own projects.

Lesson 2. Don’t drink the entire bottle. Don’t read this book in one sitting.
Read a lesson or two, close the book, and decide how you respond to the
words of Messrs. Kaner, Bach, and Pettichord. As you will discover, they
call their approach to testing “context-driven.” Only you know the context
of your own work. You must determine where there is a fit between a
given lesson and your particular work.

Lesson 3. Don’t pollute the port. Somebody out there is going to make a list
of the titles of the 293 lessons contained in this book. Please don’t let it be
you. The heart of the book is the explanation attached to each of the
lessons. Be warned as well that someone else will immediately try to ISO-
ify or CMM-ummify the contents. I can see the article title now, “Getting
to CMM Level 293 using the 293 Lessons of Lessons Learned in Software
Testing.” Argh! As the authors explain, “ . . . we don’t believe in ‘best
practices.’ We believe some practices are more useful than others under
some circumstances.” Written by pros, those statements represent the
quintessence of attaining the state of Master-crafter of Software Testing.

Lesson 4. Don’t covet the port. If there ever is a book to be read with your
colleagues, this is it. Buy a carton-load and hand a copy out to everyone
who tests and to everyone who thinks that she or he manages testers. Read
a few selected lessons at a time and get together to talk about them over
coffee, lunch, even port! Read, ruminate, enjoy. Cheers!

Tim Lister
August 17, 2001

lister@acm.org
The Atlantic Systems Guild, Inc.

New York City

71208_Kaner_FMI 11/28/01 11:30 AM Page xviii

Support Site for a Business Software Manufacturer xix

xix

P R E FA C E

The Software Engineering Body of Knowledge (SWEBOK) is being proposed as a
suitable foundation for government licensing, for the regulation of software
engineers, and for the development of university curricula in software engi-
neering. The SWEBOK document claims to be consensus-based. One would
expect such a document to carry the accumulated knowledge and wisdom
(the accumulated lessons) of the field.

Here is everything that SWEBOK has to say about exploratory testing:

Perhaps the most widely practiced technique remains ad hoc testing:
tests are derived relying on the tester skill and intuition (“exploratory”
testing), and on his/her experience with similar programs. While a more
systematic approach is advised, ad hoc testing might be useful (but only
if the tester is really expert!) to identify special tests, not easily
“captured” by formalized techniques. Moreover it must be reminded
that this technique may yield largely varying degrees of effectiveness.
(SWEBOK 0.95, 2001, 5-9)

How does SWEBOK treat what it acknowledges is the field’s most widely
practiced technique? Nothing about how to practice the technique well. Only
a statement that exploration should be done only by real experts, that other
approaches are advised, and the suggestion that other, formalized techniques
will yield less varying degrees of effectiveness.

Hah!

71208_Kaner_FMI 11/28/01 11:30 AM Page xix

P R E FA C Exx

We don’t pretend to offer a consensus document that describes our field’s
alleged body of knowledge, but we do have a lot more to say about our field’s
most common practices. Rather than dismissing exploratory testing, this
book shows you what testing looks like through the eyes of people who use
exploratory methods (and many other methods) in a drive to achieve
excellent testing under real-life conditions.

Welcome to Lessons Learned in
Software Testing

This book is about software development as we’ve experienced it. We’ve had
a combined total of 50 to 60 years of development experience (depending on
how you count). We’ve been at this for a while. We’ve seen a lot of great work
and a lot of not-so-great work.

This book is not about how software engineering might be in a tidier and
more controlled world. We’re writing about the world as we’ve worked in it.

In our world, software development teams often work under ambitious
deadlines, discovering what needs to be done at the same time as they’re
discovering how to do it. Sometimes their approaches are more formal,
sometimes less. It depends on a wide range of circumstances.

We follow the context-driven approach in software testing. We expect that a
method that works wonderfully under some circumstances will not work
under others. Rather than talk about best practices, we talk about practices
that are well-suited to the context at hand. We discuss the context-driven
approach at the end of the book, but in essence, context-driven testing looks
at the “what” of testing (the techniques, tools, strategies, and so on) in terms
of “who,” “when,” “where,” “why,” and “what if.”

Our goal is to match our selection of practices to the circumstances at hand in
a way that achieves excellent testing. We don’t expect to achieve great testing
by taking over the project, nor by stamping our feet and telling the project
manager (or executives) how Real Professionals would run the project. We
don’t expect to achieve great testing by intimidating programmers, nor by
being obsequious to them. We don’t expect to do great testing by filling out
thousands of little pieces of paper (or comparable electronic records), nor by
wasting everyone else’s time on unnecessary processes.

We don’t have a political or a bureaucratic or a formal-methods recipe for
great testing.

That recipe doesn’t exist!

71208_Kaner_FMI 11/28/01 11:30 AM Page xx

PREFACE xxi

We think great testing involves skillful technical work (searching for defects)
and accurate, persuasive communication.

The skilled search is always exploratory. There’s an infinite amount of testing
to do, and a tiny amount of time in which to do just a little bit of that infinity.
Every test we do, every document we write, every meeting we attend takes
time away from running other tests that could expose a key defect. Facing
that constraint, we optimize our testing processes so that they take advantage
of our ever-growing knowledge of the product, its market, its applications,
and its weaknesses. What we learn today gets reflected in more powerful
tests tomorrow.

Even if:

■■ the product is well specified, and

■■ the specification accurately reflects a requirements document, and

■■ the requirements document accurately represents the actual needs of the
product’s stakeholders

(have you ever been on a project where all these “even if’s” were true?); we
will still learn a lot about how to test the product while we are testing it. In
particular, as we discover errors, we learn how this group of programmers
can go wrong. The specifications tell us about how the program is supposed
to work when it is coded correctly. They don’t tell us what mistakes to antici-
pate, nor how to design tests to find them. At that task, our key task, we get
better from the start to the end of the project, on every project.

No matter what it looks like from the outside, whenever we are testing with
our brains engaged, our work is exploratory.

Who This Book Is For

This book is for anyone who tests software, anyone who manages testers, and
anyone who has to deal with testers in their software development projects.
That includes project managers and executives.

The primary reader that we have in mind, the “you” in this book, has been
testing for a few years and might recently have been promoted to a
supervisory role. We hope that you’ll see a lot in this book that matches your
experience, that you’ll gain new insights from our lessons, that you’ll find
lessons that are useful for quoting to your manager, that you’ll like a few of
our statements so much that you’ll photocopy them and stick them on the

71208_Kaner_FMI 11/28/01 11:30 AM Page xxi

PREFACExxii

outside of your cubicle, and maybe that you’ll react to at least one statement
so strongly that you’ll stick a copy on the middle of your dart board. (We
want to stimulate thought, not only agreement.)

Newcomers to testing (and those of you who are just applying for a testing
job) won’t have as many occasions to feel that you’ve already experienced
what we’re writing about. For you, this book might provide some early
insights and warnings, giving you a good taste of what issues testers face.

Hint: If you are absolutely new to testing and you are looking for a book to
study from in order to prepare for a job interview, this is the wrong book. If
this is the only book available to you, pay your most careful attention to the
chapters on “Testing Techniques” and “Your Career in Software Testing.” If
you have a choice of books, we suggest the first five chapters of Testing
Computer Software (Kaner et al., 1993).

Programmers, project managers, and executives who have to work with
testers will find this book a useful source of ideas for setting your
expectations of the testing group. We hope that it will help you evaluate and
discuss your concerns with the testing group if you disagree with their
policies or feel that they are spending their time unwisely.

What This Book Is About

Over the years, we’ve learned many useful practices and helpful ways of
evaluating situations. Our conclusions are based on experience. We
summarize much of our experience in this book, in a series of short, readable
descriptions of a few hundred lessons.

We adopted several criteria for including a lesson in this book. They are:

■■ The lesson should be useful or should provide insight.

■■ The lesson should pass the 90-minutes-thinking-alone test. A lesson is not
worth including in the book if almost anyone who thought about testing
for 90 minutes of undistracted time could come up with it.

■■ The lesson must be based on our actual experience. At least one of us
(preferably all three of us) had to have successfully applied the advice we
give. At least two of us had to have been burned by attempting to follow a
practice we criticize. (Note: Sometimes, we come to different conclusions,
based on different experiences. Occasionally, you’ll see that we choose to
provide two viewpoints rather than one. Even if only one view is presented,
you cannot assume that all three of us fully agree with it—in the event of
disagreement, we are likely, among the three of us, to defer to the one or
two who have the most extensive experience with a given situation.)

71208_Kaner_FMI 11/28/01 11:30 AM Page xxii

PREFACE xxiii

■■ Lessons should be tempered by the experiences of our colleagues. We’ve
been collecting detailed experience reports at the Los Altos Workshops on
Software Testing, the Software Test Managers Round Tables, the Workshops
on Heuristic and Exploratory Techniques, the Austin Workshops on Test
Automation, the Patterns of Software Testing Workshops, the Workshop on
Model-Based Automated Testing, Systems Effectiveness Management
Groups, at dozens of software testing conferences, and at less formal peer
cross-trainings (such as the annual Consultants’ Camps in Crested Butte).

■■ The lesson should be brief and to the point but easily understood.

■■ A lesson can be longer, but only to the extent needed to explain how to do
something or to provide a useful tool. Long descriptions and detailed
background information are for the textbooks.

■■ Lessons should be self-contained. You should be able to start reading
anywhere in the book.

■■ The collection of lessons should give you a feel for how we do and think
about testing.

What This Book Is Not

This book is not a comprehensive guide to software testing.

This book is not a collection of lessons that are always true. These are our
lessons, based on our experiences. We believe these are broadly applicable,
but some lessons that have been useful and important in our careers may not
work for you. You have to use your own judgment. As a particular limiter on
the generality of this work, we should note that we’ve worked more on the
development of software for the mass market and on contract-specified
software than we have on software developed for in-house use. Our
experience with life-critical software and embedded software is limited.

This book is not a collection of best practices. In fact, we don’t believe in
“best practices.” We believe some practices are more useful than others under
some circumstances. We are concerned that many things sold as best
practices are pushed (and applied) uncritically, to situations that aren’t
appropriate to them.

How to Use This Book

We structured this book to make it easy for you to skim it or flip through it,
rather than trying to read it from start to finish. At some point (we hope),
you’ll find a nugget, an idea that is very appealing to you. We cannot

71208_Kaner_FMI 11/28/01 11:30 AM Page xxiii

PREFACExxiv

recommend that you apply this idea uncritically. (Our lessons are not best
practices.) Instead, we urge you to evaluate the lesson in terms of its
appropriateness to your situation.

Here are some questions that might help you perform that evaluation:

■■ Under what circumstances would an application of this lesson work in
your company?

■■ Under what circumstances would the application not work?

■■ Has anyone you know tried anything like this lesson before? What
happened? Why? What’s different about your current project from that
person’s project? Should that difference matter?

■■ Who is most likely to benefit from the attempt to apply this lesson?

■■ Who is most likely to be disadvantaged as a result of an attempt to apply
the lesson?

■■ What will you learn from attempting to apply this lesson?

■■ Trying anything new adds risk. Does it make sense to see how well this
lesson would apply to your company by running a pilot study, a situation
in which you try out the lesson without committing yourself to it, or
under a situation of low risk? Is it feasible to conduct a pilot study in your
company, on (or in the service of) your current project?

■■ How will you know whether your application of this lesson worked? If it
did work, how will you know whether the success came more from the
intrinsic value of the lesson, which will last as you keep applying it, than
from your enthusiasm in trying out the idea?

■■ What are the best and worst things that could happen to you as a result of
trying to apply this lesson?

■■ What are the best and worst things that could happen to another
stakeholder, such as a user or another member of the development team?

■■ What if a key person in your company disagrees with a lesson that you
want to follow? How will you overcome their objections and then sell it to
them?

We Hope This Book Stimulates
Conversations and Debates

This book draws sharp contrasts between our views and some others. We
think that clarity will help fuel debates that the field should be having. We
don’t believe there is an accepted paradigm in software testing or in software
engineering as a whole. That’s why we’re not among the folks pushing

71208_Kaner_FMI 11/28/01 11:30 AM Page xxiv

PREFACE xxv

government licensing and regulation of software engineers after standard-
ization on a body of knowledge. In our experience, there are remarkably
different, credible views as to the best ways to proceed.

We want to be very clear about this. We often critique the work of people we
respect highly. In many cases, we refer to work done by good friends of ours.
Don’t mistake an attack on an idea with an attack on the proponent or
clearest author of that idea.

We think the field will benefit by head-on comparisons and contrasts of those
views. It’s important for our field to have conversations about our methods.
We advocate the further development of skilled practices within every one of
the main approaches. Eventually, we will all learn the circumstances under
which the different approaches are the best. Until then, let the thousand
flowers bloom.

A Few Notes on Vocabulary

Here are some of the key words in this book, and how we use them:

We. The authors.

You. The reader.

A fault is an error, a mistake in the implementation or design of the program.

As we use the term, an error is a fault.

A failure is the misbehavior of the program, resulting from the program
encountering a fault.

Failures occur under conditions. For example, a program will crash when it
attempts to divide by zero. The fault in this case is in the code that allows
division by zero. The failure is the crash. But you don’t see a failure unless
the critical variable in the division has the value zero. That variable, having
a value of zero, is the critical condition that must be met for the failure to
occur.

A symptom is like a failure but less serious. For example, if the program has a
memory leak, it might start slowing down long before it fails with an out-
of-memory error message. The slowdown is a symptom of an underlying
problem (memory shortage) that is not directly visible.

The word bug is a catch-all term. It could refer to anything wrong with the
software. Someone reporting a bug might describe a fault, a failure, or a
limitation of the program that makes it less valuable to a stakeholder.

If we define quality as value to some person (Weinberg, 1998, 2.i.), a bug report
is a statement that some person considers the product less valuable
because of the thing being described as a bug.

71208_Kaner_FMI 11/28/01 11:30 AM Page xxv

PREFACExxvi

The word defect carries a legal charge. It means Something Is Definitely
Wrong With The Product. Some companies don’t allow the words defect or
defective to appear in their bug tracking systems or bug-related memos.

Some companies prefer to say anomaly, problem, or issue instead of bug.

After you report a bug, the programmers (or the Change Control Board) will
fix it or decide not to fix it. They will mark the bug resolved (fixed, deferred,
not reproducible, works as designed, and so on).

Black box testing. Testing the external behavior of the program, by feeding the
program inputs and examining the outputs. In typical black box testing,
the tester has no knowledge of the internals of the code and is instead
more familiar with the explicit and implicit product requirements, such as
the ways the program will be used, the types of data likely to be fed to the
program, any regulatory issues associated with the problem the software is
attempting to solve or help solve, and the hardware and software
environments in which the software will run.

Behavioral testing. Testing the external behavior of the program, similar to
black box testing, but using as much knowledge of the internals of the
program as is available to the tester and relevant to the test.

Functional testing. Black box or behavioral testing.

White box or glass box testing. Testing with knowledge of the internals of the
program.

Structural testing. White box testing that is focused on the internal structure of
the program, such as the flow of control from one decision or action to the
next.

Smoke testing or build verification testing. A standard suite of tests applied to a
new build. The tests look for fundamental instability or key things missing
or broken. If the build fails these tests, you do not test it any further.
Instead, you keep testing the old build or wait for the next one.

Project manager. The person who is accountable for shipping the right product
on time and within budget. Some companies split the work that we ascribe
to the project manager between a program manager and a development
manager.

MaxInt. The largest integer possible on the user’s platform or the
programmer’s development language. A number larger than MaxInt
cannot be stored as an integer.

Client. Someone whose interests it is your job to serve. This probably includes
everyone on the project to some extent, as well as the ultimate users of the
product.

71208_Kaner_FMI 11/28/01 11:30 AM Page xxvi

A C K N O W L E D G M E N TS

xxvii

This book would not have been possible without the support and assistance of
a great many people. We thank Lenore Bach, Jon Bach, Becky Fiedler, Leslie
Smart, and Zach Pettichord for support, understanding, and assistance while
three frantic men thought of nothing but their book. We thank Pat McGee for
providing research assistance at a crucial time.

We benefited from detailed and thoughtful reviews of early drafts. We’ve
added several of our reviewers’ examples and descriptions of alternative
perspectives to the book. We thank Ståle Amland, Rex Black, Jeffrey Bleiberg,
Hans Buwalda, Ross Collard, Lisa Crispin, Chris DeNardis, Marge Farrell,
Dorothy Graham, Erick Griffin, Rocky Grober, Sam Guckenheimer, George
Hamblen, Elisabeth Hendrickson, Doug Hoffman, Kathy Iberle, Bob Johnson,
Karen Johnson, Ginny Kaner, Barton Layne, Pat McGee, Fran McKain, Pat
McQuaid, Brian Marick, Alan Myrvold, Hung Nguyen, Noel Nyman, Erik
Petersen, Johanna Rothman, Jane Stepak, Melora Svoboda, Mary Romero
Sweeney, Paul Szymkowiak, Andy Tinkham, Steve Tolman, and Tamar Yaron.

This book has benefited enormously from numerous discussions we’ve had
at the Los Altos Workshops on Test Automation, the Workshops on Heuristic
& Exploratory Techniques, the Software Test Managers’ Roundtable, the
Austin Workshops on Test Automation, the Patterns of Software Testing
Workshops, and at many other workshops, conferences, classes, and
worksites with so many people who have put their hearts into finding better
ways to test software. We thank you all.

71208_Kaner_FMI 11/28/01 11:30 AM Page xxvii

71208_Kaner_FMI 11/28/01 11:30 AM Page xxviii

