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Rarely does one hear an English major say, "I like English, but 
I don't like to write," yet math students often say, "I like math, 
but I don't like to write proofs." Some students even tremble at 
the sound of an approaching proof assignment. The purpose of 
this book is to demystify the proof process by giving you the 
necessary reasoning techniques and language tools for 
constructing well-written arguments. This skill is as essential 
in mathematics and computer science as in English or any other 
discipline. 

Learning to Reason is designed for a freshman/sophomore 
level course with no prerequisites except a desire to improve 
one's reasoning skills and one's ability to read and write mathe-
matics and symbolic languages. The book covers the process 
of writing proofs, a process similar to writing in other disci-
plines, but the topics for our themes (theorems) will come from 
three unifying concepts that run through all areas of mathemat-
ics: logic, sets, and relations. 

We sometimes require prerequisites for math courses in 
order to ensure a certain level of mathematical maturity - a 
maturity where one becomes an independent thinker who can 
figure things out without being told what to do. One of the 
main goals of this book is to speed up this maturation process 
by focusing on how we reason with mathematical language, 
emphasizing those elements of the language that tend to 
confuse students in advanced courses. Simple-sounding 
concepts such as substitution are not as simple as they sound. 
Simple words, such as "and," "or," "not," and "implies," lose 
their simplicity when we combine them in a sentence. If you 
are not fluent in how to manipulate these basic terms from 
which we build our language, you will be severely handicapped 
when you try to do any type of mathematical reasoning. 

Another goal of this book is to help you see the common 
thread that runs throughout the vast universe of mathematics. 
Without this connection, you can easily get lost in an endless 
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maze of mathematical concepts and not be able to see the forest 
for the trees. Many people have the misconception that mathe-
matics is primarily a subject in which you do computations. I 
must confess that I have never been a fan of doing computa-
tions. In my college days, my fellow bridge players always 
wanted me to keep score because I was a math major. I felt 
like a chef being asked to wash the dishes. A chef creates dirty 
dishes in the process of cooking, but the goal is not to create 
dirty dishes. Similarly, mathematicians often generate compu-
tations in the process of doing mathematics, but the goal is not 
to generate computations. The goal is to create interesting 
structures and relations that can be supported with logical 
reasoning. This is the common thread that connects all of 
mathematics. 

Contents In Chapter 1, we cover the basic elements of mathematical 
language. Mathematical language is quite simple, which may 
surprise those who consider mathematics to be difficult and 
complex. Consider the myriad ways that we can form complex 
sentences in everyday language. In contrast, mathematical 
language is constructed from only five connectives and two 
quantifiers. If you understand how to manipulate these seven 
terms and how to use substitution, then you have acquired the 
basic technique on which logical reasoning is based. 

In Chapter 2, we examine the reasoning process and how 
we organize our reasoning into a well-written form that can be 
classified as a proof. As in any good essay, a written proof 
contains an introduction, a body, and a conclusion. We will 
study various templates for writing proofs; however, the ability 
to construct a proof requires a deeper level of intellectual 
maturity than merely following an established procedure. To 
construct a proof, one must explore and question, find the inner 
structure of the situation, analyze the various parts, and then 
use logical reasoning to put the different pieces together to 
create the proof. The sparks that leap across our synapses 
during this creative process strengthen our powers of reason-
ing, one of the major benefits of studying mathematics. 

In Chapter 3, we look at how we work with sets, the build-
ing blocks of mathematical language. Since prehistoric times, 
when people counted with a set of sticks or stones, sets have 
been at the foundation of mathematics. When we count, we are 
counting the number of elements in a set; when we analyze the 
form of a figure, we are analyzing a set of points; when we 
look at a function, we see a relation between two sets. Sets 
provide the basic framework for mathematical discourse. 
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In Chapter 4, we examine relations, a reasoning concept 
common to all disciplines. There are relations among pieces of 
music from the same period, works of art of the same style, and 
books of the same genre. In no discipline, including mathemat-
ics, can we analyze an object by itself; we must compare it to 
other objects. Relations provide a simple way to describe 
mathematics: Mathematics is the study of abstract relations. 

WWW.learningtOreaSOn.com Additional learning tools are available at the web site, 
www.learningtoreason.com. Please visit the site and check out 
the resources, which will be continually enhanced. You are 
invited to submit questions, comments, and suggestions. 

Learning a Language As you begin your study of the language of reason, please 
remember that people do not learn a language through 
memorizing a list of words but through hearing the words used 
many times in various ways. The compactness of the language 
of mathematics with its attendant density of meaning requires 
that we read mathematics at a slow but contemplative pace. 
More than likely, we will not grasp its full import from one 
reading, and even if we do grasp it, we probably will not 
remember it all, for human memory needs a great deal of 
repetition to build enough bridges for the easy retrieval of 
stored information. So, it is important not only to read the 
sections, but also to reread them and ask questions about the 
content until you have a deep understanding of the material in 
both a verbal and a visual form. Anyone who is a lover of 
poetry knows that each rereading of a poem can bring new 
insights. The same is true in mathematics. 

Working Out Anyone can develop their reasoning skills if they are willing to 
invest the necessary time to work out with the exercises and the 
concepts. To become a good athlete or a good musician 
requires long hours of practice, so it is not surprising that 
learning how to reason also requires a similar investment of 
time. The exercises at the end of each section are an essential 
component of the learning process. To develop your reasoning 
skills, you should work out with the exercises on a daily basis. 
As you work through the discussions in the text, you should 
also write your own questions and observations. Through this 
process, you will build your understanding and personally 
internalize the meaning of the various concepts. 

http://WWW.learningtOreaSOn.com
http://www.learningtoreason.com
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Throughout this text you will find activities that introduce 
you to concepts in the sections following them. If you work on 
the activities before you read the section, you will have the 
opportunity to discover relationships on your own. What you 
discover for yourself burns an indelible image in your memory 
and helps you to become a creative thinker, which is one of the 
most important skills needed in a changing society. Problems 
are easy when we have examples to guide us, but the creative 
thinkers are those who can blaze a path and create examples for 
others to follow. To be a logical thinker, we must develop our 
ability beyond merely copying procedures from examples 
provided by others. 

When you take the extra time to figure out a problem on 
your own, you are building mental bridges that you can use in 
the future. The long hours of work that you do in building 
these bridges makes a deep impression that is firmly secured in 
your memory bank. On the other hand, when someone shows 
you how to do a problem, you are learning how to run across a 
bridge that someone else has built, which is not the same as 
learning how to build a bridge on your own. Computers are 
very adept at running across bridges that others have built, but 
they lack the human creativity to build new bridges for thought 
processes. To develop our reasoning powers beyond the 
mechanistic circuits of a computer, we must learn how to be 
creative thinkers. 

To enliven your journey into the abstract world of reason-
ing, you may want to get into the gamesmanship of it by 
considering the exercises as a highly sophisticated game of 
mental prowess, or, for the more physically inclined, you may 
want to view them as aerobic exercises for the mind. The time 
that you spend will be a wise investment, for whatever path you 
take in life, the study of the topics in this book will help you to 
become an independent thinker who can reason in a logical 
manner. 

%mccf TC/tdceM. 



Mathematics is simpler than other disciplines - physics or 
history, for example - because mathematics is concerned with 
such a very limited aspect of reality. Why, then, does such a 
simple subject seem so hard to so many people? I have come 
to believe that it is primarily a language problem. I became 
painfully aware of this problem in my first abstract algebra 
course when I ran head-on into a brick wall of mathematical 
language. I remember long hours of mental labor interrupted 
by a recurring question: why on earth did I major in math? 

The next year I had a topology teacher, Professor John 
Seldon, who gave us a collection of theorems to prove from 
Elements de mathématique by Bourbaki. As I worked though 
Bourbaki's organization of the foundations of mathematics, I 
began, for the first time, to understand the beautiful simplicity 
of mathematical language. After that experience, my studies 
became much easier because I now knew how to use 
mathematical language to structure my thinking. 

Years later, while contemplating pedagogical methods that I 
might use to help my students over the same hurdle, I decided 
to write this text. The first version was used in an Algebraic 
Structures class. Because of student inquiries as to why they 
did not have this class earlier - since it would have helped them 
with the proofs they struggled with in other classes - the course 
was moved to the freshman/sophomore level. Through their 
many questions over the years, I began to understand the 
source of the great difficulty students have in writing proofs in 
upper division courses. The rules of syntax that seem so 
obvious after we subconsciously master them through long 
years of study are a huge language barrier to those on the other 
side of the fence. Some students have a great ear for the 
subtleties and nuances of languages and can easily learn a 
foreign language; a very small percentage of students have a 
similar gift for learning the language of mathematics. Granted, 
young children learn their native tongue by listening to those 
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around them, but as we get older, most of us can benefit greatly 
by understanding the basic structure and syntax of a new 
language we are learning. 

Organization The initial goal in developing this text was to make Bourbaki's 
organization of the foundations of mathematics understandable 
and relevant at the freshman level. In addition, the book 
presents a lively discussion of the reasoning process, with a 
primary focus on deductive reasoning, but also including 
inductive reasoning, visual reasoning, and translations from 
everyday language to pictures and symbolic representations. 

Starting with the foundations of logic in Chapter 1, the text 
explains how to analyze and logically manipulate individual 
sentences. In Chapter 2, the focus is on how to structure our 
thinking so that we can put sentences together to form a 
well-reasoned proof. The text illustrates the concepts with an 
elementary chain of ideas concerning integers, rational 
numbers, and real numbers. This connected series of examples 
and exercises helps students learn how to structure their 
thinking while also developing their understanding of numbers. 
The techniques learned here are reinforced as we examine sets, 
the basic building blocks of mathematics, in Chapter 3, and 
relations, where the action is in mathematics, in Chapter 4. 
This organizational structure gives students a meaningful 
overview of the vast subject of mathematics, while building 
their reasoning skills and their understanding of the basic 
concepts used throughout mathematics. 

Special Features The study of logical skeletons is fleshed out in mathematical 
settings with overviews of the structures they support and 
exercises that get students actively involved in and intrigued by 
the intellectual game of logical reasoning. Each section is 
preceded with a set of activities that give students the 
opportunity to discover for themselves important concepts from 
the next section. The activities encourage independent thinking 
and initiative, as well as help to raise the student's curiosity and 
interest in the upcoming material. After each section is a finely 
crafted set of exercises designed to help students develop their 
reasoning skills as they build a personal understanding of the 
language and notation. The exercises focus on those areas of 
mathematical language that tend to confuse students in upper 
division courses. They have been class-tested for several years 
and revised to maximize their benefit. Each chapter has a 
review section with related definitions grouped together. The 
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definitions are alphabetized in a comprehensive glossary at the 
end of the book, followed by a symbol list. 

The easy-going style of the book makes it accessible to a 
wide range of students. The concepts are carefully developed 
in a conversational writing style that speaks with a gentle 
authority, offering students motivation and encouragement 
along the way. It moves along at a brisk pace with careful 
analyses at points most likely to cause problems. The examples 
are cogent and thoughtfully presented, set off by lines that 
clearly separate them from the discussion. There is an energy 
in the conciseness of the writing and layout that makes it easy 
for students to read and remember what they have read. 

Layout In response to the first question in the book, one of my 
students, Becky Cantonwine, gave the following description of 
the difference between mathematical language and everyday 
language: "Mathematical language differs from everyday lan-
guage in me same way that poetry differs from prose; every 
word or symbol is important and necessary, and their position is 
important to their meanings." Albert Einstein saw the same 
connection in his eloquent description of pure mathematics as 
"the poetry of logical ideas." Like written poetry, mathematical 
language is enhanced through the use of poetic lineation. 
Gestalt holistic patterns are easier to retain in the mind's eye, so 
poetic lineation is used in the text to highlight featured ideas 
and to assist the reader in working through dense notation and 
the thought processes involved in the reading of a proof. Great 
attention has been paid to the visual tone set by the geometric 
form of text layout, with white space generously used to 
minimize the denseness of the subject matter and to feature key 
thoughts and signposts in the reading. The overriding issue in 
all layout decisions was the presentation that would make it 
easiest to remember. Block text with its dense wrap-around 
lines is not as easy to assimilate and retain as text that 
incorporates active white space. I have tried to make the text as 
simple as possible, using a minimal but sufficient amount of 
words in explaining the concepts. 

Audience The text is designed as a bridge course for mathematics and 
computer science majors at the lower or upper division level. 
Any student who wants to learn how to structure their thinking 
and develop their reasoning skills will find it easy to use as a 
self-study text. Teachers of upper division math courses may 
want to use it as a supplementary text. 
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Ф Chapter 1 

Logical 

Reasoning 

L
ogical reasoning is a form of discourse that is distin-
guished from other forms by its complete objectivity. 
In order to attain a pure state of objectivity with no 

room for ambiguities, the language of logic had to be devel-
oped with great precision and clearly defined rules. Personal 
interpretations of a story, a painting, or an historical event may 
vary considerably, but any two people who understand the 
language of logic will interpret a logical argument in essentially 
the same way. Unlike the tangled web of rules that we use 
subconsciously in our everyday discourse, the rules for logical 
reasoning are very exact with no exceptions to the rule. 

When we reason within a logical framework, words must be 
manipulated according to the rules of the game. Fortunately, 
the rules are fairly simple because the language of logic is built 
from only seven basic terms: two quantifiers, for all and for 
some, and five operators for building compound sentences, not, 
and, or, implies, and is equivalent to. The first stage in master-
ing the art of logical reasoning is to learn how to manipulate 
these seven terms. Each of these terms is simple by itself, but 
the meaning can easily be misconstrued when two or more are 
used in the same sentence, especially since we do not always 
use them in a consistent way in our everyday language. Once 
you master the basic rules, called the laws of logic, for using 
these seven terms, this stage of the reasoning process will be as 
easy as driving a car. 

1.1 Symbolic Language 

1.2 Two Quantifiers 

1.3 Five Operators 

1.4 Laws of Logic 

1.5 Logic Circuits 

1.6 Translations 

1 
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The next stage is a bit more challenging, for we must learn how 
to 1) translate sentences phrased within the complex structure 
of everyday language into the simplified language of logic, 2) 
use the powerful tool of substitution to convert abstract knowl-
edge into various forms, and 3) translate visual reasoning to a 
verbal form and vice-versa. In this chapter, we will cover the 
basic elements of logical reasoning, including quantifiers, 
logical operators, substitutions, and translations. 

Activity 1.1 

1. Reasoning is mentally performed within the context of a language, 
which provides the medium through which we organize and 
present our thoughts. To speak or think in any language, we must 
be aware of the basic structure of the language. 
a. How does mathematical language differ from everyday 

language? 
b. Compare the way that you learn mathematical language with 

the way that you learned to communicate with others in your 
preschool days. 

c. Compare the use of pronouns in everyday language with the 
use of variables in abstract languages. Do they serve the same 
role in the following two sentences? 

He is taller than 5 feet. JC> 5 
d. What does "complete thought" mean to you? What elements 

of language are needed to express a complete thought? 
e. Make a list of nouns and a list of verb phrases that you have 

used in mathematics. Which have you used the most? 
f. What is a sentence? Do any of the following expressions form 

sentences? 1<2 1+2 1+2 = 3 

2. Let p and q represent sentences. 
Let ~p represent the negation of p. 
a. Does ~(p and q) mean the same as (~p and ~q)l 

This question is very abstract. 
How should you start thinking about it? 

b. What is an abstraction? Is a number an abstraction? Is the 
color blue an abstraction? 
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= 1.1 Symbolic Language = 

The importance of an easily 
manipulated symbolism is that 
it enables those who are not 
great mathematicians in their 
generation to do without 
effort mathematics which 
would have baffled the 
greatest of their predecessors. 

E. T. Bell, 1945 

The function / assigns to 
each number in the 
domain the value that is 
the square of the number 
obtained by multiplying the 
original number by three 
and then adding one. 

All written languages are based on symbols. The English 
language is written in terms of phonetic symbols that give 
pronunciation information. We can symbolically represent the 
addition concept with the phonetic symbol "plus" or with the 
ideographic symbol "+" which does not give pronunciation 
information. They both represent the same concept. However, 
in the process of logical reasoning, phonetic words can bog 
down our thought processes. For example, consider the follow-
ing question from an algebra textbook by Al-Khowarizmi in 
the 9th century. 

What must be the amount of a square, which, when 
twenty-one units are added to it, becomes equal to 
the equivalent of ten roots of that square? 

Al-Khowarizmi's question, which would have challenged the 
great thinkers of the Middle Ages, can be answered by most 
high school students today who understand symbolic manipula-
tions. Of course, the question would have to be posed in a 
symbolic form or they, too, might become entangled in the 
phonetic words: 

Find a solution to the equation д̂  + 21 = 10*. 

Take a moment and contemplate the adjacent sentence. How 
long did it take you to decipher its meaning? If you know 
function notation, you can comprehend the same sentence in 
symbolic form almost instantly: fix) = (3*+1)2 

The great power of mathematical symbols is the ease with 
which the brain can process the information. Without the pro-
nunciation baggage, the brain manipulates the symbols with 
great speed, thereby enabling us to focus on deeper questions. 
At the other extreme, though, too many ideographic symbols 
tend to shorten our attention span. A page full of nothing but 
symbols is not as inviting as a page where symbols are inter-
woven with words, so we try to find a delicate balance between 
the two, as illustrated in the above translation. 

Unfortunately, mathematical symbols pose a language 
barrier to those who have not taken the time to learn their 
meaning, leaving many people with the impression that they 
are viewing a foreign language. However, it is not as difficult 
as it appears. All it requires is that we take the time to build a 
personal meaning for the various symbols. 
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Using Symbols 

Learning a Language 

In order to use symbols in the reasoning process, we must know 
how the symbols can be manipulated. Even more importantly, 
though, we need to have a personal understanding of what the 
symbols represent. For example, we may be able to compute 
145 -r 3 with an algorithm, but we will not be able to use the 
answer in a meaningful way if we do not understand the 
meaning of dividing a set into subsets of equal size. If we do 
not build a personal meaning for symbols, we lose the base for 
our reasoning powers and become nothing more than a 
computer performing mechanical processes. 

When learning a foreign language, we may know the meaning 
of a word one week but forget it the next week. The same thing 
happens when we learn a symbolic language. Each symbol 
represents a concept, and to understand the concept, we need to 
think about what it represents and what it does not represent. 
We should work through examples for which the concept 
applies as well as examples for which the concept does not 
apply. As we use a new symbol in different examples and 
exercises, we will slowly build our personal understanding of it 
until we are comfortable using it. The more we use a concept, 
the deeper we implant it in our memory. 

Some students pick up the symbolic language of mathe-
matics or computer science faster than others do. Similarly, 
some people can sit down and play the piano by ear, while 
others have to struggle with years of practice. Those who 
learned how to play through hard work, though, often end up 
playing far superior to those blessed with an ear for music. It is 
not how fast you learn a language but how hard you work to 
develop a deep understanding of it. 

Variables 

A variable is a letter used 
to represent an arbitrary 
element of a given set; 
that set is called the 
domain of the variable. 

Variables are an essential component of a symbolic language. 
As its name implies, a variable can vary and represent a variety 
of elements. Instead of talking about specific numbers, we 
usually talk about a generic number that is symbolized by a 
variable, such as x. Like pronouns in everyday language, 
variables serve as a place holder for substituting specific 
elements. 

The set of elements that may be substituted for a variable is 
called its domain. In the following example, the domain for x 
is the set of integers: 

For every integer x, x < x + 1. 
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Theorem: The sum of two 
even numbers is even. 

Proof: 
Let m and n be even numbers. 
Then m — 2k for some integer k. 
Also, n = 2/ for some integer j , 
So,n + m = 2k + 2j = 2(k+f). 
Since k +j is an integer, by the 
definition of even, n + m is even. 

In computer science, a variable represents a storage space in 
the computer's memory where a number or a string of charac-
ters can be stored. Each variable is assigned a type that repre-
sents its domain. If a variable is assigned an integer type, then 
only integers can be stored in that variable. 

We can use any letter as a variable, but we cannot use a 
letter to represent two different things within the same dis-
cussion. For example, an even number is any number that can 
be represented in the form Ik where k is an integer. However, 
if we apply this definition to two different even numbers within 
the same discussion, we cannot use "Jt" both times, for that 
would imply the two numbers are equal. Instead, we use 
another letter: 

Let m and n be even numbers. 

Then m = 2k for some integer k. 

Also, n = 2/ for some integer j . 

In the adjacent proof, notice how the use of variables gives us a 
tangible way to work with even numbers, enabling us to make 
logical deductions about the abstract concept of even. 

Sentences 

Sentences require 
complete thoughts. 

Most communications in everyday language are phrased in 
terms of sentences, so it is not surprising that the same is true in 
mathematics. To express a complete thought, we use a 
sentence. Conversely, sentences require complete thoughts. If 
we are working with incomplete thoughts, either in our head or 
on paper, we cannot hope to make much progress in the reason-
ing process. 

Our work in this chapter will focus on how we logically 
manipulate sentences. When we reason, the steps in our 
reasoning process are built from sentences, so it is essential that 
we know how to recognize sentences, especially those that are 
written in symbolic form. 

Ф Example Which of the following are sentences? 5<8 5 + 8 5 + 8=13 

1. "5 < 8" is a sentence. 5 is the subject and < is the verb. 

2. "5 + 8" is not a sentence because it does not have a verb. 

3. "5 + 8 = 13" is a sentence. The subject is "5 + 8" and the 
verb is "=." 
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Relations 

= * 
« = 

< < 
C £ 

Operations 

+ -
X 4-

u n 
V Л 

Relations & Operations When we place the < symbol between two numbers, we get a 
sentence. These types of symbols represent relations. 
However, when we place the + symbol between two numbers, 
we get a number, not a sentence. The + symbol operates on 
two numbers and produces a new number, such as 5 + 8. 

A relation gives a connection between two objects, whereas 
a binary operation operates on two objects and produces a third 
object. Relations produce sentences, but operations produce 
objects, such as a number or a set. In order to write well-
formed mathematical sentences, we must be able to distinguish 
between relations and operations. Since they are different 
components of mathematical language, most word processors 
organize their equation editor with all relations grouped under 
one menu and all operations grouped under another menu, as 
illustrated on the left. 

Fragments We may sometimes jot down fragments of sentences, such as 
the adjacent fragment from the famous quadratic formula, but 

-b±Jb2-4ac w e c a n n o t u s e fragments in a proof. To complete the thought, 
jjS we must add a subject and a verb. Students who do not carry 

along the beginning of the sentence, "x =," often do not know 
what the answer represents when they finish the computation. 

x - -fetyft ~4đC When we do not write in complete sentences, it is easy to get 
20 confused and lose track of what we are doing. 

Subjects A well-formed sentence must have both a subject and a verb. 
The most frequently used subjects in mathematical sentences 
are sets and numbers. We will now briefly review the different 
types of real numbers and examine sets later on in Chapter 3. 

• Questions about "how many" elements in a finite set can 
be answered in terms of the natural numbers: 

1,2,3,4,5,6,... 

• To answer questions about "how much," such as how 
much length or how much area, we need a more exten-

The Real Numbers sive set of numbers, called the real numbers. We 
^ visualize the real numbers as coordinates of points on a 

-3-2-1 0 1 2 3 number line, as illustrated on the left. In symbolic form, 
a real number is any number that can be represented as 
a decimal with a finite or infinite number of places. 

• The integers consist of the natural numbers, their 
negatives, and 0: 

. . . - 3 , -2 , -1 ,0 ,1 ,2 ,3 , . . . 
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The positive integers are the natural numbers. 
0 is neither positive nor negative. 

• The rational numbers are numbers that can be repre-
sented as the quotient of two integers, such as Щ-. The 
number .35 is a rational number because we can write it 
in fraction form: -щ. Using variables, we can define a 
rational number as follows: x is a rational number if and 
only if x = j for some integers a and b with b Ф 0. 

• Real numbers that are not rational, such as J2 or n, are 
called irrational numbers. Every real number is either 
rational or irrational. 

The hierarchy of real numbers is given in the adjacent sketch. 
Each set is a subset of those sets that are chained above it. 

The action in everyday language comes from verbs. The same 
is true in mathematical language. However, most verbs in 
mathematics require objects, such as x<y or x=y or ЛГСК In 
everyday language, we could have "x sings," but in mathemati-
cal language, x would have to sing to somebody, such as v. If* 
is a loner, we could have "x sings to x," but not just "x sings." 
Most mathematical verbs, such as those listed on the left, give 
relations between two objects. 

One of the most important verbs is the implication verb, 
which we will examine in great detail in this chapter. This 
verb, which lies at the very foundation of logical reasoning, 
sets the structure for what we mean by a logical deduction. W e 
use the implication to define a valid argument, which gives us 
the basic method for reasoning in a logical manner. We also 
use the implication verb to define other important verb phrases, 
such as "is equal to" and "is a subset of." 

The most frequently used verb in mathematics is "equals." 
In arithmetic and elementary algebra, this little verb provides 
the main action, with occasional help from the inequality verbs, 
<, <, >, ^. The equals verb is used with both numbers and 
sets, whereas й is used only with numbers. 

The analogue of < in set language is the subset verb, which 
gives a relation between two sets. A is a subset ofB, notated as 
A £ S , means that every element in A is also an element in B. 
This definition depends on another important verb phrase, is an 
element of, notated as € . 

3 e A means that 3 is an element of the set A . 
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Statements 

A statement is a sentence 

that is either true or false, 

but not both. 

Verbs that have properties similar to the equals relation, such 
as «, and =, are called equivalence relations. Verbs that impart 
some type of order on objects, such as <, <, c , and £ are 
called order relations. We will examine both equivalence 
relations and order relations in Chapter 4. 

Some sentences, such as "7 is a lucky number," may be con-
sidered true by some people and false by others. We do not 
deal with this type of sentence in mathematics; instead, we 
restrict our discourse to sentences whose truth values are not 
debatable. We will use the term statement to denote a sentence 
that is either true or false, but not both. If a statement is true, 
then it cannot be false. 

-Ф- Example Which of the following sentences are statements? 

3 + 2 = 5 3 + 2 = 6 * + 2 = 6 

1. "3 +2 = 5" is a true sentence, so it is a statement. 

2. "3 + 2 = 6" is a false sentence, so it is a statement. 

3. "x+2 = 6" is a sentence; however, it is neither true nor 
false, so it is not a statement. 

True 

T 

1 

On 

False 

F 

0 

Off 

Open Statements 

The truth value of a statement is either true or false, which we 
will represent with T and F. In computer science, we use 1 for 
true and 0 for false. A computer transmits information along 
an electronic highway in terms of electric circuits which are 
either on or off. We identify the ON-state, defined as 1, with 
"true" and the OFF-state, defined as 0, with "false." 

Statements severely limit the scope of our discourse 
because the truth value of many sentences is somewhere 
between 0 and 1. For example, the weatherman's assertion that 
it will be "partly cloudy" may be true only 80% of the day. 
These types of sentences can be analyzed with a more general 
type of logic known as fuzzy logic (page 60), which was devel-
oped to program artificial intelligence into computers. 

The sentence * + 2 = 6 is not a statement, but it does become a 
statement when we substitute an element for x. 

Substitute 4 for x: 4 + 2 = 6 (True) 

Substitute 3 for x: 3 + 2 = 6 (False) 
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An open statement is a sentence with 

variables that is not a statement but 

becomes a statement when substi-

tutions are made for the variables. 

A sentence of this type is called an open statement. We might 
be tempted to say that an open statement is any statement that 
has a variable. However, this is not true for we can quantify 
the variables by prefixing the sentence with a quantifier, as 
illustrated in the following example. 

■Ф- Example 

Zc + 3 = 5 

For all x, Zx + 3 = 5. 

There exists an x such that 2x + 3 = 5. 

The domain for x is the set of real numbers. Are any of the 
adjacent sentences open statements? 

"2x + 3 = 5" is an open statement. It is neither true nor false, 
but each time we substitute a number for x, the sentence is 
either true or false. 

The second sentence is false, so it is not open. 

The last sentence is true, so it is not open. 

Solution Set 

Even though the last two sentences in the above example have 
variables, they are not open statements because the variable is 
fixed (or bound) by the quantifier. Quantifiers are extremely 
important components of the reasoning process. We will 
examine them in detail in Section 1.2. 

The solution set of an open statement in x is the set of elements 
from the domain of x that convert it to a true statement. To find 
the solution set of an equation, we solve the equation and then 
place the answers in a set. The solution set depends on the 
domain, as illustrated in the following examples. 

-Ф- Example 1. What is the solution set of the open statement, x + 2 = 0? 

Before we can answer this question, we must know the 
domain for x. If the domain is the set of integers, the 
solution set is the set whose only element is -2 , which we 
represent with set braces as {-2}. 

If the domain is the set of natural numbers, though, the 
solution set is empty, which we represent with either the 
symbol { } or ф. 

2. What is the solution set of the open statement, x2 = -1 ? 

Before we can answer this question, we must know the 
domain for x. Both / and -/ are solutions to the above 
equation: i2 = -1 and (-J)2 = - 1 . So, if the domain is the 
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set of complex numbers (page 14), the solution set consists 
of i and-i: {i,-i}. 

However, if the domain is the set of real numbers, the 
solution set is the empty set. 

When it is not possible to list all the elements in the solution set 
of an open statement p(x), we can represent the solution set 
with the following set notation: 

ix\pQc)} 

We will examine set notation in more detail in Chapter 3. 

-Ф- Example 

{x\x>2} 

{Cx ,y ) | * + 3y = 7} 

1. The domain for x is the set of real numbers. What is the 
solution set of the open statement, x> 2? 

Since we cannot list the elements in the solution set nor 
give a pattern that indicates all the members of the set, we 
use the adjacent set notation to express the solution set. 
This notation is read as "the set of all x such that x > 2." If 
the reader does not know that the domain is the set of real 
numbers, then we should include it in the set description: 

{jc | JC>2 and x is a real number} 

If the reader does know the domain of x, the shorter form 
gives a simpler image for focusing our thinking. 

2. The domain for x is the set of real numbers and the domain 
for y is the set of real numbers. What is the solution set of 
the open statement, x+Ъу = 7? 

We cannot list all the elements in this set, so we use the 
adjacent set notation. Since we have two variables, the 
elements of the solution set are ordered pairs. 

(1,2) is a member of this set since 1 + 3(2) = 7. 
(2,1) is a not a member of this set since 2+3( 1) * 7. 

Compound Sentences When we link two sentences with a connective like and, we 
create a compound sentence. For example, we can use and to 
connect the sentence 2+3 = 5 with the sentence 4+5 = 9: 

2 + 3 = 5 and 4+5 = 9 
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Addition operates on 2 numbers 
and produces a new number. 

And operates on 2 sentences 
and produces a new sentence. 

2 + 3 = 5 and 4 + 5 = 9. 

x<2 or *>5. 

x < 2 implies that x<3. 

x < 2 is equivalent to —x > —2. 

It is not true that 2 + 3 = 6. 

Symbolic Sentences 

"2 + 3 = 5" is called a component sentence of the compound 
sentence. In logic, we use only four connectives for building 
compound sentences: and, or, implies, is equivalent to. These 
terms are called logical operators. 

In the adjacent box, notice the similarity between the 
addition operation on numbers and the and operation on 
sentences. Adding two numbers and combining two sentences 
are very different types of activities, but at the base level, the 
structure of what they do is the same. They are both binary 
operations, which is why we call and a logical operator. 

Another important logical operator is the negation. Given a 
sentence, like 2 + 3 = 6, we can make a new sentence by taking 
its negation: 

It is not true that 2 + 3 = 6. 

Negation is a unary logical operator, whereas the other four 
connectives are binary logical operators. As you probably 
know, "unary" means "one" and "binary" means "two." 
Negation forms a new sentence from a given sentence; the 
other four connectives form a new sentence from two given 
sentences, as illustrated on the left. It is rather surprising how 
much of our reasoning depends on these five logical operators. 
When we examine them in detail in Section 1.3, we will work 
with them in an abstract form, similar to abstract algebra. 

In elementary algebra, we use letters to represent numbers and 
ideographic symbols to represent operations on numbers. 

a+b=b+a 

ax(b+c) = axb + axc 

5 Logical Operators 

~P 
pAq 

pVq 
p=>q 

p<=>q 

notp 
p and q 
potq 
p implies q 
p is equivalent to q 

Like an x-ray machine, this symbolic representation reveals the 
inner structure of arithmetic, making it easy to recognize and 
remember general rules for working with operations on 
numbers. 

To find general rules for reasoning with compound sen-
tences, we do a similar type of abstraction. Instead of working 
with specific sentences, we will use the variables p and q to 
represent arbitrary sentences and the adjacent symbols to repre-
sent the five operations on sentences. 

Using this abstract representation of compound sentences, 
we can formulate basic rules for manipulating the five logical 
operators. These rules enable us to automate our reasoning 
about the logical operators so that we have more time to ponder 
deeper questions. However, to apply the rules to specific 
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sentences, we must be able to see the abstract structure of a 
compound sentence. 

Ф Example What is the structure of the following compound sentence? 
(2 + 3 = 5) and (4 + 5 * 7) 

1. Let p and q represent the following sentences. 
p: 2 + 3 = 5 q: 4 + 5 = 7 
Then pA~q: (2+3 = 5) and (4 + 5) * 7 

2. We could also let p: 2 + 3 = 5 and q: 4 + 5*7 
Then pAq: (2 + 3 = 5) and (4 + 5) Ф1 

We can view the above compound sentence as having either 
the structure pl\ q or the structure pA~q, depending on whether 
we want to focus on the outside structure of the sentence or 
look deeper into its internal structure. The different views of 
the structure of a sentence are similar to viewing the outside 
structure of the human body or taking an x-ray view of its 
skeletal structure. 

p(x) notation We will use the function notation p(x), read as "p of x," to 
represent an open statement in the variable x. For example, we 
could let p(x) represent "x2 + 4JC-1 = 5." The notation p(x) has 
two layers of variables: p is a variable that represents a sentence 
and x is a variable that represents a number. Whenever a new 
notation seems a little strange, we should work with examples 
and before long it will seem like a perfectly natural way to 
communicate. Function notation is based on the substitution 
principle. To translate p(3), we substitute 3 for each occurrence 
of*. 

p{x): JC2+4X-1 =5 

p(3): 32 + 4(3) -1=5 

Formal Logic In formal logic, a statement is called a proposition. Since the 
logical operators operate on propositions, the study of the rules 
for manipulating logical operators is called propositional logic. 
Open statements are called predicates, and the study of 
predicates is called predicate logic. Symbolic sentences are 
called well-formed formulas, sometimes abbreviated as wffs. 
Like the rules for grammar in everyday language, formal logic 
systems have syntax rules that govern how symbols can be 
strung together. For example, we cannot juxtapose two logical 


