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Preface 

This book presents some of the most current ideas in mathematics. Most of the theory 
was developed in the past twenty years, and even more recently, wavelets have found 
an important niche in a variety of applications. The filter pair we present in Chapter 8 
is used by JPEG2000 [59] and the Federal Bureau of Investigation [8] to perform 
image and fingerprint compression, respectively. Wavelets are also used in many 
other areas of image processing as well as in applications such as signal denoising, 
detection of the onset of epileptic seizures [2], modeling of distant galaxies [3], and 
seismic data analysis [34, 35]. 

The development and advancement of the theory of wavelets came through the 
efforts of mathematicians with a variety of backgrounds and specialties, and of engi-
neers and scientists with an eye for better solutions and models in their applications. 
For this reason, our goal was to write a book that provides an introduction to the 
essential ideas of wavelet theory at a level accessible to undergraduates and at the 
same time to provide a detailed look at how wavelets are used in "real-world" appli-
cations. Too often, books are heavy on theory and pay little attention to the details of 
application. For example, the discrete wavelet transform is but one piece of an im-
age compression algorithm, and to understand this application, some attention must 
be given to quantization and coding methods. Alternatively, books might provide a 
detailed description of an application that leaves the reader curious about the theoret-
ical foundations of some of the mathematical concepts used in the model. With this 

XI 
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book, we have attempted to balance these two competing yet related tenets, and it is 
ultimately up to the reader to determine if we have succeeded in this endeavor. 

To the Student 

If you are reading this book, then you are probably either taking a course on wavelets 
or are working on your own to understand wavelets. Very often students are natu-
rally curious about a topic and wish to understand quickly their use in applications. 
Wavelets provide this opportunity— the discrete Haar wavelet transformation is easy 
to understand and use in applications such as image compression. Unfortunately, the 
discrete Haar wavelet transformation is not the best transformation to use in many 
applications. But it does provide us with a concrete example to which we can refer 
as we learn about more sophisticated wavelets and their uses in applications. For this 
reason, you should study carefully the ideas in Chapters 3 and 4. They provide a 
framework for all that follows. It is also imperative that you develop a good working 
knowledge of the Fourier series and transformations introduced in Chapter 2. These 
ideas are very important in many areas of mathematics and are the basic tools we use 
to construct the wavelet filters used in many applications. 

If you are a mathematics major, you will learn to write proofs. This is quite 
a change from lower-level mathematics courses where computation was the main 
objective. Proof-writing is sometimes a formidable task and the best way to learn 
is to practice. An indirect benefit of a course based on this book is the opportunity 
to hone your proof-writing skills. The proofs of most of the ideas in this book 
are straightforward and constructive. You will learn about proof by induction and 
contraposition. We have provided numerous problems that ask you to complete the 
details of a portion of a proof or mimic the ideas of one case in a proof to complete 
another. We strongly encourage you to tackle as many of these problems as possible. 
This course should provide a good transition from the proofs you see in a sophomore 
linear algebra course to the more technical proofs you might see in a real analysis 
course. 

Of course, the book also contains many computational problems as well as prob-
lems that require the use of a computer algebra system (CAS). It is important that you 
learn how to use a CAS — both to solve problems and to investigate new concepts. 
It is amazing what you can learn by taking examples from the book and using a CAS 
to understand them or even change them somewhat to see the effects. We strongly 
encourage you to install the software packages described below and to visit the course 
Web site and work through the many labs and projects that we have provided. 

To the Instructor 

In this book we focus on bridging the gap often left between discrete wavelet trans-
formations and the traditional multiresolution analysis-based development of wavelet 
theory. We provide the instructor with an opportunity to balance and integrate these 
ideas, but one should be wary of getting bogged down in the finer details of either 
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topic. For example, the material on Fourier series and transforms is a place where 
instructors should use caution. These topics can be explored for entire semesters, and 
deservedly so, but in this course they need to be treated as tools rather than the thrust 
of the course. 

The heart of wavelet theory is covered in Chapters 3,5, and 6 in a comprehensive 
approach. Extensive details and examples are given or outlined via problems, so 
students should be able to gain a full understanding of the theory without hand-
waving at difficult material. Having said that, some proofs are omitted to keep a nice 
flow to the book. This is not an introductory analysis book, nor is the level of rigor 
up to that of a graduate text. For example, the technical proofs of the completeness 
and separation properties of multiresolution analyses are left to future courses. The 
order of infinite series and integration are occasionally swapped with comment but 
not rigorous justification. We choose not to develop fully the theory of Riesz bases 
and how they lead to true dual multiresolutions of L2(R), for this would leave too 
little time for the very real applications of biorthogonal filters. We hope students will 
whet their appetites for future courses from the taste of theory they are given here! 

We feel that the discrete wavelet transform material is essential to the spirit of the 
book, and based on our experience, students will find the applications quite gratifying. 
It may be tempting to expand on our introduction to these ideas after the Haar spaces 
are built, but we hope sufficient time is left for the development of multiresolution 
analyses and the Daubechies wavelets, which can take considerable time. 

We also hope that instructors will take the time for thorough treatment of the 
connections between standard wavelet theory and discrete wavelet transforms. Our 
experience, both personally and with teaching other faculty at workshops, is that these 
connections are very rewarding but are not obvious to most beginners in the field. 
Some interesing problems crop up as we move between L 2 (R) and finite-dimensional 
approximations. 

Text Topics 

In Chapter 1, we provide a quick introduction to the complex plane and L 2(R), with 
no prior experience assumed, emphasizing only the properties that will be needed for 
wavelet development. We believe that the fundamentals of wavelets can be studied in 
depth without getting into the intricacies of measure theory or the Lesbesgue integral, 
so we discuss briefly the measure of a set and convergence in norm versus pointwise 
convergence, but we do not dwell heavily on these ideas. 

In Chapter 2 we present Fourier series and the Fourier transform in a limited and 
focused fashion. These ideas and their properties are developed only as tools to the 
extent that we need them for wavelet analysis. Our goal here is to prepare quickly 
for the study of wavelets in the transform domain. For example, the transform rules 
on translation and dilation are given, since these are critical for manipulating scaling 
function symbols in the transform domain. 5-splines are introduced in this chapter 
as an important family of functions that will be used throughout the book, especially 
in Chapter 8. 
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In Chapter 3 we begin our study of wavelets in earnest with a comprehensive 
examination of Haar spaces. All the major ideas of multiresolution analysis are 
here, cast in the accessible Haar setting. The properties and standard notations of 
approximation spaces Vj and detail spaces Wj are developed in detail with numerous 
examples. 

Students may be ready for some applications after the long Haar space analysis, and 
we present some classics in Chapter 4. The ideas behind filters and the discrete Haar 
wavelet transform are introduced first. The basics of processing signals and images 
are developed in Sections 4.1 and 4.2, with sufficient detail so that students can carry 
out the calculations and fully understand what software is doing while processing 
large images. The attractive and very accessible topics of image compression and 
edge detection are introduced as applications in Section 4.3. 

In Chapter 5 we generalize the Haar space concepts to a general multiresolution 
analysis, beginning with the main properties in the time domain. Section 5.2 begins 
the development of critical multiresolution properties in the transform domain. In 
Section 5.3 we present some concrete examples of functions satisfying multiresolution 
properties. In addition to Haar, the Shannon wavelet and I?-splines are discussed, 
each of which has some desirable properties but is missing others. This also provides 
some motivation for the formidable challenge of developing Daubechies wavelets. 
We return to 5-splines in Chapter 8. 

Chapter 6 centers on the Daubechies construction of continuous, compactly sup-
ported scaling functions. After a detailed development of the ideas, a clear algorithm 
is given for the construction. The next two sections are devoted to the cascade algo-
rithm, which we delay presenting until after the Daubechies construction, with the 
motivation of plotting these amazing scaling functions with only a dilation equation 
to guide us. The cascade algorithm is introduced in the time domain, where examples 
make it intuitively clear, and is then discussed in the transform domain. Finally, we 
study the practical issue of coding the algorithm with discrete vectors. 

After the rather heavy theory of Chapters 5 and 6, an investigation of the discrete 
Daubechies wavelet transform and applications in Chapter 7 provides a nice change 
of pace. An important concept in this chapter is that of handling the difficulties 
encountered when the decomposition and reconstruction formula are truncated, which 
are investigated in Section 7.2. Our efforts are rewarded with applications to image 
compression, noise reduction and image segmentation in Section 7.3. 

In Chapter 8 we introduce scaling functions and wavelets in the biorthogonal set-
ting. This is a generalization of an orthogonal multiresolution analysis with a single 
scaling function to a dual multiresolution analysis with a pair of biorthogonal scaling 
functions. We begin by introducing several new ideas via an example from 5-splines, 
with an eye toward creating symmetric filters to be used in later applications. The main 
structural framework for dual multiresolution analyses and biorthogonal wavelets is 
developed in Section 8.2. We then move to constructing a family of biorthogonal 
filters based on J3-splines using the methods due to Ingrid Daubechies in Section 8.3. 
The Cohen-Daubechies-Feauveau CDF97 filter pair is used in the JPEG2000 and 
FBI fingerprint compression standards, so it is natural to include them in the book. 
The method of building biorthogonal spline filters can be adjusted fairly easily to 
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create the CDF97 filter pair, and this construction is part of Section 8.3. The pyramid 
algorithm can be generalized for the biorthogonal setting and is presented in Sec-
tion 8.4. The discrete biorthogonal wavelet transform is discussed in Section 8.5. 
An advantage of biorthogonal filter pairs is that they can be made symmetric, and 
this desirable property affords a method, also presented in Section 8.5, of dealing 
with edge conditions in signals or digital images. A fundamental theoretical under-
pinning of dual multiresolution analyses is the concept of a Riesz basis, which is 
a generalization of orthogonal bases. The very formidable specifics of Riesz bases 
have been suppressed throughout most of this chapter in an effort to provide a balance 
between theory and applications. As a final and optional topic in this chapter, a brief 
examination of Riesz bases is provided in Section 8.6. 

Wavelet packets, the topic of Chapter 9, provide an alternative wavelet decomposi-
tion method but are more computationally complex since the decomposition includes 
splitting the detail vectors as well as the approximations. We introduce wavelet 
packet functions in Section 9.1 and wavelet packet spaces in Section 9.2. The dis-
crete wavelet packet transform is presented in Section 9.3 along with the best basis 
algorithm. The wavelet packet decomposition allows for redundant representations 
of the input vector or matrix, and the best basis algorithm chooses the "best" rep-
resentation. This is a desirable feature of the transformation as this algorithm can 
be made application-dependent. The FBI fingerprint compression standard uses the 
CDF97 biorthogonal filter pair in conjunction with a wavelet packet transformation, 
and we outline this standard in Section 9.4. 

Prerequisites 

The minimal requirements for students taking this course are two semesters of calculus 
and a course in sophomore linear algebra. We use the ideas of bases, linear indepen-
dence, and projection throughout the book so students need to be comfortable with 
these ideas before proceeding. The linear algebra prerequisite also provides the nec-
essary background on matrix manipulations that appear primarily in sections dealing 
with discrete transformations. Students with additional background in Fourier series 
or proof-oriented courses will be able to move through the material at a much faster 
pace than will students with the minimum requirements. Most proofs in the book are 
of a direct and constructive nature, and some utilize the concept of mathematical in-
duction. The level of sophistication assumed increases steadily, consistent with how 
students should be growing in the course. We feel that reading and writing proofs 
should be a theme throughout the undergraduate curriculum, and we suggest that the 
level of rigor in the book is accessible by advanced juniors or senior mathematics 
students. The constant connection to concrete applications that appears throughout 
the book should give students a good understanding of why the theory is important 
and how it is implemented. Some algorithms are given and experience with CAS 
software is very helpful in the course, but significant programming experience is not 
required. 
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Possible Courses for this Book 

The book can serve as a stand-alone introduction to wavelet theory and applications for 
students with no previous exposure to wavelets. If a brisk pace is kept in line with the 
prerequisites discussed above, the course could include the first six chapters plus the 
discrete Daubechies transform and a sample of its applications. While considerable 
time can be spent on applied projects, we strongly recommend that any course syllabus 
include Chapter 6, on Daubechies wavelets. The construction of these wavelets is a 
remarkable mathematical achievement accomplished during our lifetime (if not those 
of our students) and should be covered if at all possible. 

Some instructors may prefer to first cover Chapters 3 and 4 on Haar spaces before 
introducing the Fourier material of Chapter 2. This approach will work well since 
aside from a small discussion of the Fourier series associated with the Haar filter, no 
ideas from Fourier analysis are used in Chapters 3 and 4. 

A very different course can be taught if students have already completed a course 
using Van Fleet's book Discrete Wavelet Transformations: An Elementary Approach 
with Applications [60]. Our book can be viewed as a companion text, with consistent 
notation, themes, and software packages. Students with this experience can move 
quickly through the applications, focusing on the traditional theory and its connections 
to discrete transformations. Students completing the discrete course should have a 
good sense of where the material is headed, as well as motivation to see the theoretical 
development of the various discrete transform filters. In this case, some sections of 
the text can be omitted and the entire book could be covered in one semester. 

A third option exists for students who have a strong background in Fourier anal-
ysis. In this case, the instructor could concentrate heavily on the theoretical ideas in 
Chapters 5, 6, 8, and 9 and develop a real appreciation for how Fourier methods can 
be used to drive the theory of multiresolution analysis and filter design. 

Problem Sets, Software Package, and Web Site 

Problem solving is an essential part of learning mathematics, and we have tried to 
provide ample opportunities for the student to do so. After each section there are 
problem sets with a variety of exercises. Many allow students to fill in gaps in 
proofs from the text narrative, as well as to provide proofs similar to those given 
in the text. Others are fairly routine paper-pencil exercises to ensure that students 
understand examples, theorem statements, or algorithms. Many require computer 
work, as discussed in the next paragraph. We have provided 430 problems in the 
book to facilitate student comprehension material covered. Problems marked with a 
* should be assigned and address ideas that are used later in the text. 

Many concepts in the book are better understood with the aid of computer vi-
sualization and computation. For these reasons, we have built the software pack-
age ContinuousWavelets to enhance student learning. This package is modeled 
after the DiscreteWavelets package that accompanies Van Fleet's book [60]. 
These packages are available for use with the computer algebra systems (CAS) 
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Mathematica®, Matlab®, and Maple . This new package is used in the text to 
investigate a number of topics and to explore applications. Both packages contain 
modules for producing all the filters introduced in the course as well as discrete trans-
formations and their inverses for use in applications. Visualization tools are also 
provided to help the reader better understand the results of transformations. Modules 
are provided for applications such as data compression, signal/image denoising, and 
image segmentation. The Cont inuousWavelet s package includes routines for con-
structing scaling functions (via the cascade algorithm) and wavelet functions. Finally, 
there are routines to easily implement the ideas from Chapter 3 — students can easily 
construct piecewise constant functions and produce nice graphs of projections into 
the various Vj and Wj spaces. 

The course Web site is 

http ://www.stthomas.edu/wavelets 

On this site, visitors will find the software packages described above, several computer 
labs and projects of varying difficulty, instructor notes on teaching from the text, and 
some solutions to problems. 

D A V I D K. R U C H 

PATRICK J. VAN FLEET 

Denver, Colorado USA 
St. Paul, Minnesota USA 
March 2009 
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CHAPTER 1 

THE COMPLEX PLANE AND THE 
SPACE L2(R) 

We make extensive use of complex numbers throughout the book. Thus for the 
purposes of making the book self-contained, this chapter begins with a review of 
the complex plane and basic operations with complex numbers. To build wavelet 
functions, we need to define the proper space of functions in which to perform our 
constructions. The space L2(R) lends itself well to this task, and we introduce this 
space in Section 1.2. 

We discuss the inner product in L2(R) in Section 1.3, as well as vector spaces 
and subspaces. In Section 1.4 we talk about bases for L2(R). The construction of 
wavelet functions requires the decomposition of L2(R) into nested subspaces. We 
frequently need to approximate a function f(t) G L2(R) in these subspaces. The tool 
we use to form the approximation is the projection operator. We discuss (orthogonal) 
projections in Section 1.4. 

1.1 COMPLEX NUMBERS AND BASIC OPERATIONS 

Any discussion of the complex plane starts with the definition of the imaginary unit: 

i = \TI\ 
Wavelet Theory: An Elementary Approach with Applications. By D. K. Ruch and P. J. Van Fleet 1 
Copyright © 2009 John Wiley & Sons, Inc. 



2 THE COMPLEX PLANE AND THE SPACE L 2 (R) 

We immediately see that 

i2 = ( v ^ ) 2 = - 1 , i3 = i2 · i = -i, i4 = (-1) · (-1) = 1 

In Problem 1.1 you will compute in for any integer n. 
A complex number is any number of the form z — a + bi where a, b G M. The 

number a is called the real part oiz and b is called the imaginary part oiz. The set 
of complex numbers will be denoted by C. It is easy to see that R c C since real 
numbers are those complex numbers with the imaginary part equal zero. 

We can use the complex plane to envision complex numbers. The complex plane is 
a two-dimensional plane where the horizontal axis is used for the real part of complex 
numbers and the vertical axis is used for the imaginary part of complex numbers. To 
plot the number z — a + bi, we simply plot the ordered pair (a, b). In Figure 1.1 we 
plot some complex numbers. 

• 2 
-1 +2i 

1 

Real 
-2 -1 

• -1 
-2-i 

_2« 

Imaginary 

1 2 

► - 2 i 

Figure 1.1 Some complex numbers in the complex plane. 

Complex Addition and Multiplication 

Addition and subtraction of complex numbers is a straightforward process. Addition 
of two complex numbers u = a + bi and v = c + di is defined as y = u + v = 
(a + c) + (b + d)z. Subtraction is similar: z = t¿ — ^ = (a — c) + (6 — d)z. 

To multiply the complex numbers u — a-\-bi and v = c + di, we proceed just as 
we would if a + 6z and c + di were binomials: 

i¿ · i; = (a + 6z)(c + di) = ac + adi -f bei + frdz2 = (ac — bd) + (ad + bc)i 

Example 1.1 (Complex Arithmetic) Let u = 2 + i, v = — 1 — i, y = 2z, awJ 
2 = 3 + 2i. Compute u + v, z — v, u · y, and v · 2. 
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Solution 

u + v = (2-l) + (l-l)i = l 
Z-V = (Z- (_i)) + (2 - (_1))¿ = 4 + 3z 

u · y = (2 + z) · 2i = 4z + 2i2 = - 2 + 4z 
v · 2 = ( -1 - i) - (3 + 2i) = (3 ( - l ) - (-1)2) + (3 ( - l ) + 2(-l))z - - 1 - hi 

Complex Conjugation 

One of the most important operations used to work with complex numbers is conju-
gation. 

Definition 1.1 (Conjugate of a Complex Numbers) Let z — a + bi e C. The 
conjugate ofz, denoted by ~z, is defined by 

~z = a — bi 

Conjugation is used to divide two complex numbers and also has a natural relation 
to the length of a complex number. 

To plot z = a + bi, we plot the ordered pair (a, b) in the complex plane. For the 
conjugate ~z — a — bi, we plot the ordered pair (a, —b). So geometrically speaking, 
the conjugate ~z of z is simply the reflection ofz over the real axis. In Figure 1.2 we 
have plotted several complex numbers and their conjugates. 

• 
u = - l +2 i 

teal 
- 1 

F = - l - 2 i 
• 

2 

l· 

~1< 

~2 

Imaginary 

►v = i 

w = w = 1 

Î 

►r = - i 

• 
z = 2 

2 

5 = 2 
• 

Figure 1.2 Complex numbers and their conjugates in the complex plane. 
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A couple of properties of the conjugation operator are immediate and we state 
them in the proposition below. The proof is left as Problem 1.3. 

Proposition 1.1 (Properties of the Conjugation Operator) Let z 
complex number. Then 

(a) ~z = z 

(b) Z G ! if and only if~z = z 

a -f bi be a 

Proof: Problem 1.3. ■ 

Note that if we graph the points z = cos Θ + i sin θ as Θ ranges from 0 to 2π, we 
trace a circle with center (0,0) with radius 1 in a counterclockwise manner. Note that 
if we produce the graph of z = cos Θ — i sin Θ as Θ ranges from 0 to 2π, we get the 
same picture, but the points are drawn in a clockwise manner. Figure 1.3 illustrates 
this geometric interpretation of the conjugation operator. 

z = cos v + i sm t 

z = cos Θ - i sin Θ 

Figure 1.3 A circle is traced in two ways. Both start at Θ — 0. As Θ ranges from 0 to 2π, 
the points z trace the circle in a counterclockwise manner while the points ~z trace the circle in 
a clockwise manner. 

Modulus of a Complex Number 

We can use the distance formula to determine how far the point z = a+bi is away from 
0 = 0 + 0i in the complex plane. The distance is y/(a — 0)2 + (b — 0)2 = Va2 + b2. 
This computation gives rise to the following definition. 

Definition 1.2 (Modulus of a Complex Number) The modulus of the complex num-
ber z = a + bi is denoted by \z\ and is defined as 

\z\ = y/a2 + b2 
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Other names for the value \z\ are length, absolute value, and norm ofz. 
There is a natural relationship between \z\ and z. If we compute the product z · z 

where z = a + bi, we obtain 

z - z = (a + bi)(a - bi) = a2 - 62i2 = a2 + b2 

The right side of the equation above is simply \z\2 so we have the following useful 
identity: 

\\z\2 = z-z\ (1.1) 

In Problem 1.5 you are asked to compute the norms of some complex numbers. 

Division of Complex Numbers 

We next consider division of complex numbers. That is, given z — a + bi and 
y — c + di Φ 0, how do we express the quotient z/y as a complex number? We 
proceed by multiplying both the numerator and denominator of the quotient by y\ 

z a + bi a + bi c — di (ac + bd) H- {be — ad)i ac + bd be — ad . 
y c + di c + di c — di c2 + d? c2 + d? c2 + d2 

PROBLEMS 

1.1 Let n be any integer. Find a closed formula for in. 

1.2 Plot the numbers 3 — i, bi, —1, and cos # + i sinö for Θ = 0, π /4 ,π /2 , 5π/6,π 
in the complex plane. 

1.3 Prove Proposition 1.1. 

1.4 Compute the following values. 

(a) (3 - i) + (2 + i) 

(b) (i + i ) - ( 3 T i ) 

(c) -i3 · ( -2 + 3i) 

(d) (2 + 5i) · (4 - i) 

(e) (2 + 5i) · (4 - i) 

(f) ( 2 - i ) - i 

(g) (l + ¿)-=-( l -¿) 

1.5 For each complex number z, compute \z\. 

(a) z = 2 + 3i 
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(b) z = 5 

(c) z = -U 

(d) z = tanfl + i where Θ G ( - § , f ) 

(e) z satisfies z · z = 6 

1.6 Let 2 = a + 6z and y = c + di. For parts (a) - (d) show that: 

(a) ψ~ζ = y-z 

(b) |*| = \z\ 

(c) \yz\ = \y\ · |*| 

(d) y + z = y + z 

(e) Find the real and imaginary parts of z _ 1 = - . 
z 

*1.7 Suppose z = a + bi with |z| = 1. Show that ~z = z - 1 . 

*1.8 We can generalize Problem 1.6(d). Suppose that Zk = α^ + M , for fc = 
1 , . . . ,n. Show that 

n n n n 
Y2zk = ^2z^=^ak-iy^bk 
fc=l fc=l fc=l fe=l 

*1.9 Suppose that J^ a& and ^ bk are convergent series where ak,bk G M. For 
fcez fcez 

Zk = dk + ibk, k e Z, show that 
OO C O OO OO 

fc=l fc=l fc=l fc=l 

*1.10 The identity in this problem is key to the development of the material in 
Section 6.1. Suppose that z, w G C with \z\ = 1. Show that 

\(z -w)(z- l/w)\ = \UJ\-1 \z - w\2 

The following steps will help you organize your work: 

(a) Using the fact that \z\ — 1, expand \z — w\ = [z — w)(z — w) to obtain 

\z — w\ = 1 + \w\2 — vSz — wz 
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(b) Factor —wz l from the right side of the identity in part (a) and use Problem 1.7 
to show that 

, ,2 i / 2 ! + M 2 , w 

\z — w\ = —wz ( z ——z + — 
w w 

(c) Show that the quadratic on the right-hand side of part (b) can be factored as 
(z — w){z — 1/w). 

(d) Take norms of both sides of the identity obtained in part (c) and simplify the 
result to complete the proof. 

1.2 THE SPACE L2(R) 

In order to create a mathematical model with which to build wavelet transforms, it 
is important that we work in a vector space that lends itself to applications in digital 
imaging and signal processing. Unlike RN, where elements of the space are iV-tuples 
v = (i>i,..., VN)T, elements of our space will be functions. We can view a digital 
image as a function of two variables where the function value is the gray-level intensity, 
and we can view audio signals as functions of time where the function values are the 
frequencies of the signal. Since audio signals and digital images can have abrupt 
changes, we will not require functions in our space to necessarily be continuous. 
Since audio signals are constructed of sines and cosines and these functions are 
defined over all real numbers, we want to allow our space to hold functions that are 
supported (the notion of support is formally provided in Definition 1.5) on R. Since 
rows or columns of digital images usually are of finite dimension and audio signals 
taper off, we want to make sure that the functions f{t) in our space decay sufficiently 
fast as t —> ±00. The rate of decay must be fast enough to ensure that the energy 
of the signal is finite. (We will soon make precise what we mean by the energy of a 
function.) Finally, it is desirable from a mathematical standpoint to use a space where 
the inner product of a function with itself is related to the size (norm) of the function. 
For this reason, we will work in the space L2(R). We define it now. 

L2(R) Defined 

Definition 1.3 (The Space L2(R)) We define the space L2(R) to be the set 

LZ(R) = {f:R-^C\ / \f(t)\zdt<oo /l/WI (1.2) 
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Note: A reader with some background in analysis will understand that a rigorous 
definition of L2(R) requires knowledge of the Lebesgue integral and sets of measure 
zero. If the reader is willing to accept some basic properties obeyed by Lebesgue 
integrals, then Definition 1.3 will suffice. 

We define the norm of a function in L2(R) as follows: 

Definition 1.4 (The L2(R) Norm) Let f(t) G L2(R). Then the norm off(t) is 

(1.3) 

The norm of the function is also referred to as the energy of the function. There 
are several properties that the norm should satisfy. Since it is a measure of energy or 
size, it should be nonnegative. Moreover, it is natural to expect that the only function 
for which | | /(t) | | = 0 is f(t) = 0. Some clarification of this property is in order 
before we proceed. 

If f(t) = 0 foralli G R, then certainly \f(t)\2 = 0, so that | | /(t) | | = 0. But what 
about the function that is 0 everywhere except, say, for a finite number of values? It 
is certainly possible that a signal might have such abrupt changes at a finite set of 
points. We learned in calculus that such a finite set of points has no bearing on the 
integral. That is, for a < c < b, /(c) might not even be defined, but 

rb pL pb 
/ f(t)dt= lim / / ( t ) d í + lim / f(t)dt 

could very well exist. This is certainly the case when f(t) = 0 except at a finite 
number of values. 

This idea is generalized using the notion of measurable sets. Intervals (a, b) are 
measured by their length b — a, and in general, sets are measured by writing them as 
a limit of the union of nonintersecting intervals. The measure of a single point a is 
0, since for an arbitrarily small positive measure e > 0, we can find an interval that 
contains a and has measure less than e (the interval (a — e/4, a + e/4) with measure 
e/2 works). We can generalize this argument to claim that a finite set of points has 
measure 0 as well. The general definition of sets of measure 0 is typically covered in 
an analysis text (see Rudin [48], for example). 

The previous discussion leads us to the notion of equivalentfunctions. Two func-
tions f(t) and g {t) are said to be equivalent if fit) = g(t) except on a set of measure 
0. 

We state the following proposition without proof. 

Proposition 1.2 (Functions for Which ||f(t)|| = 0) Suppose that f(i) G L2(R). 
Then \\f(t) || = 0 if and only if' f{t) = 0 except on a set of measure 0. ■ 


