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PREFACE

Mercury is a global contaminant posing severe risks to the health of ecosystems
and humans worldwide. The biogeochemical cycling of mercury is rather com-
plicated, involving various transformations and transport processes of mercury
species in the environment. A comprehensive review of all the various aspects
of mercury transformation and transport is essential for better understanding the
mercury cycle and assessing the risks of mercury contamination. Substantial
progress has been made in the area of mercury biogeochemistry over the past
years; however, there are currently few places where researchers and students can
obtain a complete review of the state of the science in this field. This book brings
together many of the foremost experts in the field of environmental chemistry
and toxicology of mercury and provides a comprehensive overview of the current
mercury science. We believe that this book will serve as an excellent resource
for researchers, graduate students, environmental regulators, and others.

This book is organized as follows. The first chapter of the book provides a brief
overview of mercury in the environment, followed by two chapters discussing
environmental analytical chemistry of mercury species and measurement of indus-
trial gas phase mercury emissions. The main part of the book is then devoted to
addressing the important transformation and transport processes of mercury in
the environment. The following topics are covered under mercury transformation:
atmospheric chemical processes, microbial transformations, and aquatic photo-
chemical reactions of mercury species, mercury speciation in soils/sediments,
interaction of mercury with organic matter, and isotopic fractionation. For mer-
cury transport, the following topics are examined: atmospheric transport, partition

xiii



Xiv PREFACE

between water and solids, and exchange between the atmosphere and the earth
surface (including oceans and terrestrial systems) of mercury. The last part of
the book covers bioaccumulation, toxicity, metallomics, and human health risks
of mercury. Author’s name in boldface on the chapter opening pages indicates
the lead author of that chapter.

GUANGLIANG Liu
YoNG CAI
NELSON O’DRISCOLL
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CHAPTER 1

OVERVIEW OF MERCURY
IN THE ENVIRONMENT

GUANGLIANG LIU, YONG CAIl, NELSON O’DRISCOLL, XINBIN FENG,
and GUIBIN JIANG

1.1 INTRODUCTION

Mercury (Hg) is a naturally occurring element that is present throughout the envi-
ronment. Mercury is recognized as a global contaminant because it can undergo
long-range transport in the atmosphere, be persistent in the environment, be accu-
mulated in the food web, and pose severe adverse effects on the human and
ecosystem health (Nriagu, 1979; Fitzgerald et al., 2007b). The environmental
contamination of land, air, water, and wildlife in various ecosystems with mer-
cury around the world due to the natural release and extensive anthropogenic
use of Hg has been a global concern for decades (Lindberg and Turner, 1977;
Ebinghaus et al., 1999; Fitzgerald et al., 2005; Mason et al., 2009). This being
the first chapter of the book, it will briefly discuss the health risks associated
with mercury exposure and the natural and anthropogenic sources of mercury
emissions, and then provide a very brief overview of the biogeochemical cycling
of mercury.

In the environment and in biological systems, mercury can exist in three oxi-
dation states, namely, Hg(0) (metallic), Hg(II) (mercuric), and Hg(I) (mercurous),
with the monovalent form being rare owing to its instability (Ullrich et al., 2001;
Fitzgerald et al., 2007a,b). In general, the dominant form of mercury in water,
soil, and sediment is the inorganic Hg(II) form while methylmercury (MeHg) is
dominant in biota, and in the atmosphere Hg(0) is the primary species (USEPA,
1997; Ullrich et al., 2001).

Environmental Chemistry and Toxicology of Mercury, First Edition.
Edited by Guangliang Liu, Yong Cai, and Nelson O’Driscoll.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



2 OVERVIEW OF MERCURY IN THE ENVIRONMENT
1.2 TOXICITY AND HEALTH RISKS OF MERCURY EXPOSURE

All forms of mercury are toxic, but particularly problematic are the organic
forms such as MeHg, which is a neurotoxin (Committee on the Toxicological
Effects of Methylmercury, 2000; Clarkson and Magos, 2006). Acute mercury
exposure can produce permanent damage to the nervous system, resulting in a
variety of symptoms such as paresthesia, ataxia, sensory disturbances, tremors,
blurred vision, slurred speech, hearing difficulties, blindness, deafness, and death
(USEPA, 1997; Committee on the Toxicological Effects of Methylmercury, 2000;
Clarkson and Magos, 2006). In addition to neurotoxicity, mercury, in inorganic
and/or organic forms, can affect other systems and sequentially cause adverse
effects including renal toxicity, myocardial infarction, immune malfunction, and
irregular blood pressure (USEPA, 1997; Committee on the Toxicological Effects
of Methylmercury, 2000).

Human exposure to Hg can pose a variety of health risks, with the severity
depending largely on the magnitude of the dose. Historically, there were two
notorious poisoning episodes associated with the extremely high MeHg expo-
sures, that is, in Minamata where individuals were poisoned by MeHg through
consumption of contaminated fish and in Iraq where the consumption of MeHg-
treated (as a fungicide) grain led to poisoning (Committee on the Toxicological
Effects of Methylmercury, 2000). Nowadays, acute poisoning incidents from high
Hg exposure are rare and the health risks mercury poses to human population are
mainly from chronic MeHg exposure through consumption of contaminated fish
and other aquatic organisms, particularly large predatory fish species (USEPA,
1997). A major concern related to the health risks of chronic MeHg exposure
is the possibility of developmental toxicity in the fetal brain, since MeHg can
readily cross the placenta and the blood—brain barrier (Clarkson and Magos,
2006). Prenatal Hg exposure interferes with the growth and migration of neurons
and has the potential to cause irreversible damage to the developing central ner-
vous system (Committee on the Toxicological Effects of Methylmercury, 2000).
For instance, because of prenatal MeHg exposure from maternal fish consump-
tion, infants might display deficits in subtle neurological endpoints such as 1Q
deficits, abnormal muscle tone, and decrements in motor function (Committee on
the Toxicological Effects of Methylmercury, 2000).

1.3 SOURCES OF MERCURY

Both naturally occurring and anthropogenic processes can release mercury into
air, water, and soil, and emission into the atmosphere is usually the primary path-
way for mercury entering the environment (Camargo, 1993; Berg et al., 2006;
Jiang et al., 2006; Bone et al., 2007; Bookman et al., 2008; Streets et al., 2009;
Cheng and Hu, 2010). It is estimated that the total annual global input to the
atmosphere from all sources (i.e., from natural and anthropogenic emissions) is
around 5000-6000t (Mason et al., 1994; Lamborg et al., 2002; Gray and Hines,
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2006). The relative importance of natural versus anthropogenic sources of mer-
cury has not been accurately determined, with the ratio of natural to anthropogenic
mercury emissions being reported to be within a wide range (e.g., from 0.8 to
1.8) (Nriagu and Pacyna, 1988; Nriagu, 1989, 1994; Bergan et al., 1999; Gustin
et al., 2000; Lin and Tao, 2003; Nriagu and Becker, 2003; Seigneur et al., 2003,
2004; Gbor et al., 2007; Shetty et al., 2008).

1.3.1 Natural Sources of Mercury

There are a number of natural processes that can emit Hg into the atmosphere.
These processes may include geologic activities (in particular volcanic and
geothermal emissions), volatilization of Hg in marine environments, and
emission of Hg from terrestrial environments (including substrates with elevated
Hg concentrations and background soils) (Nriagu, 1989, 1993, 1994; Gustin
et al., 2000, 2008; Gustin, 2003; Nriagu and Becker, 2003; Gray and Hines,
2006). Owing to the lack of data and the complexity of geological processes
(e.g., vast variability spatially and temporally) (Gustin et al., 2000, 2008),
it is rather difficult to accurately estimate natural Hg emissions, resulting in
high degrees of uncertainties being associated with the reported Hg emissions
from natural sources. The annual global Hg emissions from natural sources are
estimated to range from 800 to 5800t, with a middle range from 1800 to 3000t
(Lindberg and Turner, 1977; Nriagu, 1989; Lindberg et al., 1998; Bergan et al.,
1999; Pirrone et al., 2001; Seigneur et al., 2001, 2004; Lamborg et al., 2002;
Mason and Sheu, 2002; Pacyna and Pacyna, 2002; Pirrone and Mahaffey, 2005;
Pacyna et al., 2006; Shetty et al., 2008). Among different natural processes, the
global volcanic, geothermal, oceanic, and terrestrial Hg emissions are estimated
to be 1-700, ~60, 800-2600, and 1000-3200t per year, respectively (Nriagu,
1989; Lindberg et al., 1998, 1999; Bergan et al., 1999; Ferrara et al., 2000;
Lamborg et al., 2002; Mason and Sheu, 2002; Nriagu and Becker, 2003; Pyle
and Mather, 2003; Seigneur et al., 2004; Fitzgerald et al., 2007b). Gaseous
elemental mercury (GEM) is the predominant form (>99%) of Hg from natural
emissions, which is different than anthropogenic emissions that may also contain
reactive gaseous mercury (RGM) and particulate Hg (PHg) (Stein et al., 1996;
Streets et al., 2005; Pacyna et al., 2006). It should be noted that some processes
of natural Hg emissions include reemission of Hg previously deposited from
the atmosphere by wet and dry processes derived from both anthropogenic and
natural sources. For instance, emission from low Hg-containing substrates and
background soils is assumed to be predominantly reemission of Hg previously
deposited (Gustin et al., 2000; Seigneur et al., 2004; Gustin et al., 2008; Shetty
et al., 2008).

1.3.2 Anthropogenic Sources of Mercury

Extensive anthropogenic emission and use of Hg have caused worldwide mercury
contamination in many aquatic and terrestrial ecosystems (Lee et al., 2001; Streets
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Figure 1.1 Annual global mercury emission (tons) from major anthropogenic sources.
Source: Data are extracted from the UNEP reports (AMAP/UNEP, 2008; UNEP Chemicals
Branch, 2008). Fossil fuel combustion refers to burning of coal and other fossil fuels in
power plants and commercial and residential heating units. Metal production includes
mercury production, but does not include gold mining and production, which is listed
separately.

et al., 2005, 2009; Hope, 2006; Wu et al., 2006; Zhang and Wong, 2007; Sunder-
land et al., 2009). Comparisons of contemporary (within the past 20—30 years)
measurements and historical records indicate that the total global atmospheric
mercury burden has increased by a factor of between 2 and 5 since the beginning
of the industrialized period (USEPA, 1997). Although anthropogenic emission of
Hg has been reduced in the past three decades, anthropogenic processes are still
responsible for a significant proportion of global Hg input to the environment. It
has been suggested that, among the 5000—6000t of Hg that is estimated to be
released into the atmosphere each year, about 50% may be from anthropogenic
sources (Mason et al., 1994; Lamborg et al., 2002; Gray and Hines, 2006), which
agrees with some other studies where the annual global anthropogenic emissions
of mercury are estimated to be in the range of 2000—-2600t (Pacyna et al., 2001,
2006; Pirrone et al., 2001; Pacyna and Pacyna, 2002; Pirrone and Mahaffey,
2005). Unlike natural sources, anthropogenic sources can emit different species
of Hg including GEM, RGM, and PHg with a distribution of about 50—60%
GEM, 30% RGM, and 10% PHg (Streets et al., 2005; Pacyna et al., 2006).
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Anthropogenic emissions of mercury can be from point (e.g., incinerators and
coal-fired power plants) as well as diffuse (e.g., landfills, sewage sludge amended
fields, and mine waste) sources (Nriagu, 1989; Sigel and Sigel, 2005; Malm,
1998; Schroeder and Munthe, 1998; Quemerais et al., 1999; Lee et al., 2001;
Horvat, 2002; Gustin, 2003; Nelson, 2007; Feng et al., 2010; Pacyna et al., 2010).
Point sources, including combustion, manufacturing, and miscellaneous sources
(e.g., dental amalgam), are thought to be the main anthropogenic sources of
mercury, accounting for approximately more than 95% of anthropogenic mercury
emissions (USEPA, 1997). Combustion sources include burning of fossil fuels
(e.g., coal and oil), medical waste incinerators, municipal waste combustors, and
sewage sludge incinerators. Fossil fuel combustion can be associated with power
generation, industrial and residential heating, and various industrial processes.
Combustion processes emit divalent mercury and elemental mercury, in gaseous
as well as particulate form, depending on the fuels and materials burned (e.g.,
coal, oil, municipal waste) and fuel gas cleaning and operating temperature, into
the atmosphere (USEPA, 1997; UNEP Chemicals Branch, 2008). Manufacturing
sources refer to extensive use (especially in the past and in some undeveloped
areas) of mercury compounds in many industrial processes such as gold mining,
chlor-alkali production, and paper and pulp manufacturing. Unlike combustion
sources, manufacturing processes can release mercurial compounds directly into
aquatic and terrestrial environments, in addition to the atmosphere (Lindberg and
Turner, 1977; Nriagu et al., 1992; Nriagu, 1994; USEPA, 1997, AMAP/UNEP,
2008; UNEP Chemicals Branch, 2008).

Of the three anthropogenic point sources, combustion generally contributes
more than 80% of anthropogenic mercury emissions, although varying from
region to region (USEPA, 1997; UNEP Chemicals Branch, 2008). Figure 1.1
illustrates the global inventory of mercury emissions from major anthropogenic
sources, as estimated by the United Nations Environmental Programme (UNEP)
(AMAP/UNEP, 2008; UNEP Chemicals Branch, 2008). Fossil fuel combustion
for power generation and industrial and residential heating contributes about
45% of total global emission (880t out of 1930t) (Fig. 1.1). Owing to the enor-
mous amount of coal that is burned, coal burning is the largest single source of
anthropogenic emissions of Hg to the atmosphere (AMAP/UNEP, 2008). Waste
incineration contributes another significant proportion (about 120t) of mercury
emission, but with a wide range between 50 and 470t due to lack of reliable
estimation data, in particular in countries outside Europe and North America.
In addition, fuel combustion in industrial processes, including cement and metal
production, can release mercury into the atmosphere. Meanwhile, these industrial
processes, in particular, the production of iron and nonferrous metals, can release
mercury as it can be present as impurity in ores (AMAP/UNEP, 2008). The data
illustrated in Fig. 1.1 for these industrial processes include mercury from fuel
combustion and from impurities in ores.

Manufacturing sources mainly include gold mining and chlor-alkali indus-
try. Globally, gold mining and production, primarily artisanal and small-scale
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gold mining using mercury to extract gold, contribute about 20% of anthro-
pogenic mercury emission, while the fraction for chlor-alkali production is about
3% (Fig. 1.1) (AMAP/UNEP, 2008; UNEP Chemicals Branch, 2008). Although
industrial use of mercury has been largely reduced in developed countries, it may
still contribute to a significant portion of Hg emission in developing countries
(e.g., in Asia and South America). As seen from Fig. 1.2, there are signifi-
cant geological disparities in anthropogenic mercury emissions, with Asia alone
accounting for about 65% of total global emission (1280t out of 1930t). It
should be borne in mind that the data in Fig. 1.2 refer merely to the current
emission inventory by region estimated by UNEP, with historical contributions
being unaccounted for. Moreover, the relative contributions of different sources to
total anthropogenic mercury emission vary with geological region (Fig. 1.3). The
most striking characteristic in geological variability of anthropogenic mercury
emissions is the dominant contribution of gold mining to overall anthropogenic
mercury emission in South America. On the global scale, fossil fuel combus-
tion for power and heating is the primary source of mercury emission, but in
South America, gold mining contributes over 60% of total anthropogenic mercury
emission (Fig. 1.3).
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Figure 1.2 Annual global anthropogenic mercury emission (tons) in different regions
of the world. Source: Data are extracted from the UNEP reports (AMAP/UNEP, 2008;
UNEP Chemicals Branch, 2008). Fossil fuel combustion refers to burning of coal and other
fossil fuels in power plants and commercial and residential heating units. Metal production
includes mercury production, but does not include gold mining and production, which is
listed separately.
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Figure 1.3 Relative percentages (%) of anthropogenic mercury emissions from different
sources worldwide and in different regions of the world. Source: Data are extracted
from the UNEP reports (AMAP/UNEP, 2008; UNEP Chemicals Branch, 2008). Fossil
fuel combustion refers to burning of coal and other fossil fuels in power plants and
commercial and residential heating units. Metal production includes mercury production,
but does not include gold mining and production, which is listed separately.

1.4 OVERVIEW OF MERCURY BIOGEOCHEMICAL CYCLING

After entering the environment, mercury undergoes a series of complicated trans-
port and transformation processes during its biogeochemical cycling. The bio-
geochemical cycling of mercury is closely associated with the chemical forms of
mercury present in different phases of the environment.

In the atmosphere, elemental mercury (Hg(0)) constitutes the majority of Hg
(>90%) and is the predominant form in the gaseous phase, which facilitates the
long-range transport of Hg at a global scale (USEPA, 1997; Ebinghaus et al.,
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1999; Pirrone and Mahaffey, 2005). On the other hand, Hg(Il) species present
in atmospheric waters, either dissolved or adsorbed onto particles in droplets,
has a tendency to readily deposit on the earth’s surface through wet and dry
deposition, which is important to the local and regional cycle of Hg (Nriagu,
1979; Schroeder and Munthe, 1998).

In water, sediment, and soil environments, mercury is present primarily as
various Hg(II) compounds, including inorganic (e.g., mercuric hydroxide) and
organic (e.g., MeHg) mercuric compounds, and secondarily as Hg(0), which
plays an important role in the exchange of mercury between the atmosphere and
aquatic and terrestrial surfaces (Stein et al., 1996; Ullrich et al., 2001; Fitzgerald
et al., 2007a,b). These Hg(Il) compounds (including inorganic and organic) are
present in a variety of physical and chemical forms through complexing with
various inorganic (e.g., chloride and sulfide) and organic (e.g., organic matter)
ligands (Ullrich et al., 2001). Although in aquatic and soil environments MeHg
may constitute a minor fraction of total mercury present (typically less than 10%
and 3% in water and soil/sediment, respectively), the formation of MeHg is an
important step in mercury cycling (USEPA, 1997; Ullrich et al., 2001). This
is because MeHg can be bioaccumulated along the food web and reach high
concentrations in organisms, in particular, in aquatic environments. In fishes and
wildlife that prey on fish, MeHg can be the dominant form of mercury species
owing to bioaccumulation and biomagnification (Stein et al., 1996; Fitzgerald
et al., 2007a).

Associated with transformation between different mercury species and trans-
port of mercury between different environmental phases, there are a number of
processes that are important in the biogeochemical cycling of mercury. These
processes include oxidation of Hg(0) and reduction of Hg(Il) (including photo-
chemical and microbial processes), methylation of inorganic mercury (primarily
mediated by microbes), distribution of mercury between water and sediment,
deposition of mercury from the atmosphere, long-range transport of mercury in
the atmosphere, exchange of mercury between the earth surface (oceans and ter-
restrial ecosystems) and the atmosphere, and bioaccumulation of mercury through
food webs (Nriagu, 1979; Ebinghaus et al., 1999; Pirrone and Mahaffey, 2005;
Fitzgerald et al., 2007b).

1.5 STRUCTURE OF THE BOOK

The biogeochemical cycling of mercury is rather complicated, involving various
transport and transformation processes that determine the fate of mercury and
the health risks on ecosystem and humans. A comprehensive summary of the
various aspects regarding transformation and transport of mercury is essential
for better assessing the risks of mercury contamination. In the past years, a great
deal of research has been done to advance the understanding of important aspects
of mercury biogeochemical cycling and has produced a wealth of material. This
book is aimed to develop a comprehensive review of the state of environmental
mercury research by summarizing all the key aspects of the mercury cycle.



