PROBABILITY, STATISTICS AND
MODELLING IN PUBLIC HEALTH



PROBABILITY, STATISTICS AND
MODELLING IN PUBLIC HEALTH

Edited by

MIKHAIL NIKULIN
Université Victor Segalin Bordeaux 2, France
V. Steklov Mathematical Institute, Saint Petersburg, Russia

DANIEL COMMENGES
Université Victor Segalin Bordeaux 2, France

CATHERINE HUBER
Université René Descartes, Paris, France

@ Springer



Library of Congress Control Number: 2005052019

ISBN-10: 0-387-26022-6 e-ISBN: 0-387-26023-4
ISBN-13: 978-0387-26022-8

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

987654321

springeronline.com



Dedicated to Marvin ZELEN



Preface

On September 23, 2003 Marvin Zelen was awarded the title of Docteur Honoris
Causa de I'Université Victor Segalen Bordeaux 2, Bordeaux, France. Professor
Zelen was the third biostatistician to receive this title after David Cox (1999)
and Norman Breslow (2001). To mark the occasion and the importance of
the contribution of Professor Zelen in development of biostatistics in public
health and especially in the War on Cancer, a special symposium, Probabilités,
Statistics and Modelling in Public Health, was organized in Marvin’s honor
by Daniel Commenges and Mikhail Nikulin. This workshop took place on
September 22-23, 2003, in Bordeaux. Several well known biostatisticians from
Europe and America were invited. A special issue of Lifetime Data Analysis
was published (Volume 10, No 4), gathering some of the works discussed at this
symposium. This volume gathers a larger number of papers, some of them
being extended versions of papers published in the Lifetime Data Analysis
issue, others being new. We present below several details of the biography of
Professor Zelen.

Marvin Zelen is Professor of Statistics at the Harvard School of Public
Health in Boston. He is one of the major researchers in the field of statistical
methods in public health.

Since 1960, Professor Zelen constantly worked in several fields of applied
statistics, specifically in biology and epidemiology of cancer. He is very well
known for his work on clinical trials in oncology, on survival analysis, reliabil-
ity and planning of experiments and prevention. His papers have now become
classics among epidemiologists and biostatisticians who work in the field of
cancer.

Since 1967, Professor Zelen was involved in different scientific groups such
as the Eastern Cooperative Oncology Group, the Veteran’s Administration
Lung Cancer Group, the Gastrointestinal Tumor Study Group, and the Ra-
diation Therapy Oncology Group to do statistical research in cancer clinical
trials in the USA. Professor Zelen made also significant contributions to re-
liability theory and random processes, mainly Markov and semi-Markov pro-
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cesses, in biostatistics and epidemiology. Professor Zelen is famous all over
the world for the development of the Biostatistics Department in the Harvard
School of Public Health. He received several awards for his contributions to
statistical methodology in the biomedical field. Among them, in 1967, the
Annual Award, Washington Academy of Science, for Distinguished Work in
Mathematics, in 1992, the Statistician of the Year award of Boston Chapter
of the American Statistical Association, and, in 1996, the Morse Award for
Cancer Research.

We thank all participants of the workshop in Bordeaux and all colleagues
and friends of Marvin for supporting us in the organization of the meeting in
Bordeaux and for their contributions in preparation of this volume. Especially
we thank Thelma Zelen, Mei-Ling Ting Lee, Stephen Lagakos, Dave Harring-
ton, Bernard Begaud, Roger Salamon, Valia Nikouline, Elizabeth Cure and
the participants of the European Seminar Mathematical Methods for Reliabil-
ity, Survival Analysis and Quality of Life for their help in organization of the
meeting and preparation of the proceedings. We thank also 'TFR-99 "Santé
Publique" for financial support of our project.

We sincerely hope that this volume will serve as a valuable reference for
statisticians.

Mikhail Nikulin, Daniel Commenges and Catherine Huber, editors
March, 2005, Bordeaux
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Forward and Backward Recurrence Times and
Length Biased Sampling: Age Specific Models

Marvin Zelen!

Harvard School of Public Health and the Dana-Farber Cancer Institute
Boston, MA 02115, U.S.A. name@email .address

Summary. Consider a chronic disease process which is beginning to be observed
at a point in chronological time. The backward recurrence and forward recurrence
times are defined for prevalent cases as the time with disease and the time to leave
the disease state respectively, where the reference point is the point in time at which
the disease process is being observed. In this setting the incidence of disease affects
the recurrence time distributions. In addition, the survival of prevalent cases will
tend to be greater than the population with disease due to length biased sampling.
A similar problem arises in models for the early detection of disease. In this case the
backward recurrence time is how long an individual has had disease before detection
and the forward recurrence time is the time gained by early diagnosis; i.e. until the
disease becomes clinical by exhibiting signs or symptoms. In these examples the
incidence of disease may be age related resulting in a non-stationary process . The
resulting recurrence time distributions are derived as well as some generalization of
length-biased sampling.

1 Introduction

Consider a sequence of events occuring over time in which the probability
distribution between events is stationary. Consider a randomly chosen interval
having endpoints which are events and select at random a time point in the
interval. The forward recurrence time is defined as the time from the random
time point to the next event; the backward recurrence time is the time from
the time point to the previous event; cf. Cox and Miller [CM65].

An example illustrating these recurrence times is the so-called “waiting
time paradox”; cf. Feller [FELT71]. Suppose the events are defined as bus
arrivals at a particular location. A person arriving at the bus stop has a
waiting time until the next bus arrives. The waiting time is the forward
recurrence time. The backward recurrence time is how long the person missed
the previous bus.

Backward and forward recurrence times play an important role in several
biomedical applications. However in many instances the distribution of events
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may have a distribution which changes with time. Furthermore time may be
chronological or age. In some applications it may be necessary to consider
two time scales incorporating both chronological time and age.

In addition, a closely related topic is length biased sampling . Referring
to the bus waiting problem, when the individual arrives at the bus stop, she
is intersecting a time interval having endpoints consisting of the previous bus
arrival and the next arrival. Implicitly these intervals are chosen so that the
larger the interval, the greater the probability of selecting it. The selection
phenomena is called length bias sampling.

We will consider two motivating examples for generalizing the recurrence
time distributions and length biased sampling. One example deals with a
model of the natural history of a chronic disease . The other example refers
to modeling the early detection of disease . The mathematics of the examples
are the same. However, they are both important in applications and we
use both to motivate our investigation. This paper is organized as follows.
Section 2 describes the two motivating examples and summarizes results for
stationary processes. Section 3 develops the model for the chronic disease
example; section 4 indicates the necessary changes for the early detection
example. The paper concludes with a discussion in section 5.

2 Motivating Problems and Preliminary Results

2.1 Chronic Disease Modeling

Consider a population and a chronic disease such that at any point in time a
person may be disease free (Sp), alive with disease (S,) or may have died of the
specific disease (Sg4). The natural history of the disease will be Sy — S, — Sy.
The transitions Sy — S, corresponds to the (point) incidence of the disease
and S, — Sy describes the (point) mortality.

Of course an individual may die of other causes or may be cured by treat-
ment. Our interest is in disease specific mortality. Hence an individual who
dies of other causes while in S, is regarded as being censored for the particular
disease. An individual who is cured of a disease will still be regarded as being
in S, and eventual death due to other causes will be viewed as a censored
observation. This model is a progressive disease model and is especially ap-
plicable for many chronic diseases — especially some cancers, cardiovascular
disease and diabetes.

Consider a study where at some point in time, say, to this population will
be studied. At this point in time some individuals will be disease free (Sp)
while others will be alive with disease (S,). Those in S, are prevalent cases.
The backward recurrence time is how long a prevalent case has had disease
up to the time tg. The forward recurrence time refers to the eventual time of
death of the prevalent cases using ty as the origin. The sum of the backward
and forward recurrence times is the total survival of prevalent cases.
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2.2 Early Detection Modeling

Consider a population in which at any point in time a person may be in one
of three states: disease free (Sy), pre-clinical (S,), or clinical (S.). The pre-
clinical state refers to individuals who have disease, but there are no signs or
symptoms. The individual is unaware of having disease. The clinical state
refers to the clinical diagnosis of the disease when the disease interferes with
the functioning of an organ system or causes pain resulting in the individual
seeking medical help leading to the clinical diagnosis of the disease. The
natural history of the disease is assumed to be Sy — S, — S.. Note that the
transition from Sy — S), is never observed. The transition S, — S, describes
the disease incidence. The aim of an early detection program is to diagnose
individuals in the pre-clinical state using a special examination. If indeed, the
early detection special examination does diagnose disease in the pre-clinical
state, the disease will be treated and the natural history of the disease will
be interrupted. As a result, the transition S, — S, will never be observed.
The time gained by earlier diagnosis is the forward recurrence time and the
time a person has been in the pre-clinical state before early diagnosis is the
backward recurrence time. If ¢ is the time (either age or chronological time)
in which the disease is detected, we then have an almost identical model as
the chronic disease model simply by renaming the states.

2.3 Preliminary Results

Consider a non-negative random variable 7" having the probability density
function ¢(t). A length biased sampling process chooses units with a prob-
ability proportional to ¢t (¢ < T < t + dt). Samples of T are drawn from a
length biased process. Suppose the random variable is randomly split into
two parts (U,V) so that T'= U + V. The random variable U and V are the
backward and forward recurrence times. The model assumes that for fixed
T =t (t<T<t+dt)apoint u is chosen according to a uniform distribution
over the interval (0,t). Then if gf(v) and ¢,(u) are the probability density
functions of the forward and backward recurrence times it is well known that
with length biased sampling for selecting T'; ¢f. Cox and Miller [CMG65].

ar(t) = go(t) = Q(t)/m,  t>0 (1)
where Q(t) = /Ooq(x)dx and m = /OOQ(x)dx.
t 0
Also the p.d.f. of T is

Note that the first moments of these distributions are:
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/oo Q) gy F(1+C?),
0 m
/OOO ﬁq#dt — m(1+C?) 3)

where C' = o/m is the coeflicient of variation associated with ¢(t). If ¢(t) is the
exponential distribution with mean m, the forward and backward recurrence
times have the same exponential distribution as ¢(t) and C' = 1.

A reviewer suggested that a simpler way to discuss these results is to
initially assume that the joint distribution of (U, V) is f(u,v) = q(u+v)I(u >
0,v > 0)/m.. Then all the results above are readily derived. Implication in
this assumption is f(u/T) = 1/t and length biased sampling.

3 Development of the Chronic Disease Model

In this section we will investigate generalizations of the distribution of the
backward and forward recurrence times using the chronic disease model as
a motivating example. We remark that for the chronic disease model, the
process may have been going on for a long time before being observed at time
to.

Suppose at chronological time ¢y the disease process is being observed. The
prevalent cases at time to will have an age distribution denoted by b(z|tg). We
will initially consider the prevalent cases who have age z. Later by weighting
by the age distribution for the whole population we will derive properties of
the prevalent cases for the population. The prevalent cases could be regarded
as conditional on the time ¢ty when observations began. Another model is
that the prevalent cases could be assumed to have arisen by sampling the
population at a random point in time which is ¢;. We shall consider both
situations.

Define

1 if individual of age z is in S, at time #.
a(z|te) = { 0 if individual of age z is not in .S, at time %o,
but was incident with disease before age z.

1 if individual is in S, at time %,.
a(tp) = ¢ 0if individual is not in S, at time ¢g,
but was incident with disease before time .

Plfty) = Pla(slto) =1}, Py = Plalto) =1} = /O " P([to)b(=to)dx(4)

Note that someone with disease at time ¢y having age z was born in the
year v = ty — z. Hence the probability distribution of ages at time t; is
equivalent to the distribution of birth cohorts at time ¢q.
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3.1 Forward Recurrence Time Distribution

Define

Ty = Forward recurrence time random variable
qr(tlz)dt = P{t < Ty < t+dt | a(zlty) =1}

Qf(tlz) = P{Ty >t a(zlto) =1}

I(r)dr = P{Sqy— S, during 7,7 + d7}

where 7 refers to the age of incidence. Consider the probability of being in
S, at time ty and having age z. If an individual becomes incident at age T,
then P{a(z|ty) = 1|7} = P{T > z — 7} = Q(# — 7). Multiplying by I(7)dr
and integrating over the possible values of 7 (0 < 7 < z) results in

Pla(zlio) = 1} = / I()Q(z — )dr (5)

This probability applies to the birth cohort year v = tg — z; i.e. an individual
born in year v who is prevalent at time tg having age z.

Consider the joint distribution of an individual having age z at time tg
and staying in S, for at least an additional ¢ time units. If 7 is the age of
entering S,, then

P(z|to, T)Q(t|z,7) =P{T >z —17+t} =Q(z —T7+1)
and multiplying by I(7)dr and integrating over (0, z) gives
Pl (tl2) = [ 1)@~ 7+ t)ir (6)
0
In the above it is assumed that the time entering S, (7) is not known, requiring

integration over possible values of (7). Consequently the p.d.f. of the forward
recurrence time is

05(t19) =~ Q) = [ I =70 PCl) (1)

Suppose the incidence is constant, I(7) = I then

as(t]2) = [Q() — Qe + =)/ / T Qy)dy. (®)
If Q(z) is negligible, then

qr(tz) ~ Q(t)/m

which is the usual forward recurrence time distribution for a stationary pro-
cess.
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Define ¢y (t|tg) as the forward recurrence time averaged over the popula-
tion. By definition we can write

Plalto) = 1)g; (tlto) :/00P(z|t0)qf(b\z)b(z\t0)dz )

When the age distribution is uniform so that b(z|tg) = b then it can be
shown, cf. Zelen and Feinleib [ZF69]

/OOO a; (t]to) P(alto) = 1)dto/ /OOO Plalte) = 1)dty = Q(t)/m.

Thus if the sampling point is regarded as a random point in time, the forward
recurrence time distribution as ty — oo is the same as the stationary forward
recurrence time distribution.

3.2 Backward Recurrence Time Distribution

The backward recurrence time refers to the time in S, up to time ¢y (or age
z). Let T, be the backward recurrence time random variable and ¢,(t|z) be
the conditional p.d.f. with Qu(t|z) = [ qs(y|z)dy. Note that 0 < ¢ < z.
Then using the same reasoning as in deriving the forward recurrence time
distribution we have

PAT, > talelto) = 1} = Pl)@s(tl2) = [ T IMQGe - ndr (10)

which allows the calculation of g,(t|2); i.e.,
w(t2) = I(z — )Q(1)/P(elte), 0 <t <= (11)

When I(1) = I, gy(t]2) = Q(t)/ J; Q(y)dy.

Finally the average backward recurrence time distribution is

a(tlto) = Q(t) / "Iz — 0)b(zlto)dz/ Py (12)

Note the distinction between g, (t|z) and gp(t|to). The former refers to individ-
uals having age z at time ¢y whereas the latter refers to the weighted average
over age for prevalent cases at time tg. When b(z|tg) = b, we can integrate over
to and show that the backward recurrence time averaged over to is Q(t)/m.

3.3 Length Biased Sampling and the Survival of Prevalent Cases

As pointed out earlier, the prevalence cases are not a random sample of cases,
but represent a length biased sample. In this section, we investigate the
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consequences of length biased sampling when disease incidence is age-related.
We also derive the survival of prevalent cases.

Define T' = T + T which is the time in which prevalent cases are in
Sa. This is the survival of prevalent cases from the time when they become
incident with disease. We will derive f(¢|z), the pdf of the time in S, for
prevalent cases who have age z at chronological time ty. Since the age z is
fixed at time tg, it is necessary to consider ¢ > z and t < z separately. If ¢
is fixed and ¢ > z, then P{a(z|to) =1 |t > 2z} = [, I()dr. Similarly, if ¢
is fixed and ¢t < z, in order to be prevalent at time tq and be of age z, it is
necessary that z — ¢t < 7 < z. Thus, we have for fixed ¢ (t <T <t + dt)

JS I(r)dr, if t> =
Pla(zlto) =1 | t < T < t+dt} — (13)
S I(r)dr, if t<z

Note that f 7)d7 is an increasing function of ¢. Consequently, indi-
viduals with long SOJOUI‘H times in S, have a greater probability of being in
S, at time tg. Our development is a generalization of the usual considera-
tions of length biased sampling as we have shown how length biased sampling
is affected by the transition into S,. The usual specification of length bi-
ased sampling is to assume P{a(z) = 1|t < T < t+ dt} o« t, which
in our case would be true if I(7) = I and ¢ < z. We also remark that
Pla(zlte) =0 | t <T < t+dt} = [7~"I(r)dr refers to individuals, condi-
tional on having survival t < T < t+ dt who entered S, and died before time
to, but would have been age z at time #, if they had lived. Another interpre-
tation of this probability is that a birth cohort born in v = z — ¢ was incident
with disease but died before reaching age z. Using (13) the joint distribution
of a(z|tg) and T is

(t)dt [ I(T)dr, if t >z

Pla(zlte) =1, t <T < t+dt} = 14
dtfz t dT if t<z.

Therefore, the time in S, for cases prevalent at ¢y and having age z is

g — Pla(zlty) =1, t <T <t +dt}

Some simplifications occur if I(7) = I. Then
t)/ Jy Qa)dz if t >z
f(tlz { (16)
)/ [y Qz)dx if t <z

If ¢(t) is negligible in the neighborhood of z, and ¢t < z, then f(t|z) ~ tq(t)/m
which is the usual distribution for the sum if the forward and backward re-
currence time random variables.
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Using the same development, we can calculate f(t|a(z|tg) = 0) which refers
to the survival of individuals who died before ty, but would have been age z
at time tg. Since

Pla(zlto) = 0, t<T <t-+di} = [/t I(T)df] J)dt, t <
0

Pla(zlto) = 0) = /0 [/OHI(T)dT} g(t)dt

5 1ryar|att)
f(tla(z|tg) = 0) = Pla(zli) = 0) if t<z (17)

which is the distribution of those who died before time tg, but would have
been age z at tg if they had lived. If I(z) = I, the distribution is

(1-$a(t)
)d

and

we have

L
~

f(tla(z|ty) =0) = . for t < z. (18)

Note that if z — oo, then

f(tla(z[to) = 0) = q(t)

which is the population survival pdf.

3.4 Chronological Time Modeling

Suppose that the incidence is a function of chronological time rather than age.
Also, in some cases, tyo may be regarded as far removed from the origin as the
disease process has been going on a long time. Then the equations for the
forward and backward times may be modified by replacing z by tg. Therefore,
we have

WWM%=AOHﬂMm—T+ﬂﬁﬂWM

a(tlto) = I( 0o —HQ(t )/P(to) (19)
(t) fo" I(r)dr if t > to

fltlt) =3

q(t) f,,_ I(r)dr if t<to
F(tlalto) = 0) :q(t)/o(r I(7)dr/P{alto) = 0} for ¢ < to

with P(tg) = Pla(to) = 1} = f Q(to — 7)dr.
If I(7) = I then



