SOLID-PHASE ORGANIC SYNTHESIS

Concepts, Strategies, and Applications

PATRICK H. TOY
YULIN LAM

SOLID-PHASE ORGANIC | SYNTHESIS

SOLID-PHASE ORGANIC SYNTHESIS

Concepts, Strategies, and Applications

Edited by

Patrick H. Toy

Yulin Lam

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www. copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Solid-phase organic synthesis: concepts, strategies, and applications / edited by Patrick H. Toy, Yulin Lam. – 1st ed.

```
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-59914-3 (hardback)
1. Solid-phase synthesis. I. Toy, Patrick H. II. Lam, Yulin.
QD262S584 2012
547'.2-dc23
```

2011019936

Printed in the United States of America

Preface	χv
Acknowledgments	xvii
Contributors	xix
Part I CONCEPTS AND STRATEGIES	1
1 LINKER STRATEGIES IN MODERN SOLID-PHASE ORGANIC SYNT Peter J. H. Scott	THESIS 3
1.1 Introduction	3
1.2 Classical Linker Strategies	5
1.2.1 Acid and Base Cleavable Linker Units	5
1.2.2 Cyclorelease Linker Units	14
1.2.3 Traceless Linker Units	18
1.2.4 Photolabile Linker Units	21
1.2.5 Safety-Catch Linker Units	24
1.3 Multifunctional Linker Strategies	28
1.3.1 Nitrogen Linker Units	28
1.3.1.1 Triazene Linker Units	28
1.3.1.2 Hydrazone Linker Units	32
1.3.1.3 Benzotriazole Linker Units	34
1.3.2 Sulfur Linker Units	37
1.3.3 Phosphorus Linker Units	47
1.3.4 Selenium and Tellurium Linker Units	51
1.3.5 Silyl and Germyl Linker Units	54
1.3.6 Boron and Stannane Linker Units	63
1.3.7 Bismuth Linker Units 1.3.8 Alkene Linker Units	64 69
1.4 Conclusions	73
References	73
2 COLORIMETRIC TEST FOR SOLID-PHASE ORGANIC SYNTHESIS	83
Yan Teng and Patrick H. Toy	
2.1 Introduction	83
2.2 Functional Group Tests	84
2.2.1 Amine Groups	84
2 2 1 1 Ninhydrin (Kaiser) Test	84

VI

2.	.2.1.2	TNBSA Test	84
2.	.2.1.3	Bromophenol Blue Test	84
2.	.2.1.4	Chloranil Test	85
2.	.2.1.5	DABITC Test	85
		MGI Test	85
		Isatin Test	85
2.	.2.1.8	DESC Test	86
		NPIT Test	86
		NF31 Test	86
2.	.2.1.11	Nondestructive NF31 Test	87
2.	.2.1.12	Naphthol Test	87
2.	.2.1.13	2-Amino-3-chloro-1,4-naphthoquinone Test	87
2.2.2 Ald	cohols		87
2.		PNBP Test	88
		TCT-AliR and TCT-Fluorescein Test	88
		Diphenyldichlorosilane–Methyl Red Test	88
		9-Anthronylnitrile Test	89
		NMA Test	89
		Protecting Group NPB Test	89
		Methyl Red/DIC Test	90
		Other Methods	90
	iol Gro		90
		Ellman's Test	90
		Other Methods	90
	logen C		90
		Fluorescein Test	90
		Other Methods	91
	-	c Acid Groups	91
		Malachite Green Test	91
		PDAM Test	91
	•	and Ketone Groups	91
		Fluorescent Dansylhydrazine Test	91
		p-Anisaldehyde Test	92
	.2.6.3	Purpald Test	92
2.3 Conclusions			92
References			92
3 PRACTICAL ASPEC	TS OF	COMBINATORIAL SOLID-PHASE SYNTHESIS	95
		ıl, and Viktor Krchňák	,,,
Jun Huvac, minosia	ir Source	a, and vactor iremain	
3.1 Introduction			95
3.1.1 WI	hat Is C	ombinatorial Chemistry	96
		ot Combinatorial Chemistry	97
		Combinatorial Chemistry: Breakthrough Discoveries	
	•	ed the Future of the Combinatorial Chemistry Field	98
	_	Solid-Phase Synthesis	98
		Pooling Strategy	99
		Parallel Synthesis	99

	3.2	Strategies	in Combinatorial Solid-Phase Synthesis	101
		3.2.1	Random Split-and-Pool Method	102
			3.2.1.1 One-Bead–One-Compound Concept	103
			3.2.1.2 Encoding Methods for the OBOC Technique	103
			3.2.1.3 Organized Mixtures	105
		3.2.2	Directed Split-and-Pool Method in Practice	107
			3.2.2.1 Formulation of Solid-Phase Supports for the	
			Directed Split-and-Pool Technique	107
			3.2.2.2 Chemical History of the Resin Formulations	109
	3.3	Equipment	t and Instrumentation	112
		3.3.1	•	112
		3.3.2	•	114
			Fully Automated Synthesizers (Gone with the Wind)	116
	2.4	3.3.4		117
	3.4		zation and Purification	118
	3.5	Conclusion		121
		owledgment	ts	121
	Refer	ences		121
4	DIVE	RSITY-OR	IENTED SYNTHESIS	131
-			'Connell, Warren R. J. D Galloway, Brett M. Ibbeson,	
			obet, Cornelius J. O'Connor, and David R. Spring	
			The second of th	
	4.1	Introduction	on	131
	4.2	Small Mol	lecules and Biology	131
	4.3		Oriented Synthesis, Target-Oriented Synthesis, and	
		•	orial Chemistry	133
	4.4	Molecular	•	134
			Molecular Diversity and Chemical Space	135
		4.4.2	Synthetic Strategies for Creating Molecular Diversity	136
	4.5		Oriented Synthesis on Solid Phase	137
		•	Reagent-Based Strategies	137
			Substrate-Based Strategies	140
		4.5.3	Build/Couple/Pair Strategies	144
	4.6	Diversity-0	Oriented Synthesis Around Privileged Scaffolds	146
	4.7	•	Linker Units in Solid-Phase Organic Synthesis	147
	4.8	Conclusion	ns	148
	Refer	ences		149
5	DIVE	DCITV_OD	IENTED SYNTHESIS OF PRIVILEGED	
J			S USING DIVERGENT STRATEGY	151
			k and Jonghoon Kim	
			·	
	5.1	Introduction	on	151
	5.2	Divergent	Synthesis of Natural Product-Like Polyheterocycles	
		Using a C	yclic Iminium as a Single Key Intermediate	153

VIII CONTENTS

	5.2.1	Practical Solid-Phase Synthesis of Diaza-briged	
		Heterocycle and Tetrahydro-beta-carboline Through	
		Intramolecular Pictet–Spengler Cyclization	
		(Type I, II, and III)	155
		5.2.1.1 Synthesis of Diaza-Bridged Heterocycles	
		(Type I and II)	155
		5.2.1.2 Synthesis of Tetrahydro-beta-carbolines	
		(Type III)	158
	5.2.2		
		via <i>N</i> -Acyliminium Ion Cyclization (Type IV)	160
	5.2.3	Novel Application of the Leuckart–Wallach Reaction for	
		the Synthesis of a Tetrahydro-1,4-benzodiazepin-5-one	
		Library (Type V)	164
5.3	Conclusio	T T T T T T T T T T T T T T T T T T T	168
Refe	rences		168
recrei	CHCCS		100
6 cur	NAO AND	REGIOSELECTIVITY ENHANCEMENT	
		PORTED REACTIONS	171
			171
Dou	gias D. 10u	ng and Alexander Deiters	
6.1	T., 4.,		171
6.1			171
6.2	Transition	Metal-Mediated Solid-Supported Reactions	172
	6.2.1	Olefin Metathesis Reactions	172
		6.2.1.1 Olefin Cross Metathesis	172
		6.2.1.2 Ring-Closing Metathesis	176
		6.2.1.3 Ring-Opening Metathesis	178
		[2+2+2] Cyclotrimerization Reactions	180
	6.2.3		182
	6.2.4		183
		6.2.4.1 Dötz Benzannulation Reactions	183
		6.2.4.2 Cadiot–Chodkiewicz Coupling Reactions	184
		6.2.4.3 Cyclopropanation Reactions	184
6.3		ition Metal-Mediated Solid-Supported	
	Reactions		186
	6.3.1	Cycloaddition Reactions	186
	6.3.2	Hydroxylation Reactions	189
	6.3.3	Aldol Condensation Reactions	190
	6.3.4	Radical Reactions	190
	6.3.5	Oxidative Coupling Reactions	191
6.4	Traceless	± •	192
	6.4.1	Cyclizative Cleavage	192
	6.4.2		198
	6.4.3	Chemoselective Cleavage	199
6.5	Conclusio		201
Refe	rences		201

Pa	rt I	I Applications	205
7		MMETRIC SYNTHESIS ON SOLID SUPPORT raj Baskar and Kamal Kumar	207
	7.1	Introduction	207
	7.2	Asymmetric Chemical Transformations of Solid-Supported Substrates	208
		7.2.1 Asymmetric Aldol Reactions	208
		7.2.2 Asymmetric Allylation Reactions	211
		7.2.3 Enantioselective Cycloaddition Reactions	214
		7.2.4 Stereoselective Epoxide Ring-Opening Reactions	216
		7.2.5 Asymmetric Alkene Cyclopropanation Reactions	217
	7.2	7.2.6 Enantioselective Alkylation Reactions	218
	7.3	Asymmetric Transformations Using Resin-Bound Chiral Catalysts and Auxiliaries	219
		7.3.1 Catalytic Asymmetric Synthesis with Resin-Bound Chiral Catalysts	219
		7.3.2 Asymmetric Synthesis Using Resin-Bound	
		Chiral Auxiliaries	223
	7.4	Conclusions	227
	Refere	ences	227
8		ENT ADVANCES IN MICROWAVE-ASSISTED SOLID-PHASE THESIS OF HETEROCYCLES	231
	Prasa	ad Appukkuttan, Vaibhav, P. Mehta, and Erik Van der Eycken	
	0.4		221
	8.1	Introduction	231
	8.2	Fused 1,3-oxazin-6-ones	232
	8.3	Thiazolo[4,5-d]pyrimidine-5,7-diones	233
	8.4	Pyrazoles	234
	8.5	HSP70 Modulators	234
	8.6	Benzimidazo[2,1-b]quinazolin-12(5H)-ones	236
	8.7	Imidazoles	237
	8.8	1,4-Naphthoquinones	238
	8.9	Phthalocyanines	238
	8.10	1,2,3,4-Tetrahydroquinolines	242
	8.11	1,2,3-Triazoles	243
	8.12	2,8-Diaminopurines	244
	8.13	Imidazolidin-4-ones	245
	8.14	Indoles	247
	8.15	1,2,3,4-Tetrahydroquinolines Using a SmI ₂ -Cleavable Linker	248
	8.16	Hydantoins	249

	8.17	Imatinib	250
	8.18	Isoindolines	252
	8.19	2-(Benzylthio)imidazo[1,2a]-pyrimidin-5-ones	253
	8.20	2-Aminobenzothiazoles	254
	8.21	Pyrimidines, Pyrazoles, and Isoxazoles	255
	8.22	Quinolin-2(1 <i>H</i>)-ones and Coumarins	256
	8.23	Benzofurans	257
	8.24	<i>i</i> -Condensed Purines	258
	8.25	2(1 <i>H</i>)-Pyrazinones	259
	8.26	Conclusions	260
	Refere	ences	261
9	CO. II	D DUACE CVAITUECIC OF HETEDOCYCLEC FROM DERTIDEC	
7		D-PHASE SYNTHESIS OF HETEROCYCLES FROM PEPTIDES AMINO ACIDS	269
		i, Marc Giulianotti, Wenteng Chen, Richard A. Houghten,	203
		ongping Yu	
	9.1	Introduction	269
	9.2	Synthesis of Various Heterocycles	269
		9.2.1 Three-Membered Ring Heterocycles	269
		9.2.2 Four-Membered Ring Heterocycles	270
		9.2.3 Synthesis of Five-Membered Ring Heterocycles	271
		9.2.3.1 Five-Membered Ring Heterocycles	
		Containing One Nitrogen Atom	271
		9.2.3.2 Five-Membered Ring Heterocycles Containing Two Nitrogen Atoms	274
		9.2.3.3 Five-Membered Ring Heterocycles	214
		Containing Three Nitrogen Atoms	293
		9.2.3.4 Five-Membered Ring Heterocycles	
		Containing Four Nitrogen Atoms	295
		9.2.4 Six-Membered Ring Heterocycles	296
		9.2.4.1 Six-Membered Ring Heterocycles	
		Containing One Nitrogen Atom	296
		9.2.4.2 Six-Membered Ring Heterocycles	200
		Containing Two or More Nitrogen Atoms 9.2.5 Seven-Membered Ring Heterocycles	298
	Refere	· · · · · · · · · · · · · · · · · · ·	311 316
4.0			310
10		RATION OF DRUG-LIKE FIVE-MEMBERED HETEROCYCLIC ARIES USING CARBON DISULFIDE AND MERRIFIELD RESIN	319
		g-Dae Gong and Taeho Lee	
	10.1	Introduction	319
	10.2	Solid-Phase Synthesis of Related Thiazole Compounds	320
		10.2.1 Solid-Phase Synthesis of 2,4,5-Trisubstituted Thiazoles	320

CONTENTS xi

		10.2.2	Solid-Phase Synthesis of 2,5,6,7-Tetrasubstituted	
			Thiazolo[4,5-b]pyridines	323
		10.2.3	Solid-Phase Synthesis of 2,4,6-Trisubstituted	
			Thiazolo[4,5-d]pyrimidine-5,7-diones	324
		10.2.4	Solid-Phase Synthesis of 1,3,6-Trisubstituted	
	10.2	0 11 1 101	1 <i>H</i> -Thiazolo[4,5-c][1,2]thiazin-4(3 <i>H</i>)one-2,2-dioxides	330
	10.3		se Synthesis of Benzoxazoles	333
	10.4		se Synthesis of Related Pyrazole Compounds and	22.4
			zoles via a Dithiocarbazate Linker	334
		10.4.1 10.4.2	Synthesis of a Dithiocarbazate Linker on Solid Support Solid-Phase Synthesis of Pyrazoles via a Dithiocarbazate Linker	334 338
		10.4.3	Solid-Phase Synthesis of Pyrazolo[1,5- <i>a</i>][1,3,5]-2-oxo-4-	336
		10.4.5	dithioxotriazines	338
		10.4.4	Solid-Phase Synthesis of Pyrazolo[1,5- <i>a</i>][1,3,5]-2,4-	000
			dithioxotriazines	340
		10.4.5	Solid-Phase Synthesis of 1,3,4-Triazoles	342
	10.5		se Synthesis of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles	
		via Selecti	ve Cyclization	342
	10.6	Solid-Phas	se Synthesis of 1,2,4-Thiadiazoles	347
	10.7	Summary		350
	Refere	nces		350
11	DECE	NT ADVAN	ICES IN SOLID-PHASE 1,3-DIPOLAR	
11			N REACTIONS	355
			ari Yli-Kauhaluoma	333
	110,50	in in a control o	ar in itamawona	
	11.1	Introduction	on	355
	11.2	Solid-Phas	se Synthesis of Pyrrolidines, Pyrrolines, and Pyrroles	356
	11.3		of Pyrazolines and Pyrazoles	361
	11.4	•	se Synthesis of Imidazoles, 1,2,4-Triazoles, and	301
	11.7	1,2,3-Triaz		364
	11.5		se Synthesis of Isoxazolidines, Isoxazolines,	501
	11.5	and Isoxaz	· · · ·	369
	11.6	Conclusion		378
	Refere			378
10				370
12			OLID-PHASE HETEROCYCLE SYNTHESIS	383
	Chai I	Hoon Soh ai	nd Yulin Lam	
	12.1	Introduction	on	383
			711	
	12.2	Linkers	0.10	384
		12.2.1	Sulfone Chemistry	384
		12.2.2	Sulfone Linker Units 12.2.2.1 Preparation of Sulfone Linkers	384 384

Xİİ CONTENTS

	12.3 Refere	12.2.2.2 Cleavage of Sulfone Linkers 12.2.2.3 Sulfone Linkers in Oligosaccharide Synthesis Conclusions nces	386 409 411 411
13		D-PHASE ORGANIC RADIOSYNTHESIS uël Hoareau and Peter J. H. Scott	415
	13.1	Introduction	415
	13.2	Solid-Phase Organic Radiosynthesis with Fluorine-18	416
		13.2.1 Radiolabeled Peptides with Fluorine-18	416
		13.2.2 Solid-Phase Organic Radiosynthesis of [¹⁸ F]FDG	417
		13.2.3 Fluorine-18 Displacement of Supported Aryliodonium	418
		 13.2.4 Solid-Phase Organic Radiosynthesis of ¹⁸FCH₂Br 13.2.5 Solid-Phase Organic Radiosynthesis of [¹⁸F]FluoroDOPA 	419 419
		13.2.6 Solid-Phase Organic Radiosynthesis of β -Amyloid PET	
		Tracers 13.2.7 Solid-Phase Organic Radiosynthesis of Oncological PET	419
		Tracers	420
	13.3	Solid-Phase Organic Radiosynthesis with Carbon-11	421
	13.4	Solid-Phase Organic Radiosynthesis with Other Radioisotopes	422
		13.4.1 Solid-Phase Purification of Copper-64	
		Metalloradiopharmaceuticals	422
		13.4.2 Solid-Phase Radiosynthesis of [¹³¹ I]MIBG	424
	13.5	Conclusions	424
	Refere	nces	424
14		D-PHASE SYNTHESIS OF DYES AND THEIR APPLICATION ENSORS AND BIOIMAGING PROBES	427
	Marc	Vendrell, Hyung-Ho Ha, Sung Chan Lee, and Young-Tae Chang	
	14.1	Introduction	427
	14.2	On-Bead Sensors	428
	14.3	Solid-Phase Approaches in Fluorescent Labeling	429
	14.4	Solid-Phase Derivatization of Fluorescent Scaffolds	430
	14.5	Diversity-Oriented Fluorescent Libraries	433
	14.6	Conclusions	437
	14.7	Acknowledgments	437
	Refere	nces	437
15	SYNT	PRITIC MOLECULES ON SOLID SUPPORT: SOLID-PHASE HESIS AND APPLICATIONS In Goren and Moshe Portnoy	441
	15.1	Introduction	441
	15.2	Synthesis	442
		•	

		15.2.1	General Synthetic Schemes	442
		15.2.2	Preparation of Polyamide Dendrons	444
			15.2.2.1 Polylysine Dendrons	444
			15.2.2.2 Dendrons Combining Natural and	
			Artificial Amino Acids	445
			15.2.2.3 Dendrons Made of Artificial Amino Acids	447
			15.2.2.4 Polyamide Dendrons from Alternative	
			Building Blocks	450
		15.2.3	± •	451
		15.2.4	1	453
		15.2.5	•	455
		15.2.6	•	455
		15.2.7	•	458
		15.2.8	•	458
		15.2.9	Preparation of Dendrons Based on	
			1,3,5-Triazines	459
		15.2.10	1 3 3 3 7	461
		15.2.11		463
	15.3	Applicatio	ns of Dendronized Supports	464
		15.3.1	Dendronized Supports as Synthetic Intermediates	464
		15.3.2	High-Loading Dendronized Supports for Solid-Phase	
			Synthesis	468
		15.3.3	Dendronized Supports for Multivalent Molecular	
			Recognition	468
		15.3.4	Supported Dendritic Catalysts	470
		15.3.5	11 1	477
		15.3.6	Dendronized Surfaces for Immobilization	
			of Biomacromolecules	479
		15.3.7	**	479
	15.4	Conclusion	ns	480
	Refere	nces		482
16	OLICA	OCACCIIAI	DIDE CONTUECIC ON COLUD. COLUBLE DOLVMED	
IU	VND	TAG SUPP	RIDE SYNTHESIS ON SOLID, SOLUBLE POLYMER,	489
			a and Koichi Fukase	403
	Kaisa	пон тапак	i ana Koichi Fukase	
	16.1	T., 4.,		400
		Introduction		489
	16.2		se Methods for Synthesis of Oligosaccharides	490
		16.2.1	New Linkers and Protection Groups for Solid-Phase	
			Synthesis of Oligosaccharides	490
		16.2.2	Application of Unique Glycosylation Methods in Solution	
			to Solid-Phase Synthesis of Oligosaccharides	498
		16.2.3	Solid-Phase Synthesis of Complex Oligosaccharides	503
		16.2.4	Solid-Phase Methods for Purification of Synthesized	
			Oligosaccharides	507
		16.2.5	Monitoring of Solid-Phase Reactions	512
	16.3	•	supported and Tag-Assisted Oligosaccharide Synthesis in	
		Solution		516

XIV CONTENTS

	16.3.1	Polymer-Supported Synthesis of Oligosaccharides	516
	16.3.2	Tag-Assisted Synthesis of Oligosaccharides	517
	16.3.3	Polymer-Supported Enzymatic Synthesis	
		of Oligosaccharides	522
	16.3.4	Microfluidic Methods for Oligosaccharide Synthesis	523
16.4	Conclusio	ns	526
16.5	Acknowle	dgments	527
Refere	ences		527
Index			531

PREFACE

Merrifield first introduced the concept of solid-phase peptide synthesis nearly half a century ago, and since then the use of heterogeneous materials to facilitate synthesis has evolved and become widespread in many contexts. For example, the automated solid-phase synthesis of oligomeric biomolecules, such as polypeptides and polynucleotides, has become the standard methodology for the production of such compounds.

The aim of this book is to highlight the state of the art regarding the use of a solid material to support and thereby facilitate organic synthesis. The book is divided into two parts: Part I introduces some general concepts and strategies, while Part II presents specific examples of the solid-phase synthesis of various classes of organic molecules. Since the field regarding solid-phase synthesis of polypeptides and polynucleotides is very mature and well understood, these topics are not included in this book. However, since the solid-phase synthesis of oligosaccharides is not yet routine and straightforward, a chapter on this subject is presented.

Part I includes chapters focusing on the linker groups used to attach the synthesis substrate to the solid support, colorimetric tests that identify the presence of functional groups, combinatorial synthesis (especially interesting due to its historical perspective), and diversity-oriented synthesis. These contributions showcase solid-phase synthesis that is currently used to facilitate the discovery of new molecular functionality. Finally, a chapter highlighting how using a support can change or increase reaction selectivity closes this part. Part II includes chapters on general asymmetric synthesis on a support, various strategies for heterocycle synthesis (including one focusing on the use of microwave heating), synthesis of radioactive organic molecules, dyes, dendrimers, and, last but not least, oligosaccharides.

It is hoped that this book will serve as an introduction and a starting point for those new to this field and interested in using concepts and techniques of solid-phase synthesis. As already mentioned, the application of this technology in the synthesis of small, nonoligomeric organic molecules is relatively underdeveloped compared to other applications, and thus new minds and different perspectives can help to advance this field.

PATRICK H. TOY YULIN LAM

ACKNOWLEDGMENTS

We would like to thank all the contributors to this book. Their time is very valuable, and thus their generosity in working on this book is priceless. We also wish to thank Tracy Yuen-Sze But, Julia Hermeke, and Jinni Lu for their editorial assistance.

CONTRIBUTORS

- **Prasad Appukkuttan**, Laboratory for Organic & Microwave-Assisted Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
- **Baburaj Baskar**, Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- **Young-Tae Chang**, Department of Chemistry, National University of Singapore, Singapore
- Wenteng Chen, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
- **Alexander Deiters**, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Koichi Fukase, Department of Chemistry, Osaka University, Osaka, Japan
- **Warren R. J. D. Galloway**, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Marc Giulianotti, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
- Young-Dae Gong, Department of Chemistry, Dongguk University, Seoul, South Korea
- Kerem Goren, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
- Hyung-Ho Ha, Department of Chemistry, National University of Singapore, Singapore
- **Kirsi Harju**, Division of Pharmaceutical Chemistry, University of Helsinki, Helsinki, Finland
- Jan Hlaváč, Department of Organic Chemistry, Palacky University, Olomouc, Czech Republic
- Raphaël Hoareau, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Richard A. Houghten, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
- **Brett M. Ibbeson**, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- **Albert Isidro-Llobet**, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Jonghoon Kim, Department of Chemistry, Seoul National University, Seoul, South Korea
- Viktor Krchňák, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- **Kamal Kumar**, Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Yulin Lam, Department of Chemistry, National University of Singapore, Singapore
- Sung Chan Lee, Department of Chemistry, National University of Singapore, Singapore
- **Taeho Lee**, Center for High Throughput Synthesis Platform Technology, Korea Research Institute of Chemical Technology, Daejeon, South Korea

XX CONTRIBUTORS

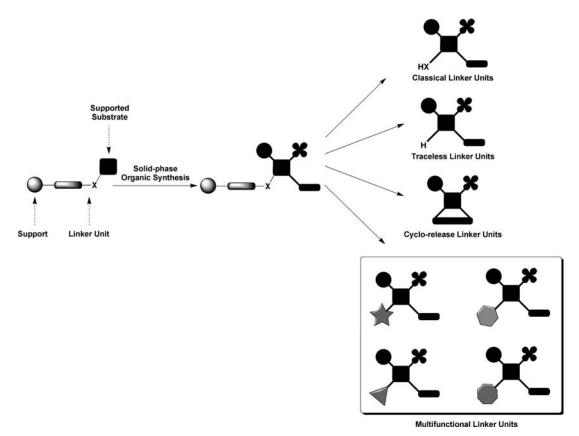
Zhi Li, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China

- **Vaibhav P. Mehta**, Laboratory for Organic & Microwave-Assisted Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
- **Kieron M. G. O'Connell**, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- **Cornelius J. O'Connor**, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- **Seung Bum Park**, Department of Chemistry, Seoul National University, Seoul, South Korea
- Moshe Portnoy, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
- Peter J. H. Scott, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Chai Hoon Soh, Department of Chemistry, National University of Singapore, Singapore
- **Miroslav Soural**, Department of Organic Chemistry, Palacky University, Olomouc, Czech Republic
- **David R. Spring**, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Katsunori Tanaka, Department of Chemistry, Osaka University, Osaka, Japan
- Yan Teng, Department of Chemistry, University of Hong Kong, Hong Kong, P. R. China
- **Patrick H. Toy**, Department of Chemistry, University of Hong Kong, Hong Kong, P. R. China
- **Erik Van der Eycken**, Laboratory for Organic & Microwave-Assisted Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
- Marc Vendrell, Department of Chemistry, National University of Singapore, Singapore
- **Jari Yli-Kauhaluoma**, Division of Pharmaceutical Chemistry, University of Helsinki, Helsinki, Finland
- **Douglas D. Young**, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Yongping Yu, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China

Part I

CONCEPTS AND STRATEGIES

LINKER STRATEGIES IN MODERN SOLID-PHASE ORGANIC SYNTHESIS


Peter J. H. Scott

1.1 INTRODUCTION

The vast array of linker units available to the modern solid-phase organic chemist is impressive and allows a lot of exciting chemistry to be carried out using solid-phase techniques. 1-11 Linker units are molecules that possess a functional group that is used to attach substrates to a solid support and can release them at a later date upon treatment with the appropriate "cleavage cocktail." With this in mind, linker units have long been regarded as solid-supported protecting groups. Moreover, linker units are frequently lengthy molecules, which improve reactivity by holding substrates away from the polymer matrix to create a pseudo-solution-phase environment. Typically, linker units are conveniently categorized by the functionality left at the "cleavage site" in the target molecule (Scheme 1.1). Initially, following the late Prof. Merrifield's original investigations into preparing peptides on solid supports, solid-phase organic synthesis (SPOS) focused on strategies for preparing peptides and oligonucleotides. This focus was, in part, due to the relative simplicity of peptide chemistry that meant it could easily be adapted for use with solid-phase techniques. Moreover, the ease of automating peptide chemistry allowed straightforward preparation of multiple target peptides in parallel and signaled the beginning of combinatorial chemistry. Many of the classical linker units developed during this period (1960s-1990s) still represent some of the most widely used linker units in use today and an overview of these linker strategies is presented in Section 1.2. When employing a classical linker unit, a common (typically polar) functionality, that was the site of

Solid-Phase Organic Synthesis: Concepts, Strategies, and Applications, First Edition. Edited by Patrick H. Toy and Yulin Lam.

^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

Scheme 1.1. Classification of modern linker units.

attachment of the molecule to the solid support, remains following cleavage of the target molecule.

In the 1990s, the use of solid-phase organic synthesis experienced an explosion in popularity. This was driven by the advent of combinatorial chemistry, as well as strategies such as split-and-mix, which exploited techniques for automating thousands of reactions in a parallel fashion. A combination of the ability to (i) run many solid-phase reactions in parallel using fritted tubes and commercial shakers, (ii) drive reactions to completion using excess reagents, and (iii) easily purify reactions by simple washing and filtration made SPOS particularly attractive to the combinatorial chemists.

Out of the combinatorial chemistry boom came the framework for modern solid-phase organic synthesis. While a lot of the early work with SPOS focused on reliable and relatively straightforward peptide coupling reactions, the ambitious library syntheses of the 1990s required access to a much more extensive array of solid-phase reactions. That decade saw initial strides made in adapting many well-known solution-phase reactions for use in the solid-phase arena, development that continues to the present day, ^{12–27} and a move beyond peptide and nucleotide chemistry toward preparation of small molecule libraries on solid phase.

In time, the vast libraries of combinatorial chemistry have given way to the smaller designed libraries of diversity-oriented synthesis (DOS). Rather than preparing multimillion compound libraries in the hope of finding new lead scaffolds, DOS concentrates on

preparing smaller "focused" libraries for lead development.²⁸ Moreover, with the advent of chemical genetics, the interest in generating diverse compound libraries to explore chemical space has become a significant synthetic objective in its own right. These fields of research, in combination with related computational methods, are receiving much attention in the continuing quest to discover new biologically active compounds in chemical space. Reflecting these new challenges, the science of linker design in the last two decades has predominantly focused on the design and synthesis of new multifunctional linker units. Unlike the classical linker units described above that use a common cleavage cocktail for all members of a library, multifunctional linker units maximize diversity by using the cleavage step to incorporate additional structural variation into compound libraries. This final class of linker unit is discussed in Section 1.3.

1.2 CLASSICAL LINKER STRATEGIES

1.2.1 Acid and Base Cleavable Linker Units

In 1963, Merrifield reported the first example of a synthesis carried out using substrates immobilized on an insoluble polymer support.²⁹ In this work, the polymer Merrifield used was a chloromethylated copolymer of styrene and divinylbenzene, a polymer support that now bears his name. This polymer was functionalized with a benzyloxy group and then Merrifield was able to construct the L-Leu-L-Ala-Gly-Val tetrapeptide 1 by exploiting the Cbz protecting group strategy (Scheme 1.2). Cleavage from the ester linker unit was achieved using sodium hydroxide or a methanolic solution of sodium methoxide to generate the salt of the carboxylic acid 2 or methyl ester 3, respectively. This work in itself represents a simple and straightforward example of multifunctional cleavage that will be discussed further later.

Reflecting this genesis in solid-phase peptide and oligonucleotide synthesis, many early linker units typically possessed a polar functional group (e.g., OH, CO₂H, NH₂, SH) that was used to attach substrates to a solid support. These linker units can be classified according to whether acidic or basic conditions are required for cleavage of target molecules, and many of them are still employed routinely in twenty-first century solid-phase organic synthesis. The main advantage is that cleavage of substrates from acid and base labile linker units can be readily achieved using mild conditions. Moreover, target molecules can frequently be isolated in sufficient purity by simple evaporation of volatile cleavage reagents.

Scheme 1.2. Merrifield's original solid-phase synthesis of a tetrapeptide.

Two of the most used acid labile linker units, illustrated in Table 1.1, are the hydroxymethylphenyl linker unit reported by Wang (Table 1.1, Entry 1)³⁰ and the aminomethylphenyl linker (Table 1.1, Entries 2 and 3), stabilized by an additional anisole unit, developed by Rink.³¹ The *para*-oxygen atom in the Wang linker has a stabilizing effect on the cation generated upon treatment with acid, allowing cleavage to be achieved using 50% trifluoroacetic acid (TFA) in dichloromethane(DCM). As a comparison, greater stabilization of the intermediate carbocation occurs in the presence of the *ortho*- and *para*-methoxy groups of the Rink linker. This enhanced stability allows cleavage to be realized under comparatively milder conditions (e.g., 0.1–50% TFA/DCM). For example, trichloroacetylurea was cleaved from the Rink linker using 5% TFA in DCM (Table 1.1, Entry 2).³² The use of methoxy groups to afford greater stability to the intermediate carbocation has also been exploited in development of the hyperlabile SASRIN (or HMPB) linker (Table 1.1, Entry 4).^{33–36} Similar to the Rink linker, cleavage of substrates from the SASRIN linker can be achieved using mild conditions such as 0.1–1% TFA.³⁶

Other acid labile linker units from which substrates can be cleaved by treatment with TFA include the trityl linker units. Typically, the chlorotrityl linker unit is employed (Table 1.1, Entries 5 and 6) because it is more stable than the parent trityl linker unit, although cleavage can still be achieved using 1% TFA or acetic acid. ^{38,55} One advantage of using trityl linker units over, for example, the benzyl linker units discussed above is that the steric bulkiness of the trityl group makes the linkage more stable against nucleophilic bases. On the other hand, however, this steric bulkiness can cause problems if the substrate to be attached is itself a large molecule. In such situations, steric interference can reduce loading efficiency and should be taken into account before employing the trityl linker unit.

All these TFA labile linker units are well suited to SPOS using the Fmoc protective group strategy. Thus, Fmoc protecting group manipulations can be achieved using piperidine without risk of cleaving the acid labile substrate. However, if a SPOS design plans to use the Boc peptide strategy (i.e., TFA deprotection of Boc groups throughout the synthesis), then a linker unit from which substrates are cleavable with TFA is clearly not suitable. Apart from the TFA labile linkers previously discussed, a number of other acid labile linker units have been reported, allowing the ability to tailor the choice of linker unit to a given synthetic application. If it is necessary to employ the Boc protective group strategy throughout SPOS, one might select the phenylacetamide (PAM) linker (Table 1.1, Entry 7). Substrates are attached to the PAM linker through an ester linkage that is reasonably stable toward TFA. After completion of SPOS, the target molecule can then be cleaved using a stronger acid such as HF or HBr. 40

Note that many of the linker units described above are available in multiple forms, allowing a range of substrates to be attached and cleaved. A discussion of all these related linker units is outside the scope of this chapter, but Kurosu has written a comprehensive review. By way of example, multiple versions of the Rink (Table 1.1, Entries 2 and 3) and trityl linker units (Table 1.1, Entries 5 and 6) are commercially available and can be selected according to the desired substrate. However, beyond these general linker units, there are also examples of substrate-specific linker units. For example, the benzhydrylamine (BHA, Table 1.1, Entry 8) and Sieber (Table 1.1, Entry 9) and Sieber (Table 1.1, Entry 9) and Sieber (Table 1.1, Entry 10) and silyl linker units (e.g., Table 1.1, Entry 11) can be used to attach alcohols to polymer supports.

A number of linker units designed specifically for immobilization of amines have also been developed. One noticeable example exploits the versatility of the 9-phenylfluorenyl-9-yl group (PHFI). The PHFI group has previously been used as a protecting group for amines and was adapted into a linker unit by Bleicher (Table 1.1, Entry 12).⁵¹ Cleavage from this

TABLE 1.1. Common Acid Cleavable Linker Units

	Linker	Cleavage Conditions	Product	References
1	O Val-Leu-NHZ	50% TFA/ DCM	HO ₂ C-Val-Leu-Leu-NHZ (yield: 69%)	30
7	MeO O O O O O O O O O O O O O O O O O O	5% TFA/ DCM	O O CI H ₂ N H CI (yield: 72%)	32
ю	MeO OMe	<i>5%</i> TFA	ROH	37
4	Ser(fBu)-Lys(Boc)-Pro-Val-Asp(OfBu)-Boc	1% TFA/ DCM	Boc-Asp(OtBu)-Val-Pro-Lys (Boc)-Ser(tBu)-OH (crude yield: 90%, purity: 78%)	36
٧,	O-Peptide-Fmoc	2:2:6 AcOH: TFE:DCM	Peptide (seven examples, 86–100% yield, 69–89% purity)	38 (Continued)

	Linker	Cleavage Conditions	Product	References
9	HO O HO I WANTED TO THE PART OF THE PART O	1 M HCI	OH HO Ph (yield: 32%)	39
٢	O Val-Gly-Ala-Leu	(a) 16% HBR in 1:1 AcOH: TFA; (b) 9:1 HF:anisole	Leu-Ala-Gly-Val (a: 35% yield, b: 87% yield)	40
∞		HF, 0°C	$0 = \bigvee_{N}^{H}$	4
6		2% TFA	$\overset{H}{\underset{R}{\swarrow}}$	42-44
10	O O O O O O O O O O O O O O O O O O O	TFA-water (95:5)	ROH	45-48