


Table of Contents

Cover

Title page

Copyright page

PREFACE

CHAPTER ONE: OVERVIEW OF

MULTIVARIATE AND REGRESSION

METHODS

1.1 INTRODUCTION

1.2 MULTIVARIATE METHODS AS AN

EXTENSION OF FAMILIAR UNIVARIATE

METHODS

1.3 MEASUREMENT SCALES AND DATA

TYPES

1.4 FOUR BASIC DATA SET STRUCTURES

FOR MULTIVARIATE ANALYSIS

1.5 PICTORIAL OVERVIEW OF MULTIVARIATE

METHODS

1.6 CORRELATIONAL VERSUS

EXPERIMENTAL METHODS

1.7 OLD VERSUS NEW METHODS

1.8 SUMMARY

file:///tmp/calibre_5.41.0_tmp_2w909n1v/i0xl7kgb_pdf_out/OEBPS/cover.xhtml


CHAPTER TWO: THE SEVEN HABITS

OF HIGHLY EFFECTIVE QUANTS: A

REVIEW OF ELEMENTARY STATISTICS

USING MATRIX ALGEBRA

2.1 INTRODUCTION

2.2 THE MEANING OF MEASUREMENT

SCALES

2.3 THE MEANING OF MEASURES OF

CENTRAL TENDENCY

2.4 VARIANCE AND MATRIX ALGEBRA

2.5 COVARIANCE MATRICES AND

CORRELATION MATRICES

2.6 CLASSICAL PROBABILITY THEORY AND

THE BINOMIAL: THE BASIS FOR STATISTICAL

INFERENCE

2.7 SIGNIFICANCE TESTS: FROM BINOMIAL

TO Z-TESTS TO T-TESTS TO ANALYSIS OF

VARIANCE

2.8 MATRIX APPROACH TO ANALYSIS OF

VARIANCE

2.9 SUMMARY

CHAPTER THREE: FUNDAMENTALS OF

MATRIX ALGEBRA

3.1 INTRODUCTION

3.2 DEFINITIONS AND NOTATION

3.3 MATRIX OPERATIONS AND STATISTICAL

QUANTITIES



3.4 PARTITIONED MATRICES AND ADJOINED

MATRICES

3.5 TRIANGULAR SQUARE ROOT MATRICES

3.6 DETERMINANTS

3.7 MATRIX INVERSION

3.8 RANK OF A MATRIX

3.9 ORTHOGONAL VECTORS AND MATRICES

3.10 QUADRATIC FORMS AND BILINEAR

FORMS

3.11 EIGENVECTORS AND EIGENVALUES

3.12 SPECTRAL DECOMPOSITION,

TRIANGULAR DECOMPOSITION, AND

SINGULAR VALUE DECOMPOSITION

3.13 NORMALIZATION OF A VECTOR

3.14 CONCLUSION

CHAPTER FOUR: FACTOR ANALYSIS

AND RELATED METHODS:

QUINTESSENTIALLY MULTIVARIATE

4.1 INTRODUCTION

4.2 AN APPLIED EXAMPLE OF FACTORING:

THE MENTAL SKILLS OF MICE

4.3 CALCULATING FACTOR LOADINGS TO

REVEAL THE STRUCTURE OF SKILLS IN MICE

4.4 SIMPLEST CASE MATHEMATICAL

DEMONSTRATION OF A COMPLETE FACTOR

ANALYSIS

4.5 FACTOR SCORES: THE RELATIONSHIP

BETWEEN LATENT VARIABLES AND

MANIFEST VARIABLES



4.6 PRINCIPAL COMPONENT ANALYSIS:

SIMPLIFIED FACTORING OF COVARIANCE

STRUCTURE

4.7 ROTATION OF THE FACTOR PATTERN

4.8 THE RICH VARIETY OF FACTOR ANALYSIS

MODELS

4.9 FACTOR ANALYZING THE MENTAL SKILLS

OF MICE: A COMPARISON OF FACTOR

ANALYTIC MODELS

4.10 DATA RELIABILITY AND FACTOR

ANALYSIS

4.11 SUMMARY

CHAPTER FIVE: MULTIVARIATE

GRAPHICS

5.1 INTRODUCTION

5.2 LATOUR’S GRAPHICITY THESIS

5.3 NINETEENTH-CENTURY MALE NAMES:

THE CONSTRUCTION OF CONVERGENT

MULTIVARIATE GRAPHS

5.4 VARIETIES OF MULTIVARIATE GRAPHS

5.5 FLOURISHING FAMILIES: AN

ILLUSTRATION OF LINKED GRAPHICS AND

STATISTICAL ANALYSES IN DATA

EXPLORATION

5.6 SUMMARY

CHAPTER SIX: CANONICAL

CORRELATION: THE UNDERUSED

METHOD



6.1 INTRODUCTION

6.2 APPLIED EXAMPLE OF CANONICAL

CORRELATION: PERSONALITY

ORIENTATIONS AND PREJUDICE

6.3 MATHEMATICAL DEMONSTRATION OF A

COMPLETE CANONICAL CORRELATION

ANALYSIS

6.4 ILLUSTRATIONS OF CANONICAL

CORRELATION TABLES AND GRAPHICS WITH

FINANCE DATA

6.5 SUMMARY AND CONCLUSIONS

CHAPTER SEVEN: HOTELLING’S T2 AS

THE SIMPLEST CASE OF

MULTIVARIATE INFERENCE

7.1 INTRODUCTION

7.2 AN APPLIED EXAMPLE OF HOTELLING’S

T2 TEST: FAMILY FINANCES AND

RELATIONAL AGGRESSION

7.3 MULTIVARIATE VERSUS UNIVARIATE

SIGNIFICANCE TESTS

7.4 THE TWO SAMPLE INDEPENDENT

GROUPS HOTELLING’S T2 TEST

7.5 DISCRIMINANT ANALYSIS FROM A

HOTELLING’S T2 TEST

7.6 SUMMARY AND CONCLUSIONS

CHAPTER EIGHT: MULTIVARIATE

ANALYSIS OF VARIANCE



8.1 INTRODUCTION

8.2 AN APPLIED EXAMPLE OF MULTIVARIATE

ANALYSIS OF VARIANCE (MAV1)

8.3 ONE-WAY MULTIVARIATE ANALYSIS OF

VARIANCE (MAV1)

8.4 THE FOUR MULTIVARIATE SIGNIFICANCE

TESTS

8.5 SUMMARY AND CONCLUSIONS

CHAPTER NINE: MULTIPLE

REGRESSION AND THE GENERAL

LINEAR MODEL

9.1 INTRODUCTION

9.2 THE FUNDAMENTAL METHOD OF

MULTIPLE REGRESSION

9.3 TWO-WAY ANALYSIS OF VARIANCE (AV2)

USING MULTIPLE REGRESSION

9.4 ANALYSIS OF COVARIANCE AND THE

GENERAL LINEAR MODEL

9.5 LINEAR CONTRASTS AND COMPLEX

DESIGNS

9.6 REGRESSING CATEGORICAL VARIABLES

9.7 SUMMARY AND CONCLUSIONS

APPENDICES: STATISTICAL TABLES

Name Index

Subject Index







Copyright © 2012 by John Wiley & Sons, Inc. All rights

reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording,

scanning, or otherwise, except as permitted under Section

107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or

authorization through payment of the appropriate per-copy

fee to the Copyright Clearance Center, Inc., 222 Rosewood

Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-

4470, or on the web at www.copyright.com. Requests to the

Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River

Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-

6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher

and author have used their best efforts in preparing this

book, they make no representations or warranties with

respect to the accuracy or completeness of the contents of

this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No

warranty may be created or extended by sales

representatives or written sales materials. The advice and

strategies contained herein may not be suitable for your

situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable

for any loss of profit or any other commercial damages,

including but not limited to special, incidental,

consequential, or other damages.

For general information on our other products and services

or for technical support, please contact our Customer Care

http://www.copyright.com/
http://www.wiley.com/go/permissions


Department within the United States at (800) 762-2974,

outside the United States at (317) 572-3993 or fax (317)

572-4002.

Wiley also publishes its books in a variety of electronic

formats. Some content that appears in print may not be

available in electronic formats. For more information about

Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Brown, Bruce (Bruce L.)

 Multivariate analysis for the biobehavioral and social

sciences / Bruce L. Brown, Suzanne B. Hendrix, Dawson W.

Hedges, Timothy B. Smith.

p. cm.

 Includes bibliographical references and index.

 ISBN 978-0-470-53756-5

 1. Social sciences–Statistical methods. 2. Multivariate

analysis. I. Title.

 HA29.B82857 2012

 300.1'519535–dc23

2011018420

ISBN 978-1-118-13159-6 (ePDF)

ISBN 978-1-118-13161-9 (ePub)

ISBN 978-1-118-13160-2 (Mobi)

http://www.wiley.com/


PREFACE
The plan of this book is unusual. It is unusual in that we

have elevated graphics to the status of an equal partner in

the data analysis process. Our intent is to demonstrate the

centrality of good graphics to the scientific process, to

provide a graphical concomitant for each of the classical

multivariate statistical methods presented, and to

demonstrate the superiority of graphical expressions in

clarifying and laying bare the meaning in the data.

The plan of the book is also unusual in the pedagogical

approach taken. The first three chapters are all preparatory:

giving an overview of multivariate methods (Chapter 1),

reviewing the fundamental principles of elementary

statistics as “habits” that are necessary preparation for

understanding multivariate methods (Chapter 2), and then

introducing matrix algebra (Chapter 3).

The most unusual aspect of the book, however, is the six

methods chapters (4, 5, 6, 7, 8, and 9)—the core of the

book. We introduce each with a published paper that is in

some way exemplary as a “research-publication case study.”

We first showcase the method in a strong piece of published

work to demonstrate to the student the practical value of

that method. The next section answers the question “How

do you do that?” It is our intent to answer that question fully

with a complete but simplified demonstration of the

mathematics and the concepts of the method. This is a

unique feature of the book. There are books that are fully

enabling mathematically, and there are also books that are

highly accessible to the beginning student, but this book is

unique in combining these two characteristics by the use of

simplest case demonstrations.

The next step in each chapter is to demonstrate how the

analysis of the data is accomplished using one of the

commonly used statistical packages, such as Stata®, SAS®,



or SPSS®. One of the major tasks in demonstrating

statistical packages is that of instructing the student in the

reading of output. The simplest case demonstration of the

full computational process is an effective way to deal with

that aspect. After carrying out the full analysis with simplest

case data, and then using Stata, SAS, or SPSS to analyze the

same simple set of data, the meaning of each of the parts in

the computer output becomes obvious and clear.

Although this book covers many of the commonly used

multivariate methods and builds upon them graphically, this

approach is also applicable to a wide variety of additional

methods, both modern regression methods and also

extensions of multivariate methods. Factor analysis has

grown into structural equations modeling, MANOVA and

ANOVA have grown into multilevel, hierarchical, and mixed

models, and general linear models have grown into

generalized linear models that can deal with a broad variety

of data types, including categorical. All of these can be

supplemented and improved upon with graphics.

The focus of this book on the application of graphics to the

classical methods is, we believe, the appropriate beginning

given the relative simplicity of the fundamental multivariate

methods. The principles the student learns here can then

more easily be expanded in future texts to the full power of

advanced derivative methods. It is curious that the rather

simple multiple regression model is the foundation of many

if not most of the higher-level developments. We have

closed the book with a simple presentation of multiple

regression in Chapter 9, both as a look backward and also

as a look forward. It is a basic example of the application of

matrix methods to multiple variables, but also as a prelude

to the higher-level methods.

We are grateful to those exemplary researchers and

quantitative methods scholars whose work we have built

upon. We are grateful to our students from whom we have



learned, many of whom appear in this book. Most of all, we

are grateful to our families who have been supportive and

patient through this process.

BRUCE L. BROWN

SUZANNE HENDRIX

DAWSON W. HEDGES

TIMOTHY B. SMITH



CHAPTER ONE

OVERVIEW OF MULTIVARIATE

AND REGRESSION METHODS

1.1 INTRODUCTION

More information about human functioning has accrued in

the past five decades than in the preceding five millennia,

and many of those recent gains can be attributed to the

application of multivariate and regression statistics. The

scientific experimentation that proliferated during the 19th

century was a remarkable advance over previous centuries,

but the advent of the computer in the mid-20th century

opened the way for the widespread use of complex analytic

methods that exponentially increased the pace of discovery.

Multivariate and regression methods of data analysis have

completely transformed the bio-behavioral and social

sciences.

Multivariate and regression statistics provide several

essential tools for scientific inquiry. They allow for detailed

descriptions of data, and they identify patterns impossible

to discern otherwise. They allow for empirical testing of

complex theoretical propositions. They enable enhanced

prediction of events, from disease onset to likelihood of

remission. Stated simply, multivariate statistics can be

applied to a broad variety of research questions about the

human condition.

Given the widespread application and utility of

multivariate and regression methods, this book covers many

of the statistical methods commonly used in a broad range



of bio-behavioral and social sciences, such as psychology,

business, biology, medicine, education, and sociology. In

these disciplines, mathematics is not typically a student’s

primary focus. Thus, the approach of the book is conceptual.

This does not mean that the mathematical account of the

methods is compromised, just that the mathematical

developments are employed in the service of the conceptual

basis for each method. The math is presented in an

accessible form, called simplest case. The idea is that we

seek a demonstration for each method that uses the

simplest case we can find that has all the key attributes of

the full-blown cases of actual practice. We provide exercises

that will enable students to learn the simplified case

thoroughly, after which the focus is expanded to more

realistic cases.

We have learned that it is possible to make these complex

mathematical concepts accessible and enjoyable, even to

those who may see themselves as nonmathematical. It is

possible with this simplest-case approach to teach the

underlying conceptual basis so thoroughly that some

students can perform many multivariate and regression

analyses on simple “student-accommodating” data sets

from memory, without referring to written formulas. This

kind of deep conceptual acquaintance brings the method up

close for the student, so that the meaning of the analytical

results becomes clearer.

This first chapter defines multivariate data analysis

methods and introduces the fundamental concepts. It also

outlines and explains the structure of the remaining

chapters in the book. All analysis method chapters follow a

common format. The main body of each chapter starts with

an example of the method, usually from an article in a

prominent journal. It then explains the rationale for each

method and gives complete but simplified numerical

demonstrations of the various expressions of each method



using simplest-case data. At the end of each chapter is the

section entitled Study Questions, which consists of three

types: essay questions, calculation questions, and data-

analysis questions. There is a complete set of answers to all

of these questions available electronically on the website at

https://mvgraphics.byu.edu.

1.2 MULTIVARIATE METHODS AS

AN EXTENSION OF FAMILIAR

UNIVARIATE METHODS

The term multivariate denotes the analysis of multiple

dependent variables. If the data set has only one dependent

variable, it is called univariate. In elementary statistics, you

were probably introduced to the two-way analysis of

variance (ANOVA) and learned that any ANOVA that is two-

way or higher is referred to as a factorial model. Factorial in

this instance means having multiple independent variables

or factors. The advantage of a factorial ANOVA is that it

enables one to examine the interaction between the

independent variables in the effects they exert upon the

dependent variable.

Multivariate models have a similar advantage, but applied

to the multiple dependent variables rather than

independent variables. Multivariate methods enable one to

deal with the covariance among the dependent variables in

a way that is analogous to the way factorial ANOVA enables

one to deal with interaction.

Fortunately, many of the multivariate methods are

straightforward extensions of the corresponding univariate

methods (Table 1.1). This means that your considerable

investment up to this point in understanding univariate

statistics will go a long way toward helping you to

understand multivariate statistics. (This is particularly true

https://mvgraphics.byu.edu/


of Chapters 7, 8, and 9, where the t-tests are extended to

multivariate t-tests, and various ANOVA models are

extended to corresponding multiple ANOVA [MANOVA]

models.) Indeed, one can think of multivariate statistics in a

simplified way as just the same univariate methods that you

already know (t-test, ANOVA, correlation/regression, etc.)

rewritten in matrix algebra with the matrices extended to

include multiple dependent variables.

Table 1.1 Overview of Univariate and Multivariate

Statistical Methods

Description and Number 

of Predictor 

(Independent) Variables

Univariate Method Multivariate Method

One quantitative

outcome

(dependent)

variable

Multiple quantitative

outcome (dependent)

variables

No predictor variable —

Factor analysis

Principal component

analysis

Cluster analysis

One categorical predictor

variable, two levels

t tests Hotelling’s T
2
 tests

z tests
Profile analysis using

Hotelling’s T
2

One categorical predictor,

variable, three or more levels

ANOVA, one-way

models

MANOVA, one-way

models

Two or more categorical

predictor variables

ANOVA, factorial

models

MANOVA, factorial

models

Categorical predictor(s) with

one or more quantitative

control variables

ANCOVA, one-way or

factorial models

MANCOVA, one-way or

factorial models

One quantitative predictor

variable
Bivariate regression Multivariate regression

Two or more quantitative

predictor variables
Multiple regression

Multivariate multiple

regression 

Canonical correlation*

Matrix algebra is a tool for more efficiently working with

data matrices. Many of the formulas you learned in

elementary statistics (variance, covariance, correlation



coefficients, ANOVA, etc.) can be expressed much more

compactly and more efficiently with matrix algebra. Matrix

multiplication in particular is closely connected to the

calculation of variances and covariances in that it directly

produces sums of squares and sums of products of input

vectors. It is as if matrix algebra were invented specifically

for the calculation of covariance structures. Chapter 3

provides an introduction to the fundamentals of matrix

algebra. Readers unfamiliar with matrix algebra should

therefore carefully read Chapter 3 prior to the other

chapters that follow, since all are based upon it.

The second prerequisite for understanding this book is a

knowledge of elementary statistical methods: the normal

distribution, the binomial distribution, confidence intervals,

t-tests, ANOVA, correlation coefficients, and regression. It is

assumed that you begin this course with a fairly good grasp

of basic statistics. Chapter 2 provides a review of the

fundamental principles of elementary statistics, expressed

in matrix notation where applicable.

1.3 MEASUREMENT SCALES AND

DATA TYPES

Choosing an appropriate statistical method requires an

accurate categorization of the data to be analyzed. The four

kinds of measurement scales identified by S. Smith Stevens

(1946) are nominal, ordinal, interval, and ratio. However,

there are almost no examples of interval data that are not

also ratio, so we often refer to the two collectively as an

interval/ratio scale. So, effectively, we have only three kinds

of data: those that are categorical (nominal), those that are

ordinal (ordered categorical), and those that are fully

quantitative (interval/ratio). As we investigate the methods

of this book, we will discover that ordinal is not a



particularly meaningful category of data for multivariate

methods. Therefore, from the standpoint of data, the major

distinction will be between those methods that apply to fully

quantitative data (interval/ratio), those that apply to

categorical data, and those that apply to data sets that have

both quantitative and categorical data in them.

Factor analysis (Chapter 4) is an example of a method that

has only quantitative variables, as is multiple regression.

Log-linear models (Chapter 9) are an example of a method

that deals with data that are completely categorical.

MANOVA (Chapter 8) is an example of an analysis that

requires both quantitative and categorical data; it has

categorical independent variables and quantitative

dependent variables.

Another important issue with respect to data types is the

distinction between discrete and continuous data. Discrete

data are whole numbers, such as the number of persons

voting for a proposition, or the number voting against it.

Continuous data are decimal numbers that have an infinite

number of possible points between any two points. In

measuring cut lengths of wire, it is possible in principal to

identify an infinitude of lengths that lie between any two

points, for example, between 23 and 24 inches. The number

possible, in practical terms, depends on the accuracy of

one’s measuring instrument. Measured length is therefore

continuous. By extension, variables measured in biomedical

and social sciences that have multiple possible values along

a continuum, such as oxytocin levels or scores on a measure

of personality traits, are treated as continuous data.

All categorical data are by definition discrete. It is not

possible for data to be both categorical and also continuous.

Quantitative data, on the other hand, can be either

continuous or discrete. Most measured quantities, such as

height, width, length, and weight, are both continuous and

also fully quantitative (interval/ratio). There are also,



however, many other examples of data that are fully

quantitative and yet discrete. For example, the count of the

number of persons in a room is discrete, because it can only

be a whole number, but it is also fully quantitative, with

interval/ratio properties. If there are 12 persons in one room

and twenty-four in another, it makes sense to say that there

are twice as many persons in the second room. Counts of

number of persons therefore have interval/ratio properties.1

When all the variables are measured on the same scale,

we refer to them as commensurate. When the variables are

measured with different scales, they are noncommensurate.

An example of commensurate data would be width, length,

and height of a box, each one measured in inches. An

example of noncommensurate would be if the width of the

box and its length were measured in inches, but the height

was measured in centimeters. (Of course, one could make

them commensurate by transforming all to inches or all to

centimeters.) Another example of noncommensurate

variables would be IQ scores and blood lead levels. Variables

that are not commensurate can always be made so by

standardizing them (transforming them into Z-scores or

percentiles). A few multivariate methods, such as profile

analysis (associated with Chapter 7 in connection with

Hotelling’s T2), or principal component analysis of a

covariance matrix (Chapter 4) require that variables be

commensurate, but most of the multivariate methods do not

require this.

1.4 FOUR BASIC DATA SET

STRUCTURES FOR

MULTIVARIATE ANALYSIS



Multivariate and regression data analysis methods can be

creatively applied to a wide variety of types of data set

structures. However, four basic types of data set structures

include most of the multivariate and regression data sets

that will be encountered. These four basic types of data fit

almost all of the statistical methods introduced in this book.

FOUR BASIC TYPES OF DATA

SET STRUCTURE

Type 1: Single sample with multiple variables measured on each

sampling unit.

Possible methods include factor analysis, principal component

analysis, cluster analysis, and confirmatory factor analysis.

Type 2: Single sample with two sets of multiple variables (an X

set and a Y set) measured on each sampling unit.

Possible methods include canonical correlation, multivariate

multiple regression, and structural equations modeling.

Type 3: Two samples with multiple variables measured on each

sampling unit.

Possible methods include Hotelling’s T
2
 test, discriminant

analysis, and some varieties of classification analysis.

Type 4 More than two samples with multiple variables measured

on each sampling unit.

Possible methods include MANOVA, multiple discriminant

analysis, and some varieties of classification analysis.

The first type of data set structure is a single sample with

multiple variables measured on each sampling unit. An

example of this kind of data set would be the scores of 300

people on seven psychological tests. Multivariate methods

that apply to this kind of data are discussed in Chapter 4

and include principal component analysis, factor analysis,

and confirmatory factor analysis. These methods provide

answers to the question, “What is the covariance structure

of this set of multiple variables?”



The second type of data set structure is a single sample

with two sets of multiple variables (an X set and a Y set)

measured on each unit. An example of data of this kind

would be a linked data set of mental health inpatients’

records, with the X set of variables consisting of several

indicators of physical health (e.g., blood serum levels), and

the Y set of variables consisting of several indicators of

neurological functioning (e.g., results of testing).

Multivariate methods that can be applied to this kind of data

include canonical correlation (Chapter 6) and multivariate

multiple regression (Chapter 9). These methods provide

answers to the question, “What are the linear combinations

of variables in the X set and in the Y set that are maximally

predictive of the other set?” Another method that can be

used with a single sample with two sets of multiple variables

would be SEM, structural equations modeling. However, SEM

can also be applied when there are more than two sets of

multiple variables. In fact, it can handle any number of sets

of multiple variables. It is the general case of which these

other methods are special cases, and as such it has a great

deal of potential analytical power.

The third type of data set structure is two samples with

multiple variables measured on each unit. An example

would be a simple experiment with an experimental group

and a control group, and with two or more dependent

variables measured on each observation unit. For example,

the effects of a certain medication could be assessed by

applying it to 12 patients selected at random (the

experimental group) and not applying it to the other 12

patients (the control group), using multiple dependent

variable measurements (such as scores on several tests of

patient functioning). Multivariate methods that can be

applied to this kind of data are Hotelling’s T2 test (Chapter

7), profile analysis, discriminant analysis (Chapter 7), and

some varieties of classification analysis. The Hotelling’s T2



test is the multivariate analogue of the ordinary t-test,

which applies to two-sample data when there is only one

dependent variable. The Hotelling’s T2 test extends the

logic of the t test to compare two groups and analyze

statistical significance holistically for the combined set of

multiple dependent variables. The T2 test answers the

question, “Are the vectors of means for these two samples

significantly different from one another?” Discriminant

analysis and other classification methods can be used to

find the optimal linear combination of the multiple

dependent variables to best separate the two groups from

one another.

The fourth type of data set structure is similar to the third

but extended to three or more samples (with multiple

dependent variables measured on each of the units of

observation). For example, the same test of the effects of

medication on hospitalized patients could be done with two

types of medication plus the control group, making three

groups to be compared simultaneously and multivariately.

The major method here is MANOVA, or multivariate ANOVA

(Chapter 8), which is the multivariate analog of ANOVA. In

fact, for every ANOVA model (two-way, three-way, repeated

measures, etc.), there exists a corresponding MANOVA

model. MANOVA models answer all the same questions that

ANOVA models do (significance of main effects and

interactions), but holistically within multivariate spaces

rather than just for a single dependent variable. Multiple

discriminant analysis and classification analysis methods

can also be applied to multivariate data having three or

more groups, to provide a spatial representation that

optimally separates the groups.



1.5 PICTORIAL OVERVIEW OF

MULTIVARIATE METHODS

Diagrammatic representations can help explain and

differentiate among the various multivariate statistical

methods. Several such methods are described pictorially in

this section, starting with factor analysis (Chapter 4), a

method that applies to the simplest of the four data set

structures just described, a single sample with multiple

variables measured on each sampling unit or unit of

observation. Principal component analysis (Chapter 4) also

applies to this simple data set structure. The ways in which

these two methods differ will be more fully explained in

Chapter 4, but one difference can be seen from the

schematic diagram of each method given below. The bottom

part of each figure shows the matrix organization of the

input data, with rows representing observations and

columns representing variables, and the two methods are

seen to be identical in this aspect.



The top part of each figure shows the structure of the

model, how the observed variables (x1 through x4 for this

example) are related to the underlying latent variables,

which are the factors (f1 and f2) for factor analysis, and the

components (c1 and c2) for principal component analysis.

As can be seen by the direction of the arrows, principal

components are defined as linear combinations (which can

be thought of as weighted sums) of the observed variables.

However, in factor analysis, the direction is reversed. The

observed variables are expressed as linear combinations of

the factors. Another difference is that in principal

component analysis, we seek to explain a large part of the

total variance in the observed variables with the

components, but in factor analysis, we seek to account for

the covariances or correlations among the variables. (Note

that latent variables are represented with circles, and

manifest/observed variables are represented with squares,

consistent with structural equation modeling notation.)



Multiple regression, also referred to as OLS or “ordinary

least-squares regression,” is probably the simplest of the

methods presented in this book, but in its many variations,

it is also the most ubiquitous. It is the foundation for

understanding a number of the other methods, as it is the

basis for the general linear model. ANOVA is a special case

of multiple regression (multiple regression with categorical

dummy variables as the predictor variables, the X variables

in the diagram below), and when data are unbalanced

(unequal cell sizes), multiple regression is by far the most

efficient way to analyze the data (as will be demonstrated in

Chapter 9). Logistic regression and the generalized linear

model (Chapter 9) are adaptations of multiple regression to

deal with a wide variety of data types, categorical as well as

quantitative. Multilevel linear models, mixed models, and

hierarchical linear models are high-level derivatives of

regression. The simple data set structure of OLS regression

consists of merely several independent variables (also

referred to as “predictor variables”) being used to predict

one dependent variable (also referred to as the “criterion

variable”).



Canonical correlation is similar to multiple regression (and

the multiple correlation coefficient on which multiple

regression is based), but it deals with two sets of multiple

variables rather than one. As such, it fits the second type of

data set structure explained above, a single sample with

two sets of multiple variables (an X set and a Y set)

measured on each unit. Multiple regression gives the

correlation coefficient between the best possible linear

combination of a group of X variables and a single Y

variable. Canonical correlation, by extension, gives the

correlation coefficient between two linear combinations, one

on the X set of multiple variables and one on the Y set of

multiple variables. In other words, latent variables are

extracted from both the X set of variables and the Y set of

variables to fit the criterion that the correlation between the

corresponding latent variables in the X set and the Y set is

maximal. It is like a double multiple regression that is

recursive, where the best possible linear combination of X

variables for predicting Y variables is obtained, and also vice



versa. This is shown in the diagram on the left below. To

return to the example given above for this kind of linked

multivariate data set, the canonical correlation of the

mental health inpatient data set described would give the

best possible linear combination of blood serum levels for

predicting neurological functioning, but since it is recursive

(bidirectional), it also gives the best possible combination of

neurological functioning for predicting blood serum levels.

A slight change in the way the analysis is conceived and

the calculations are performed turns canonical correlation

into a double factor analysis, as shown in the diagram at the

right below. The main difference here is theoretical, in how

the latent variables (the linear combinations of observed

variables) are interpreted. In the application of canonical

correlation as a double factor analysis shown below, the

interpretation is that the observed variables are in fact

combinatorial expressions of the underlying latent variables,

labeled here with the Greek letters chi (χ), for the latent

variables for the X set, and nu (η) for the latent variables for

the Y set. The concepts and mathematics for canonical

correlation are presented in Chapter 6.



Another method closely related to canonical correlation

and multiple regression is multivariate multiple regression,

as shown in the diagram. This is essentially the same

computational machinery as canonical correlation, except

that the latent variables are not recursive. That is, the X set

is thought of as being predictive of the Y set, but not vice

versa. This is shown in the diagram by the arrows only going

one way. An example of this would be predicting a Y set of

mutual-fund performance variables from an X set of market

index variables. The X set of variables on the left are

combined together into the left-hand latent variables

labeled as χ1 and χ2. These are the linear combinations of

market indices that are most predictive of performance on

the entire set of mutual funds as a whole, but this is

mediated through the right-hand latent variables η1 and η2,

which are combined together to predict the performance on

each of the mutual funds, the Y variables. This is analogous

to the way that simple bivariate correlation is recursive (the


