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INTRODUCTION

HISTORICAL PERSPECTIVES:

WHO DID WHAT AND WHAT’S

NEXT?

Ole Mouritsen, in his recent monograph entitled “Lipids—

As a Matter of Fat,” summarized with humor the views of

many biologists concerning lipids, as follows: “Lipids appear

to play a fairly non-specific role, being rather dull and

anonymous compared to fashionable stuff like the proteins

that catalyze all biochemical reactions and the genes that

contain the information needed to produce proteins” [1].

The present book, which is addressed to researchers,

teachers, and students in cell biology and in biochemistry,

has the goal of convincing all scientists that lipids, on the

contrary, have sophisticated behaviors and play multiple

important roles in living organisms. It is also addressed to

physicists fascinated by the various spontaneous self-

organization of lipids in water (lipid polymorphism) to warn

them that lipids in biological systems are not always at

thermal equilibrium, and that phase separations and lateral

or transmembrane domains seen in model systems can

differ fundamentally from biological situations. Indeed,

molecule segregation in biological systems results often

from the work of ATPases, like the flippases, or is the result

of a molecule sorting by “protein gates” (see the “fence and

picket model” of Kusumi and collaborators [2]). Such

mechanisms are difficult to mimic in model systems.

In any case, all lipids are not equivalent and their chemical

heterogeneity, for example, between the two sides of a

biomembrane, is the result of a long selection during



evolution, which allows lipids to fulfill different functions,

from that of a fluid hydrophobic medium for membrane

proteins to that of selective messenger molecules and

enzyme cofactors. In the latter case, they have to find their

partners in a cell, hence to move rapidly in a very

anisotropic environment.

To many biologists, lipids form the third class of molecules

of living organism after proteins and nucleic acids. Yet, lipids

were probably not the third in the evolution nor are they

third in importance, since a cell and even many viruses

cannot exist without a membrane. The fact is that lipids

form the building blocks of biological membranes. They

determine the boundary of all living organisms as well as

the compartmentalization of organelles in eukaryotes.

Regarded as passive molecules forming only viscous cement

that holds membrane proteins, filtering out hydrophilic

molecules, the lipid bilayer is in reality a sophisticated

structure capable of a remarkable polymorphism in water.

The physical characteristic of a lipid bilayer permits not only

protein movement but also membrane deformations and,

coupled to the cytoskeleton, provides the cell membrane

with mechanical properties. Not the least astonishing is the

bilayer’s ability to divide in two compartments during cell

division without losing molecules in the plasma due to

efficient self-sealing capacities. Nonetheless, there are still

mysteries concerning lipids, which are matters of research,

speculation, and controversy. (1) Biophysicists have

succeeded in making stable membranes (liposomes) with

only one type of lipids, in suspension in water, for example,

with egg phosphatidylcholine (PC), while biological

membranes harbor several hundred different lipids. Why are

there so many chemically different lipids coexisting in

nature? (2) Why is the lipid composition of various

membranes of eukaryotes different and sometimes even the

two sides of biological membranes different (asymmetrical)?



This requires numerous specific enzymes for the synthesis

and ultimately for the shuttling to the right destination of

newly formed lipids. Is such a multiplicity necessary for a

fine-tuning of membrane-bound enzymes or is the variety of

lipids used to give specific messages to specific proteins? Is

the detailed chemical structure of lipids without real

importance and does it reflect only the precursor molecules

available? Not only do eukaryotic membranes have many

chemically different lipids if one considers chain length,

unsaturation, and polar head group, but also the lipids are

not homogenously distributed within the various organelles

and even between the different sides of one membrane.

This lipid heterogeneity, a “complication of Nature,” was

transmitted more than a million years in eukaryotic cells

and has survived the filter of evolution, suggesting that the

lipid composition and distribution within a cell is neither

accidental nor inconsequential for the activity of cells.

Although cells tolerate certain variability in lipid

composition, many human diseases have been associated

with the inability of mutated cells to synthesize specific

lipids or to recycle particular lipids from the nutriments or to

address specific lipids to their correct destination.

Alternatively, the excess of certain lipids such as cholesterol

or saturated phospholipid chains can be poisonous.

In the late 1960s, V. Luzzati, in a pioneer work carried out

in France, showed by X-ray crystallography that lipids

extracted from biological membranes form, in water,

lamellar phases, giving rise spontaneously to large

multilamellar (onion-style) liposomes made of a

superposition of bilayers [3, 4]. Physicists characterized the

bilayers as liquid crystals that could be in a fluid state or in

a more viscous, gel state. In the early 1970s, the concept of

lipid bilayer emerged as the basic model of biomembranes

and was popularized in the famous model of “fluid mosaic

membrane” of S.J. Singer and G.L. Nicolson [5]. Although



the concept of “mosaicity” implies the presence of

heterogeneous lateral domains, and in spite of the work

carried out by several physical chemists such as H.

McConnell, it was only in 1997 (almost 30 years after the

initial work of Luzzati and McConnell) that the importance of

lateral domains began to be popular among

membranologists and that biological functions associated

with lateral domains (or rafts) were highlighted (see the

work of K. Simons and E. Ikonen [6]).

Indeed, the two monolayers of biomembranes form

distinct lipid domains: M. Bretscher in England

demonstrated in the early 1970s the asymmetrical

transmembrane distribution of phospholipids in the plasma

membrane of human erythrocytes [7]. Bretscher used the

chemical labeling of the amino groups of phosphatidylserine

(PS) or phosphatidylethanolamine (PE) and showed that

aminophospholipids are principally in the membrane inner

monolayer, while PC and sphingomyelin (SM) are essentially

in the outer monolayer of human red cells. Subsequent

investigation in the laboratory of L.L.M. van Deenen in The

Netherlands based on phospholipases and

sphingomylinases assays [8, 9] confirmed Bretscher’s

results and demonstrated that the transmembrane

asymmetry of red cells is an ubiquitous property of the

plasma membrane of eukaryotes. In model systems, on the

other hand, no transmembrane lipid segregation was found

to form spontaneously. Sonication allows one to achieve a

lipid sorting between inner and outer monolayers in small

unilamellar vesicles (SUVs), but the latter structures are not

physiological because of their small size compared with that

of vesicles produced in vivo (∼20-nm diameter for SUVs vs.

∼200 nm for endocytic vesicles). Thus, lipid sorting

observed in biomembranes had to be caused by a process

that does not exist in liposomes and is not a mere

thermodynamic equilibrium. Initially, the segregation of



aminophospholipids was believed to be due to the topology

of enzymes responsible for lipid synthesis or to lipid–

cytoskeleton interactions (J.A.F. Op den Kamp [10]).

However, Bretscher had the remarkable intuition to

postulate the existence of specific lipid enzymes that he

named “phospholipid flippase,” which would be responsible

for the establishment of the asymmetrical lipid organization

at the expense of ATP hydrolysis. In practice, it was later

found necessary to specify the orientation of the postulated

lipid carrier and the requirement or absence of requirement

for ATP hydrolysis. This explains why the habit is now to

differentiate among flippase, floppase, and scramblase (Fig.

I.1).

Figure I.1. Definition of the various lipid transporters in

eukaryotic cell membranes. Note that the scramblase is

calcium dependent and that “flippase” is a term that is used

sometimes to designate an enzyme that catalyzes lipid flip-

flop in both directions (inward or outward), for example, in

the endoplasmic reticulum.

A prerequisite for stable lipid segregation between the two

monolayers of a membrane is a priori a slow

transmembrane diffusion. In 1971, R.D. Kornberg and H.M.

McConnell at Stanford University demonstrated for the first

time, with spin-labeled lipids, the very slow transmembrane

diffusion of phospholipids in sonicated lipid vesicles, where

the “flip-flop” between the two monolayers was found to

require several hours at 30°C [11]. It is now admitted that

the spontaneous transmembrane diffusion of lipids is very

slow in liposomes of any size as well as in biological



membranes. A few exceptions to this rule were discovered

recently. Cholesterol, ceramide, phospatidic acid,

diacylglycerol, and free fatty acids or esters have a rapid

spontaneous diffusion (τ1/2 less than 1 minute). The

absence of real polar head groups in such lipids probably

explains this unusual result.

It was only in 1984, that is, more than 10 years after

Bretscher’s hypothesis, that the existence of a phospholipid

flippase was demonstrated in France by M. Seigneuret and

P.F. Devaux in the human erythrocyte membrane using spin-

labeled analogs of naturally occurring phospholipids [12]

and the year after by D.L. Daleke and W.H. Huestis, who

provided confirmation using an elegant technique involving

nonlabeled lipids [13], while A. Schroit’s group [14] took

advantage of fluorescent analogs to prove the existence of

an erythrocyte aminophospholipid transporter. The

requirement of hydrolyzable Mg2+-ATP was demonstrated

as being necessary for the rapid transport of

aminophospholipids, and the specificity was carefully

investigated; however, no proteins were identified initially.

In 1989, an ATP-dependent flippase activity in chromaffin

granules from bovine adrenal medulla was reported by the

Paris laboratory and attributed to the so-called ATPase II

[15]. This was the first report of aminophospholipid

translocase activity in the inner membranes of the

eukaryotic cell. The transport observed was in fact from the

lumen to the cytosol of the granules but was classified as a

flippase activity. In 1996, P. Williamson and R.A. Schlegel’s

groups in the United States showed that this granule

flippase was homolog to a yeast ATPase (called Drs2p), and

studied a mutant deprived of Drs2 that was unable to flip

aminophospholipids [16]. The phospholipid flippase seemed

to be discovered.

However, in 1999 and 2003, the groups of T. Graham in

the United States [17] and G. van Meer and J. Holthuis in



The Netherlands [18] showed that Drs2p is in fact localized

in the yeast trans-Golgi and not in the plasma membrane,

and that five homologs of this protein exist: two in the

plasma membrane (Dnf1p and Dnf2p), two in the trans-

Golgi (Dnf3p and Drs2p), and one (Neo1p) in endosomes or

cis-Golgi. Furthermore, these P-type ATPases seem to be

associated with other proteins playing the role of

chaperones (CDC50p) or are necessary for the proper

targeting to their final destination of the newly formed

proteins [19]. In 2006, P. Natarajan and T. Graham [20]

showed a flippase activity with fluorescent lipids in yeast

Golgi membranes, which they could attribute to the Drs2p.

Interestingly, the triple knockout of the Drs2p homologs in

yeast led to viable cells, but they were deprived of

endocytic activity [18]. In conclusion, the various P-type

ATPases may have different specificities but may also be

partially redundant.

Thus, after about 20 years of research in different

laboratories throughout the world, it became obvious that

the ubiquitous eukaryotic flippase was in reality a

combination of several proteins, including four ATPases

called P4-ATPase, actually forming a family of five proteins

in yeast. In humans, it was predicted from genomic

investigation that 14 P4-ATPases were members of the

family and could be involved in lipid transport. The

purification of specific P4-ATPases and of Drs2p from

chromaffin granules or after expression in various systems

(yeast and insect cells) is in progress. However, so far the

purification has not been achieved on a large enough scale

to allow unambiguous tests of lipid transport in

reconstituted lipoproteins.

Other membrane proteins were reported to have an ATP-

dependent lipid translocation activity and correspond to the

so-called floppases (see Fig. I.1) with an ATP-binding

cassette (ABC). Suggested originally by C.F. Higgins and



M.M. Gottesman in 1992 [21], the laboratories of G. van

Meer and of P. Borst in The Netherlands [22] showed in 1996

that the ABC transporter P-glycoprotein, also called MDR1,

which is responsible for multidrug resistance and is a

serious obstacle in cancer therapy, was able to transport

fluorescent phospholipids from the inner monolayer to the

outer monolayer of the plasma membrane of eukaryotic

cells. The low specificity of the P-glycoprotein suggested

that this protein could be involved in the transport of SM

and PC toward the outer monolayer of the plasma

membrane, hence play an important role in the

transmembrane lipid asymmetry of the eukaryotic plasma

membrane. Other members of the ABC protein family

seemed to be responsible for the specific outward transport

of PC in transfected epithelial cells [22]. An important point

is that ABC proteins are also found in prokaryotes and could

be implicated in lipid translocation in bacteria [23].

Besides ATP-dependent flippases, which were found

essentially in the plasma membrane of eukaryotes, other

ATP-independent proteins also called flippases were

postulated to be in specific organelle membranes

(endoplasmic reticulum) and could explain the rapid flip-flop

observed by several groups. Their primary function would

be to facilitate the transmembrane diffusion of lipids in the

membranes specialized in lipid synthesis. Already in 1985,

W.R. Bishop and R.M. Bell [24] suggested the existence of

ATP-independent flippase, catalyzing the diffusion of PC in

the endoplasmic reticulum. Since then, several researchers

have attempted to isolate the protein(s) responsible (A.

Menon in the United States [25] and A. Herrmann and

collaborators in Germany [26]). Other researchers have

attempted to prove that any transmembrane protein should

accelerate the flip-flop of lipids, making it unnecessary to

search for specific proteins (B. de Kruijff and A. Killian and

collaborators in The Netherlands [27, 28]). In practice, the



identification of the ATP-independent flippase of low lipid

specificity seems even more difficult than it is for the ATP-

dependent selective flippase, precisely because the test of

ATP requirement cannot be used to discover the latter

transporter.

BIOLOGICAL ADVANTAGES OF

LIPID ASYMMETRY

The complexity involved in the regulation of lipid topology,

requiring ATP hydrolysis, raises the question of the biological

function(s) of such an elaborate system. Actually, one might

rephrase this question differently: The lipid composition of a

biological membrane is always a mixture of many different

lipids. The actual justification of this fact is not obvious,

since a stable lipid bilayer can be achieved in liposomes

with a single phospholipid species. So what is the biological

advantage of the synthesis of many different lipids? A

reasonable hypothesis would be that lipid asymmetry is

used to tag the two sides of a membrane and to optimize

their functionality, which is obviously different. Indeed, the

cell outer environment differs fundamentally from the

cytosol.

One of the first indications of the physiological importance

of lipid asymmetry came from the observation by A. Schroit

and collaborators (United States) who showed in 1983 and

1985 that the presence of a very small percentage of PS

(∼1% of the total lipid composition) in the outer monolayer

of red cells was used in vivo as a signal of cell aging and led

in the blood circulation to the elimination of aged cells by

macrophages [29]. These conclusions, which came originally

from experiments associated with the introduction of

exogenous PS in the outer monolayer of red cells, were

confirmed later by the detection of natural PS with



fluorescent Annexin V by J.F. Tait and D. Gibson in 1994 [30].

The exposure of PS in the outer monolayer of platelets is

also associated with the formation of clots that stop

bleeding (R. Zwaal and collaborators [31]).

Thus, lipid flip-flop concerns directly at least two important

physiological problems: (1) blood coagulation, which is

triggered in vivo by the exposure of PS, a cofactor required

for the conversion of prothrombin into thrombin, and (2)

elimination of aged and/or apoptotic cells by macrophages.

The lipid randomization, that is, loss of lipid asymmetry that

is used in vivo as a signal for cell elimination, can be

triggered artificially by penetration of calcium ions in the

cytosol of platelets, erythrocytes, or lymphocytes with

calcium ionophores, and results in “lipid scrambling,” that

is, lipid randomization between the two leaflets. This

phenomenon is associated with a so far unknown protein

named “scramblase.” (Note: Suzuki et al. [40] identified the

protein TMEM16F as an essential component for Ca2+-

dependent exposure of PS.) A rare but severe disease,

called “Scott syndrome,” is characterized by the absence of

PS redistribution upon calcium entry and has been

investigated by R. Zwaal’s group in The Netherlands [32]

and by J.-M. Freyssinet and collaborators [33] in France.

Various severe diseases such as cancer and Alzheimer’s

disease were also reported to be accompanied by defects in

lipid asymmetry [34]. ABCA1, another lipid transporter of

the family of ABC-ATPases, was considered to be responsible

for Tangier disease, characterized by impaired efflux of

cholesterol and phospholipids from peripheral cells onto

apolipoproteins such as Apo A-1. Cholesterol accumulation

in macrophages and apolipoprotein degradation lead to

tissue deposition of cholesterol esters and increase the risk

of arteriosclerosis in patients. G. Chimini and collaborators

in Marseilles studied this particular defect associated with a

lipid transporter [35]. In humans, several mutated ABC


