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HISTORICAL PERSPECTIVES: WHO DID WHAT  
AND WHAT’S NEXT?

Ole Mouritsen, in his recent monograph entitled “Lipids—As a Matter of Fat,” 
summarized with humor the views of many biologists concerning lipids, as 
follows: “Lipids appear to play a fairly non-specific role, being rather dull and 
anonymous compared to fashionable stuff like the proteins that catalyze all 
biochemical reactions and the genes that contain the information needed to 
produce proteins” [1].

The present book, which is addressed to researchers, teachers, and students 
in cell biology and in biochemistry, has the goal of convincing all scientists that 
lipids, on the contrary, have sophisticated behaviors and play multiple impor-
tant roles in living organisms. It is also addressed to physicists fascinated by 
the various spontaneous self-organization of lipids in water (lipid polymor-
phism) to warn them that lipids in biological systems are not always at thermal 
equilibrium, and that phase separations and lateral or transmembrane domains 
seen in model systems can differ fundamentally from biological situations. 
Indeed, molecule segregation in biological systems results often from the work 
of ATPases, like the flippases, or is the result of a molecule sorting by “protein 
gates” (see the “fence and picket model” of Kusumi and collaborators [2]). 
Such mechanisms are difficult to mimic in model systems.

In any case, all lipids are not equivalent and their chemical heterogeneity, 
for example, between the two sides of a biomembrane, is the result of a long 
selection during evolution, which allows lipids to fulfill different functions, 
from that of a fluid hydrophobic medium for membrane proteins to that of 
selective messenger molecules and enzyme cofactors. In the latter case, they 
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have to find their partners in a cell, hence to move rapidly in a very anisotropic 
environment.

To many biologists, lipids form the third class of molecules of living organ-
ism after proteins and nucleic acids. Yet, lipids were probably not the third in 
the evolution nor are they third in importance, since a cell and even many 
viruses cannot exist without a membrane. The fact is that lipids form the build-
ing blocks of biological membranes. They determine the boundary of all living 
organisms as well as the compartmentalization of organelles in eukaryotes. 
Regarded as passive molecules forming only viscous cement that holds mem-
brane proteins, filtering out hydrophilic molecules, the lipid bilayer is in reality 
a sophisticated structure capable of a remarkable polymorphism in water. The 
physical characteristic of a lipid bilayer permits not only protein movement 
but also membrane deformations and, coupled to the cytoskeleton, provides 
the cell membrane with mechanical properties. Not the least astonishing is the 
bilayer’s ability to divide in two compartments during cell division without 
losing molecules in the plasma due to efficient self-sealing capacities. 
Nonetheless, there are still mysteries concerning lipids, which are matters of 
research, speculation, and controversy. (1) Biophysicists have succeeded in 
making stable membranes (liposomes) with only one type of lipids, in suspen-
sion in water, for example, with egg phosphatidylcholine (PC), while biological 
membranes harbor several hundred different lipids. Why are there so many 
chemically different lipids coexisting in nature? (2) Why is the lipid composi-
tion of various membranes of eukaryotes different and sometimes even the 
two sides of biological membranes different (asymmetrical)? This requires 
numerous specific enzymes for the synthesis and ultimately for the shuttling 
to the right destination of newly formed lipids. Is such a multiplicity necessary 
for a fine-tuning of membrane-bound enzymes or is the variety of lipids used 
to give specific messages to specific proteins? Is the detailed chemical structure 
of lipids without real importance and does it reflect only the precursor mol-
ecules available? Not only do eukaryotic membranes have many chemically 
different lipids if one considers chain length, unsaturation, and polar head 
group, but also the lipids are not homogenously distributed within the various 
organelles and even between the different sides of one membrane. This lipid 
heterogeneity, a “complication of Nature,” was transmitted more than a million 
years in eukaryotic cells and has survived the filter of evolution, suggesting 
that the lipid composition and distribution within a cell is neither accidental 
nor inconsequential for the activity of cells.

Although cells tolerate certain variability in lipid composition, many human 
diseases have been associated with the inability of mutated cells to synthesize 
specific lipids or to recycle particular lipids from the nutriments or to address 
specific lipids to their correct destination. Alternatively, the excess of certain 
lipids such as cholesterol or saturated phospholipid chains can be poisonous.

In the late 1960s, V. Luzzati, in a pioneer work carried out in France, showed 
by X-ray crystallography that lipids extracted from biological membranes 
form, in water, lamellar phases, giving rise spontaneously to large multilamel-
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lar (onion-style) liposomes made of a superposition of bilayers [3, 4]. Physicists 
characterized the bilayers as liquid crystals that could be in a fluid state or in 
a more viscous, gel state. In the early 1970s, the concept of lipid bilayer 
emerged as the basic model of biomembranes and was popularized in the 
famous model of “fluid mosaic membrane” of S.J. Singer and G.L. Nicolson 
[5]. Although the concept of “mosaicity” implies the presence of heteroge-
neous lateral domains, and in spite of the work carried out by several physical 
chemists such as H. McConnell, it was only in 1997 (almost 30 years after the 
initial work of Luzzati and McConnell) that the importance of lateral domains 
began to be popular among membranologists and that biological functions 
associated with lateral domains (or rafts) were highlighted (see the work of 
K. Simons and E. Ikonen [6]).

Indeed, the two monolayers of biomembranes form distinct lipid domains: 
M. Bretscher in England demonstrated in the early 1970s the asymmetrical 
transmembrane distribution of phospholipids in the plasma membrane of 
human erythrocytes [7]. Bretscher used the chemical labeling of the amino 
groups of phosphatidylserine (PS) or phosphatidylethanolamine (PE) and 
showed that aminophospholipids are principally in the membrane inner mono-
layer, while PC and sphingomyelin (SM) are essentially in the outer monolayer 
of human red cells. Subsequent investigation in the laboratory of L.L.M. van 
Deenen in The Netherlands based on phospholipases and sphingomylinases 
assays [8, 9] confirmed Bretscher’s results and demonstrated that the trans-
membrane asymmetry of red cells is an ubiquitous property of the plasma 
membrane of eukaryotes. In model systems, on the other hand, no transmem-
brane lipid segregation was found to form spontaneously. Sonication allows 
one to achieve a lipid sorting between inner and outer monolayers in small 
unilamellar vesicles (SUVs), but the latter structures are not physiological 
because of their small size compared with that of vesicles produced in vivo 
(∼20-nm diameter for SUVs vs. ∼200 nm for endocytic vesicles). Thus, lipid 
sorting observed in biomembranes had to be caused by a process that does 
not exist in liposomes and is not a mere thermodynamic equilibrium. Initially, 
the segregation of aminophospholipids was believed to be due to the topology 
of enzymes responsible for lipid synthesis or to lipid–cytoskeleton interactions 
(J.A.F. Op den Kamp [10]). However, Bretscher had the remarkable intuition 
to postulate the existence of specific lipid enzymes that he named “phospho-
lipid flippase,” which would be responsible for the establishment of the asym-
metrical lipid organization at the expense of ATP hydrolysis. In practice, it was 
later found necessary to specify the orientation of the postulated lipid carrier 
and the requirement or absence of requirement for ATP hydrolysis. This 
explains why the habit is now to differentiate among flippase, floppase, and 
scramblase (Fig. I.1).

A prerequisite for stable lipid segregation between the two monolayers  
of a membrane is a priori a slow transmembrane diffusion. In 1971, R.D. 
Kornberg and H.M. McConnell at Stanford University demonstrated for the 
first time, with spin-labeled lipids, the very slow transmembrane diffusion of 
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phospholipids in sonicated lipid vesicles, where the “flip-flop” between the two 
monolayers was found to require several hours at 30°C [11]. It is now admitted 
that the spontaneous transmembrane diffusion of lipids is very slow in lipo-
somes of any size as well as in biological membranes. A few exceptions to this 
rule were discovered recently. Cholesterol, ceramide, phospatidic acid, diacyl-
glycerol, and free fatty acids or esters have a rapid spontaneous diffusion (τ1/2 
less than 1 minute). The absence of real polar head groups in such lipids prob-
ably explains this unusual result.

It was only in 1984, that is, more than 10 years after Bretscher’s hypothesis, 
that the existence of a phospholipid flippase was demonstrated in France by 
M. Seigneuret and P.F. Devaux in the human erythrocyte membrane using 
spin-labeled analogs of naturally occurring phospholipids [12] and the year 
after by D.L. Daleke and W.H. Huestis, who provided confirmation using an 
elegant technique involving nonlabeled lipids [13], while A. Schroit’s group 
[14] took advantage of fluorescent analogs to prove the existence of an eryth-
rocyte aminophospholipid transporter. The requirement of hydrolyzable Mg2+-
ATP was demonstrated as being necessary for the rapid transport of 
aminophospholipids, and the specificity was carefully investigated; however, 
no proteins were identified initially. In 1989, an ATP-dependent flippase activ-
ity in chromaffin granules from bovine adrenal medulla was reported by the 
Paris laboratory and attributed to the so-called ATPase II [15]. This was the 
first report of aminophospholipid translocase activity in the inner membranes 
of the eukaryotic cell. The transport observed was in fact from the lumen to 
the cytosol of the granules but was classified as a flippase activity. In 1996, P. 
Williamson and R.A. Schlegel’s groups in the United States showed that this 
granule flippase was homolog to a yeast ATPase (called Drs2p), and studied 
a mutant deprived of Drs2 that was unable to flip aminophospholipids [16]. 
The phospholipid flippase seemed to be discovered.

However, in 1999 and 2003, the groups of T. Graham in the United States 
[17] and G. van Meer and J. Holthuis in The Netherlands [18] showed that 
Drs2p is in fact localized in the yeast trans-Golgi and not in the plasma mem-

Figure I.1.  Definition of the various lipid transporters in eukaryotic cell membranes. 
Note that the scramblase is calcium dependent and that “flippase” is a term that is used 
sometimes to designate an enzyme that catalyzes lipid flip-flop in both directions 
(inward or outward), for example, in the endoplasmic reticulum.

ATP

flip-flopscramblaseflippase floppase

ATP

extracellular
or lumenal

cytoplasm
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brane, and that five homologs of this protein exist: two in the plasma mem-
brane (Dnf1p and Dnf2p), two in the trans-Golgi (Dnf3p and Drs2p), and one 
(Neo1p) in endosomes or cis-Golgi. Furthermore, these P-type ATPases seem 
to be associated with other proteins playing the role of chaperones (CDC50p) 
or are necessary for the proper targeting to their final destination of the newly 
formed proteins [19]. In 2006, P. Natarajan and T. Graham [20] showed a flip-
pase activity with fluorescent lipids in yeast Golgi membranes, which they 
could attribute to the Drs2p. Interestingly, the triple knockout of the Drs2p 
homologs in yeast led to viable cells, but they were deprived of endocytic 
activity [18]. In conclusion, the various P-type ATPases may have different 
specificities but may also be partially redundant.

Thus, after about 20 years of research in different laboratories throughout 
the world, it became obvious that the ubiquitous eukaryotic flippase was in 
reality a combination of several proteins, including four ATPases called P4-
ATPase, actually forming a family of five proteins in yeast. In humans, it was 
predicted from genomic investigation that 14 P4-ATPases were members of 
the family and could be involved in lipid transport. The purification of specific 
P4-ATPases and of Drs2p from chromaffin granules or after expression in 
various systems (yeast and insect cells) is in progress. However, so far the 
purification has not been achieved on a large enough scale to allow unambigu-
ous tests of lipid transport in reconstituted lipoproteins.

Other membrane proteins were reported to have an ATP-dependent lipid 
translocation activity and correspond to the so-called floppases (see Fig. I.1) 
with an ATP-binding cassette (ABC). Suggested originally by C.F. Higgins and 
M.M. Gottesman in 1992 [21], the laboratories of G. van Meer and of P. Borst 
in The Netherlands [22] showed in 1996 that the ABC transporter P-glycoprotein, 
also called MDR1, which is responsible for multidrug resistance and is a 
serious obstacle in cancer therapy, was able to transport fluorescent phospho-
lipids from the inner monolayer to the outer monolayer of the plasma mem-
brane of eukaryotic cells. The low specificity of the P-glycoprotein suggested 
that this protein could be involved in the transport of SM and PC toward the 
outer monolayer of the plasma membrane, hence play an important role in 
the transmembrane lipid asymmetry of the eukaryotic plasma membrane. 
Other members of the ABC protein family seemed to be responsible for the 
specific outward transport of PC in transfected epithelial cells [22]. An impor-
tant point is that ABC proteins are also found in prokaryotes and could be 
implicated in lipid translocation in bacteria [23].

Besides ATP-dependent flippases, which were found essentially in the 
plasma membrane of eukaryotes, other ATP-independent proteins also called 
flippases were postulated to be in specific organelle membranes (endoplasmic 
reticulum) and could explain the rapid flip-flop observed by several groups. 
Their primary function would be to facilitate the transmembrane diffusion of 
lipids in the membranes specialized in lipid synthesis. Already in 1985, W.R. 
Bishop and R.M. Bell [24] suggested the existence of ATP-independent  
flippase, catalyzing the diffusion of PC in the endoplasmic reticulum. Since 
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then, several researchers have attempted to isolate the protein(s) responsible 
(A. Menon in the United States [25] and A. Herrmann and collaborators in 
Germany [26]). Other researchers have attempted to prove that any trans-
membrane protein should accelerate the flip-flop of lipids, making it unneces-
sary to search for specific proteins (B. de Kruijff and A. Killian and collaborators 
in The Netherlands [27, 28]). In practice, the identification of the ATP-
independent flippase of low lipid specificity seems even more difficult than it 
is for the ATP-dependent selective flippase, precisely because the test of ATP 
requirement cannot be used to discover the latter transporter.

BIOLOGICAL ADVANTAGES OF LIPID ASYMMETRY

The complexity involved in the regulation of lipid topology, requiring ATP 
hydrolysis, raises the question of the biological function(s) of such an elaborate 
system. Actually, one might rephrase this question differently: The lipid com-
position of a biological membrane is always a mixture of many different lipids. 
The actual justification of this fact is not obvious, since a stable lipid bilayer 
can be achieved in liposomes with a single phospholipid species. So what is 
the biological advantage of the synthesis of many different lipids? A reason-
able hypothesis would be that lipid asymmetry is used to tag the two sides of 
a membrane and to optimize their functionality, which is obviously different. 
Indeed, the cell outer environment differs fundamentally from the cytosol.

One of the first indications of the physiological importance of lipid asym-
metry came from the observation by A. Schroit and collaborators (United 
States) who showed in 1983 and 1985 that the presence of a very small per-
centage of PS (∼1% of the total lipid composition) in the outer monolayer of 
red cells was used in vivo as a signal of cell aging and led in the blood circula-
tion to the elimination of aged cells by macrophages [29]. These conclusions, 
which came originally from experiments associated with the introduction of 
exogenous PS in the outer monolayer of red cells, were confirmed later by the 
detection of natural PS with fluorescent Annexin V by J.F. Tait and D. Gibson 
in 1994 [30]. The exposure of PS in the outer monolayer of platelets is also 
associated with the formation of clots that stop bleeding (R. Zwaal and col-
laborators [31]).

Thus, lipid flip-flop concerns directly at least two important physiological 
problems: (1) blood coagulation, which is triggered in vivo by the exposure of 
PS, a cofactor required for the conversion of prothrombin into thrombin, and 
(2) elimination of aged and/or apoptotic cells by macrophages. The lipid ran-
domization, that is, loss of lipid asymmetry that is used in vivo as a signal for 
cell elimination, can be triggered artificially by penetration of calcium ions in 
the cytosol of platelets, erythrocytes, or lymphocytes with calcium ionophores, 
and results in “lipid scrambling,” that is, lipid randomization between the two 
leaflets. This phenomenon is associated with a so far unknown protein named 
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“scramblase.” (Note: Suzuki et al. [40] identified the protein TMEM16F as an 
essential component for Ca2+-dependent exposure of PS.) A rare but severe 
disease, called “Scott syndrome,” is characterized by the absence of PS redis-
tribution upon calcium entry and has been investigated by R. Zwaal’s group 
in The Netherlands [32] and by J.-M. Freyssinet and collaborators [33] in 
France.

Various severe diseases such as cancer and Alzheimer’s disease were also 
reported to be accompanied by defects in lipid asymmetry [34]. ABCA1, 
another lipid transporter of the family of ABC-ATPases, was considered to be 
responsible for Tangier disease, characterized by impaired efflux of cholesterol 
and phospholipids from peripheral cells onto apolipoproteins such as Apo A-1. 
Cholesterol accumulation in macrophages and apolipoprotein degradation 
lead to tissue deposition of cholesterol esters and increase the risk of arterio-
sclerosis in patients. G. Chimini and collaborators in Marseilles studied this 
particular defect associated with a lipid transporter [35]. In humans, several 
mutated ABC proteins reputed to be responsible for lipid transport are 
believed to cause metabolism disorders such as Stargardt syndrome (a genetic 
disease of vision), progressive intrahepatic cholestasis, pseudoxanthoma elas-
ticum, adrenoleukodystrophy, or sitosterolemia.

In 1999, E. Farge and collaborators, in A. Dautry-Varsat’s laboratory, pro-
vided evidence of a biological role played by a lipid transporter during the 
first step of endocytosis [36]. It was shown that the transport of PS and PE 
from the outer to the inner monolayer by the ATP-dependent flippase is a 
stimulation of endocytosis and could be the molecular motor of membrane 
bending involved in the first step of endocytosis. The explanation proposed 
was that the excess of lipids in one monolayer triggers membrane invagination, 
as shown in model systems [37]. The yeast knockout experiments mentioned 
above [18] confirmed that in the absence of flippase proteins, endocytosis was 
blocked.

There are also reports suggesting that PS is important for fusion; hence, it 
could be useful in the inner monolayer for exocytosis and not only for the 
regulation of inner leaflet proteins.

There are certainly many other enzymes that require specific lipids at 
specific positions in a cell. Actually, the difference in head group of the lipids 
from the two sides of a membrane is not the only difference between inner 
and outer leaflets lipids. Indeed, there is evidence of difference in unsatura-
tion, which is associated with differences in membrane viscosity, as observed 
in erythrocytes with spin-labeled lipids [38] and with fluorescent lipids  
[39]: The inner monolayer is more fluid; the outer is more rigid, hence more 
resistant. It is very likely that this feature is associated with the activity of 
proteins.

When transmembrane lipid asymmetry was demonstrated in red cells and 
soon after in the plasma membranes of all animals, it was assumed that this 
feature was a general property of living organisms. This may be true in animal 
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and in plant cells, which are both eukaryotes. But the evidence regarding pro-
karyotes is limited and often concerns rare lipids.

PROSPECTS

What kind of progress can be expected in a reasonable time? Clearly, the 
bottleneck for progress in understanding the mechanism of lipid translocation 
by membrane proteins in eukaryotes has been the difficulty in assigning, isolat-
ing, and overexpressing the protein(s) responsible for this process; studying 
the properties of  proteoliposomes; and crystallizing a flippase. Crystallization 
will be a necessary step for ultimately understanding the mechanism that 
allows a hydrophobic transmembrane protein to accumulate against a gradient 
amphiphilic molecule. There are some reports, at low resolution, on the struc-
ture of ABC proteins possibly involved in lipid transport. With P4-type ATPases, 
the data obtained with Ca2+-ATPase can be used as first-order approximation 
to stimulate the speculations of researchers, but the difference between a lipid 
and a calcium ion is so large that the detailed analysis of the mechanism is 
presumptuous. In any case, the determination of the structure and molecular 
mechanism of a flippase is a challenge for the coming years. It is therefore an 
objective that cannot be forsaken. Progress in the molecular biology and puri-
fication of the P4-type ATPases will lead to this achievement.

Other objectives are as follows:

1.	 isolation of protein(s) responsible for ATP-independent rapid lipid flip-
flop in the endoplasmic reticulum;

2.	 isolation of protein(s) responsible for calcium-induced lipid scrambling 
(scramblase);

3.	 deeper understanding of all the consequences of lipid asymmetry, includ-
ing recognition of the diseases caused specifically by a defect (impair-
ment) in flippase activity.

ORGANIZATION OF THIS BOOK

As shown in the Table of Contents of this book, each chapter concentrates on 
one particular aspect of lipid asymmetry in biomembranes. However, we are 
not yet in a situation to give a complete and rational picture. As a consequence, 
one of the main difficulties in assembling this book was to choose a rational 
order for the chapters. Although the various chapters are closely linked to 
each other, there were no compelling reasons to decide which subjects deserved 
to be first or second. Hence, some repetition is unavoidable and the order of 
the chapters is rather arbitrary. Nevertheless, we must apologize for this weak-
ness. On the other hand, each chapter can stand alone and does not necessarily 
require the reading of other chapters.
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PART I

ASSESSING TRANSMEMBRANE 
MOVEMENT AND ASYMMETRY  
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