THE EXPERT’S VOICE®IN OPEN SOURCE

PHP Objects,
Patterns, and
Practice

Build powerful code by mastering PHP’s
object-oriented enhancements, design patterns,
and essential development tools

THIRD EDITION

Matt Zandstra

APIESS®

PHP Objects, Patterns,
and Practice
Third Edition

Matt Zandstra

Apress-

PHP Objects, Patterns, and Practice, Third Edition
Copyright © 2010 by Matt Zandstra

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2925-4
ISBN-13 (electronic): 978-1-4302-2926-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning

Lead Editor: Michelle Lowman, Matt Wade

Technical Reviewer: Wes Hunt

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jim Markham

Copy Editor: Tracy Brown Collins

Compositor: MacPS, LLC

Indexer: Toma Mulligan

Artist: April Milne

Cover Designer: Anna Ischenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales—eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

Contents at a Glance

Contents at @ GIANCE.....cciiuriimmmiinmmisenisisnnns s s s r s a s an e an e e aa R e R e R R e RRR R RR R RSN RRRRRRERRRRRERRRRRRRES i
L1 11 (-] 1 v
About the AULROKoiciieiiiries s s s s r e mnE e s mm R R e R mmR R R R R R mRRR R R R R RRRRRRRES xvii
About the Technical ROVI@WETcururrserrssmrssmsssasmssssssnsssasssnsessasssasssnsessnsssasssnssssnsssasssnsessnsssasssanes Xviii
T T L T T 1 Xix
Introduction to the Third Editioncccemmmesmmiesmmisemmmssmmmssmmsssmmsssmmsesmsssmssnmmssnsssmssasmmmnm XX
Part 1: Introduchion.......ccuccirismmmisenmmissnmmssanmssssnmsssmmsssnmsssssmsssnsesssnsessasssssnsasssnsnssnnnnssnnssssnnsssnnnnsnnnnssnnnnss 1
Chapter 1: PHP: Design and Managementccccuimmimmmsmmssmissmmesmssmsssmsesmsssssssssssssssssssnsns 3
1] 11T 9
Chapter 2: PHP and ODJECES.......ccccuumismmsmmsmmssesssnssssnsssesssassssssssesssssssssssnssssssssnsssnssssasssnsssnssssnsssnss 11
Chapter 3: ODject BASICS ...uxrrserrsssrsserssarsssssssssssssssassssssssssssssssssssnssssssssssssnssssssssnsssnsesnssssnsssasssnnessnss 15
Chapter 4: Advanced FEatUres.......cocuuermsmrssssssemmsassssssssssssnssssssssssssssssssssnssssssssnsesnssssssssnsssnsesnnsssns 41
Chapter 5: ObJECt TOOIS......ccuuierrsssnnrsssnsrssanssssanssssnsessnsessansessanssssssssssssesssnsssssnssssanssssnnssssnnessanssssnnss 71
Chapter 6: Objects and DeSIgNcccururerrssnrsssanmsssnsessanssssansssssnssssssessnssessansssssssssssnssssnnssssnssssanssssnnss 99
1 o L (-] 4 121
Chapter 7: What Are Design Patterns? Why Use Them?.........ccccmmmmmmenmmmsesmmmsssmmssssmssssmssssssnss 123
Chapter 8: Some Pattern PrinCiplescccuccuumnsmmimmssmmssenssssmssmssesssssssssssssssssssssssssssssssssnsssssnss 131
Chapter 9: Generating ODJECES..........ccuucmrimmismmssnmsnnmssmmssenssnssssnsssesssmssssnsssnsssasssnssssnsssanssnnssnnssnnnnss 145
Chapter 10: Patterns for Flexible Object Programming.......c.ccxssmsssrsssssssssssssssssssassssssssasssasesnsnsss 169
Chapter 11: Performing and Representing TaskScccuuesrmmsasmsssnsssssnssssanssssansssssnssssssssssnsssssnnssnas 189
Chapter 12: Enterprise Patiernsccucusmmmmssmmssssmmsssmsssssmsssssmssesssssssssssssssssssssssssssssnsssssnssssanssnss 221
Chapter 13: Database Patterns........ccccciummmnnmmiesmmssnmmssmmmssmmsesmmsssmmsssmssnssssssasssmama——m—mmn" 275
Part 4: PractiCe ...ucccuuisesmusssmmisnmmssanmsssanmsssnnssssnsssssnssssnsssssnsassanssssssssssssasssssssssssssssssssssnsssssnsssnnssssnnssnan 315
Chapter 14: Good (and Bad) PractiCecccccussemssemmsansssmmssesssnssssssssmssssssssssssssssnssssssssssssnsssnsnsnnsnss 317
Chapter 15: An Introduction to PEAR and Pyrus.........ccccummsemmssmmssmmssssssssmsssssssssssssssssssasssnsssssnss 323
Chapter 16: Generating Documentation with phpDocumentorc.cccusmrsmmsemssmssssssssssssasssasnns 347
Chapter 17: Version Control with SUDVersioN........cccucriemssemmsssssssmssssssssssssssssssssssssssssssssassssssssansss 361
Chapter 18: Testing with PHPUNIL........cccocccunnenmmnmnmssssnmsssnssmsssmssssssssssssssassssssnssssssssssssssssssssssnnssnas 379
Chapter 19: Automated Build With PRingcccuseermsnmmmssnmmmsesmmssssmssssssssssssssssssssssssssssssssssssssnsssnes 407
Chapter 20: Continuous Integration............ccccvciiicmmismismnmmmni s ———————— 427
Part 5: CONCIUSION....cccuiiintiisannsssannsssnnmsssnnmssanmssssnssssnsmssansessasssssssmsssssnssassssssssssssssssnsnsssnnnsssnnssssanssnsn 451
Chapter 21: Objects, Patterns, PractiCeccccusmrimmsmmsscmssnnmsssmssesssnssssssssesssssssnssssssssasssnsnsnnnsss 453
Appendix A: Bibliographycccccussmsssmsssmssssssssssssssessssssssssssessssssssssssssssnssssssssssssnssssssssssssnsssnnsssns 463
Appendix B: A SIMPI@ ParSer......ccusursssrsssssssrsssnessnsssasssnnessns 467
] 219

ii

Contents

Contents at @ GIANCEcoccrriemrmssmmmsssnsmsssses s s s s s s nn s an s e snns s nannnsnns il
(1 1] (-] 1 v
About the AUROKcciiiiemmmmmissssnmmssssssmmssssss s saasssssssnnnsssssannnnnnsnn Xvii
About the Technical REVIEWET.........uscesmmssssnssmsssssnssssssssnssssssssnssssssssnsssssssnnssnssss Xviii
Acknowledgments........ccuuummmmmmmmmmmmmmssssssssssnnmnmessssssssssssnnnssesssssssssnnnnnnsessssssnnnnnnns Xix
Introduction to the Third Editionccccctmmmsmmmmmmmsssssmmmsssssmmsssssssmssssssssssssssssns XX
Part 1: Introductionccuccemmmmismsnmmmsssnsnmmssssssnmsssssssnmsssssssnssssssnsnssssssnsnsssssnnnnnsssnnnnnns 1
Chapter 1: PHP: Design and Management..........cccccunnemmmmmnsssssnmmssssssssssssssssssssssnnnes 3
THE ProbIem ...t n e 3
PHP and Other LANQUAGJESccecvverrerrersessissessessesssssesses e sessessss s sssssssssssssssssssessssssnnens 4
ADOUL THIS BOOKciceieresesessessesssssesssssesse s e s s s e s e s e s sns e s e s e s e s s s snssnssnssnssssssssssnsansansans 5
00T 3 OO 6
L2 1 ST RSPSTSTSN 6

o oSSR 6
What's New in the Third EQItiON...........ccoeeereeirerrrcrrcc v s seresseses e sae e sae e s sessesas e saesessesassessenenaes 7
R3] 4P S 7
Part 2: OBJECES.....cuuummmmrmssnnnnmssssnnnsmssssnsnnssssssnssessssnnnssssssnnnesssssnnssssssnnnnsssssnnnnessssnnnnss 9
Chapter 2: PHP and ODjectsccccuueeemmmmsssnnnmmssssnsnsmssssssnsssssssssssssssssssssssssnnssssssnns 11
The Accidental Success 0f PHP ODJECEScccvvrverrerrernerrer e ses e 11
In the BEGINNING: PHP/FI ..ot ss s sss e sssssssssssssssssssssssssssssssssssnnns 1
SYNTACHIC SUGAr: PHP 3 ...ttt nn s nns 1

PHP 4 and the QUIEt REVOIULIONcoeeiveeeiree i ssse s e sssessesssssesee s sssessessessssssesssssasssesssesassnnens 12

vi

CONTENTS

Change EMDraced: PHP 5 ..o s s sssnsnns 13
INT0 the FULUIE ... nn e 14
Advocacy and Agnosticism: The Object Debate..........c.ccerrrrerrrrnsersnserser e 14
R3] 11 4= RS 14
Chapter 3: Object BaSICScuuuueerrrmssnnnmmssssnsnssssssnssssssssssnsesssssnsnssssssnnssssssnnnnssssnnns 15
Classes aNd ODJECTS......cccevererrrerrerere e sae e e raesae e s e s e sas e saesaesaesnesaesaesnenns 15

N] 0 T 15

A First ODJECE (OF TWO) ..vuecuceereruccreresseeesesseesesessesesesesss e e sssss e e e ss e e s sssssessssssesssessssssssssssssssnssssensnes 16
Setting Properties in @ Class...........cccucveeniernnmnesnsesessse e sss s 17
Working With MEtNOUSccceeeerereesrreresse e e s 19

Creating @ Constructor MEthodcoo o 21
Arguments and TYPEScceoeeeerrerrerrersersessessessessessessessesses e s s e s e s sessessesssssesssssssssssesssnses 22

PrIMItIVE TYPES ettt e e se e se s s e e e e s se e e e 22

Taking the Hint: ODJECT TYPESucoererercere et e 25
0] 0 1=T g = o 27

The INheritance ProbIEM ... e s 27

Working With INNEHLANCE ..o r e s 3

Public, Private, and Protected: Managing Access 10 YOUr ClaSSes.........couvrevrennsesnsessesensessesessenenns 35
SUMMEANY ...t s e s e s se s s e saessesaenaensese e s e snennennesrensennesnenennnnnnnns 39
Chapter 4: Advanced Featuresccovunummmmmmsssnsnmmssssssnmmsssssssmssssssssnssssssssssssssnns 41
Static Methods and Properties.........ccoveeeeeerescse s ses s s sss s e e s snsnnns 4
ConStant PrOPEITIEScoeeueeeererrecee e sse e e ssesn e s sn s sn s snssn e n e sn e snesnennn e 44
ADSIrACE CIASSESceeruererererire st s s s sr e n e sn e sn e n e e n s 45
INEEITACES ...t r e n e n e nnnnan 47
Late Static Bindings: The static KEYWOrd.......c.cccooeemverennsensssnessse s ssesessens 48
HaNAIiNG EITOIScvieeeccccees e s s sn s s s sns e s snnsssaes 51

EXCEPHONS. ...ttt a e e e e e s e e e e R e e e e R e e e e renennas 52
Final Classes and Methodsccocverceriersrsensirses s snn e 57
Working With INterceplors ... 58
Defining Destructor Methodsccocvcercercircnsersrsr s 62

CONTENTS

Copying Objects With _ CIONE() ...cceeereereererrerreeree e s e seesee e e e e e s e sassassnsnnns 63
Defining String Values for Your ODJECEScccoreecrerescrerncse e 65
Callbacks, Anonymous FUNctions and CIOSUIEScccecereereerersersessesssssesssssesssssessensenns 66
B30 0] 1 70
Chapter 5: Object TOOIScuurcerrmmsssnnnmmsssssnnssssssnsssessssnsnsesssssnnnesssssnnsessssnnnnesssnnns 71
PHP and PacKagesccocrerririernirser s s e s s sne s ssne e s s ssessnn s 71
PHP Packages and NamESPACES.........ccocvrerererersersmsermssssesessesssssssessens 71
X (0] [0 U PSP 80
The Class and Object FUNCLIONS..........c.ccevierensereesnsessssesse e se s sss e ssesennens 81
LOOKING fOF CIASSES......eeueueererucncereseeeseseeseses e ee e sse et sse e e e sse e e s sse e e ssse et ssse s e ssnsassssssansssnnns 82
Learning About an ODJECE OF ClASS........covureeererecere e 83
Learning ADOUL METNOASccireeeceeer ettt 84
Learning ADOUL PrOPEITIEScccoerereeerereenereseee e sssee e sss e se s e s s sse s s e sssnsssnens 85
Learning ADOUL INNEHTANCE ..ot 85
MEthod INVOCALION.........eceecerece ettt 86
The RefleCtion APL..........ooeererrerentr s sr s e n s 87
GELEiNG STAMEM ... 87
Time 0 RO UP YOUF SIBBVEScoererereriererse s st sse st sse s s s e st s e se s s e s s e s e s e s e s s s s ssssssssassansssssnnens 88
EXAMINING @ ClIASScoiiiecircircn ettt et e bbb e e p e nn e s 90
Examining Methods.........occoiiniircsrcrr sttt e p e s e 91
Examining Method ArgUMENTS ... s s 93
Using the REfIECHION APL........coeire sttt s s st sr e a et s r e s a e s a e sr s n e nn s 9
SUMMAIY......oiceetr e e s e R e e s e e R et na e e e ae e e s 97
Chapter 6: Objects and DeSigncccrisemrmssnnsmsssnsssssnsesssnsesssnsesssnsesssnsesssnnssssnnssss 99
Defining Code DESIgN........cccvereeierrere st s sn e 99
Object-Oriented and Procedural Programming.......c..ccccceerverenensesnnessesessesssessessnsenns 100
RESPONSIDIITY....ccceeeeeecr e —————————— 103
0] 10 104
0] 1 0] o 104
OrtNOGONAIILY....cevieerrrrsseserrsrssee e e e s e s e e e s s e s e e e s Re e e e e s e e e nrnrann e rnnns 104
ChoOoSING YOUF ClaSSES.....ccerereereerrereeraersessessessessssasssessssssssssssssssassssssssssssssssssssasssssanses 105

vii

CONTENTS

L0 Y1 10] 0] 1T SR 106
ENCAPSUIALION ... e 107
FOorget HOW 10 DOoeeeee s 108
FOUP SIGNPOSTSccerireririr sttt e se s n e sn s n e 109
0o LI DT o)=L To] OSSOSO 109
The Class Who KneW TOO0 MUCKHccccevineierersseesess e seess s sese s s s ssssssssessssssesssssssssssssssassses 109
The JACK O All TRAUES......cceerereeeerereene s e s se s s e e s s s st sn e nsnnnns 109
Conditional STAtEMENTS........coceie e e 110
LT L 110
ClasS DIAOTAMSccoerereicererseeesessssesesesss e seseses e e e ssss e e ssse s sesssse s e esse s e sessene e sesRene e senensass e ssnsans 110
SEQUENCE DIAGIAMScereieecirereee e see e e se e s e s e e s e e e s s se e e s sse e e s sae e e s sse e e s nsaasnnnes 117
SUMMANY.....eiieeeeei s a s e s ae e s e e s re e s s a e e s ae e n e s aen e e nan e nnis 119
Part 3: Patternsccccccimminnnisssssssmnmmmmmnnssssssssnnmnnsssssssssssssnnnnnssssssssssnnnnnnnnssssnnnnnnns 121
Chapter 7: What Are Design Patterns? Why Use Them?..........ccucemmmnsssnnnnssssnnns 123
What Are Design Patterns? ...t 123
A Design Pattern OVEIVIEWcocvcercercersinsen st se e sn s sn e e 125
1 T 0T 125
LT3 52 (0]] OO 125
THE SOIULION ..ot e p s p e nsrnne s 126
CONSBOUENCES. ...ueeueeerersersersessersessessessssssssssssessssssssssssssessessssssssessessessessessessessessessessessessessessessessessssans 126
The Gang of FOur FOrmatcococvcicrcnsrsr et 126
Why Use Design Patterns?.........ccocvcircnsrsessssis s ses e e s s s nnas 127
A Design Pattern Defines @ ProDIEmcocovcrniinnsnicnnscrr et se e s snnnens 127

A Design Pattern Defines @ SOIUTIONcccveeeriereriererirsenerreresseres e se e seses e ssesessesassesaesessesessesassesensens 127
Design Patterns Are Language Independent...........c.ccoriiinninininnnnnsnssesse s sesens 127
Patterns Define @ VOCADUIAIY.........ccocvviiriniinin sttt 127
Patterns Are Tried and TESEE ... s 128
Patterns Are Designed for Collaboration............cceeveerereriererreressersssesssessessssessssessesessessssessssessesessesanaes 128
Design Patterns Promote GO0 DESIGNccccovverervereriererereneresessessssessesessessssessssessesessessssessesssssnsnaes 128
PHP and Design Patterns...........ccocvvrvencrnnsense e see e snesneas 129
31T 1= S 129

viii

CONTENTS

Chapter 8: Some Pattern PrinCiplesccccinmnemmnmnssssnnnnmssssnsnsssssssssssssssssnsssssans 131
The Pattern Revelation...........ccccvnnnnn s 131
Composition and INNErANCEcccceverererrre s 132
TRE PrODIEM ... e e n e renrenrenran 132
USING COMPOSITIONcovreicerrriseeserrsse s se e e s s s a s e s s s e e ness e e e e nsns 135
DECOUPIING ..veererrerrerese s e s e e s re e e e se e e se e naen s ae e e e nne e s e nnn e nnnnnnnnns 137
BTG I 50 (0] T TP 137
L00SENING YOUF COUPIINGcvrerueecereecce et ses e e se s ssa s nnns 139
Code to an Interface, Not to an Implementationcccocevevevrvrrncrrc e 141
The Concept That Variescccvvrverrerierrinrirsisses et sn e sn e sn e s 142
oY (=] 0L (S 143
L LLETN 22 U (] 4 143
Patterns for Generating ObJECES........cccoceerericrerre e e 143
Patterns for Organizing Objects and ClaSSes......c.cucvrrrrienniernsinnserse e se e ssssessesesnes 143
Task-0riented PAttEINS ..ot 143
ENErpriSe PALLBIMScccceeieecirerrer sttt sa e s sa e e sa e s a e s a e e sa e e e e s aesaesaesae e e e e e e naennan 144
Database PAternS...........cccoriieirieecre e s 144
111 1P SRS 144
Chapter 9: Generating ObJEcCtScccirussnmmmmmssssnnnmmssssnsnmsssssnsnssssssnnnssssssnnsssssnnns 145
Problems and Solutions in Generating Objects.........c.ccocvvrvrrrcrcrcs s 145
The Singleton Pattern ... 149
LT3 52 (0]] OO 149
IMPIEMENTALION ... e e e e en 150
0] =T 0 T 152
Factory Method Pattern ...t 152
THE ProODIBM ...t 153
IMPIEMENTALION ... ———————————— 155
CONSEOUBIICES. c..eveerererereresesessssssssssssssssssssssssssssssssssssesssssssssssssssessssssssssssssasssssssssssssssssssssssssssasas 157
Abstract Factory Patterncccvcvcrcersssesses s 157
THE ProODIBM ... 158
IMPIEMENTALION ... s a s e se e npnp e nrnn s 159

ix

CONTENTS

CONSBUUEBNCES. ... vrueueurresssseerssssseessssssesessssssssessssssassssssssssssssssassssssssassssssssessnsssnsessssssssesenssessnsasessnsnsans 161
o (03] T 162
TRE ProDIEM ... e e e e e nnenrenran 163
IMPIEMENTALION ... s a s s e rnr e e nn s 163
But That’s Cheating!cccvcceererenncnesr e sss e sn s sns e sneennens 166
SUMMANY......etiereeetrerer e e s ae e s e e sae e s e s ae e s ae e n e s nennannnn e nnes 167
Chapter 10: Patterns for Flexible Object Programmingcccussesssssesssssasssssanss 169
Structuring Classes to Allow Flexible ODJECES.........cccuerrererseresessesesesesessessesesesessennes 169
The Composite Pattern...........cccvvrvivnirsnsnsr e 169
BTG I 50 (0] T TS 170
IMPIEMENTALION ... s n e s 172
CONSBUUBNCES.......cuecuererueucuesesseeseseseseesesssseeesss e e e ssase e e s s ssa e st s e sse e e resse e e s e eRese e sesRane s senensane s e nsans 175
COMPOSItE IN SUMMANY ..ot e e st ae e e s e s e e e e nnans 178
The Decorator Pattern...........ccocoieiresrcr s 179
LT3 52 (0]] OO 179
IMPIEMENTALION ... e ne e e e e en 181
CONSBOUENCES. ...ueeueeerersersersessersessessessssssssssssessssssssssssssessessssssssessessessessessessessessessessessessessessessessessssans 185
The Facade Pattern...........ccooeeiiennnresness s s 185
LT3 50 (0] T S 185
IMPIEMENTALION ...t na e e e e nn 186
0] =T 0 T 187
SUMMAIY.....oeeecir et s a e s e e e se e s a e e nn e nns 187
Chapter 11: Performing and Representing Tasksccccrrrssssnsnmsssssnsssssssssnssssssnns 189
The Interpreter Pattern.........ococvcrcicscscsssr s 189
THE ProODIBM ... 189
IMPIEMENTALION ... ———————————— 190
INTEIPIEIEE ISSUBS ... ceueiee ettt e e e e e e e e n e nn e e s 197
The Strategy Pattern..........cicrccccrrr e 198
TRE PrODIEMI ... e e e e e e nnenneran 198
IMPIEMENTALION ... s a s e se e npnp e nrnn s 199

THE ODSEIVEE PALLEIN ..cceeeieeireeeiciee e isseesssseesssse s sseessssessssesssssesssssessssesssssesssnsessnsssnns 202

CONTENTS

IMPIEMENTALION ... s e sr s rnr e rnn e 204
The VISItor Pattern ... s s 210
TRE PrODIEM ... e p e n e pennenneran 210
IMPIEMENTALION ...t s a s e p e pnr e e nn s 211
VISIEON ISSUBS ...ttt sttt s et e et s e e e e s e e e e s nnn s 215
The Command Pattern ...t 216
LTG50 (0] T OO ST 216
IMPIEMENTALION ... s n e s 216
SUMMANY......etiereeetrerer e e s ae e s e e sae e s e s ae e s ae e n e s nennannnn e nnes 220
Chapter 12: Enterprise Patierns........cccccimmmmmmnmsssssssmnnmmmmmssssssssssssssssssssssssssnns 221
ArchiteCture OVEIVIEW.......cocevererererer sttt 221
BTG TE 5 U T3PS 222
APPICAtIONS ANA LAYEIS.....cov e se e s e s ss st pe e s nsennns 222
Cheating Before We Start..........ccooeoececececceccee e 225
REGISIIY ...ttt e R e R e e R e R e Re e nnn 225
IMPIEMENTALION ... e ne e e e e en 226
The Presentation Layerccccvcvrcrcirscnsinses s sn s s s nas 235
L 0L 001 (0] T TS 235
DA a] o1 Lo 1 T0] 00 110} 1T OSSR 245
PAQE CONTIONIETcveeetreetr et e b e e e ae b e p e nenrnnas 257
Template View and VIEW HEIPEK ..o s sse s s snnns 262
The BuSiNeSS LOGIC LAYETccceecererierirsessesses s s sese e s e e s ses e sss s s snsssssnssssssnnnns 264
TranSaCtION SCHPL.....ccvcrecererrrerr et rrs e s s e raese s e s s e sae e saesesaesaesesae e sae e s aenennenannens 265
DOMAIN MO ...t e e 269
SUMMAIY.....oeeecir et s a e s e e e se e s a e e nn e nns 273
Chapter 13: Database Patternsccccummmnsmmmissnsmsssssmsssssssssssssssssssssssssssnsssssanss 275
The Data LaYerccocvcicerirere s sn s nn s sn s nn e nnas 275
D7 L W1 0 L SR 275
THE ProODIBM ... 276
IMPIEMENTALION ...t r s a s se e rnr e e nnns 276

CONSBUUBNCES. ... vruueurresssseersssssesessssseessssssssessssssasessssssssssssssasessssssassssssssessnsssssesensssssessnssessssassssssnsans 287

xii

CONTENTS

IAENtItY MAD ... s 288
TRE PrODIEM ... g g p e penrenneran 288
IMPIEMENTALION ... s e s a s e p e e r e nnns 289
CONSBUUEBNCES. ... vrueueurresssseserssssseesssssseessssssssessssssasessssssssssssssassssssssassssssssessnsssssessnsssssesenssensssasensssnsans 291

0T 0L S 291
LTG50 (0] T OO ST 292
IMPIEMENTALION ... s n e s 292
COMSBUUBNCES.......eecuereruecuererseeeseseseesesss e ee s s e e e sssse e e s sse e sesessese e nesse et sesRene st sesRane s nenensans e s nnans 296
IV 4T I Lo TSR 296
L TE I 50 (0] T TS 296
IMPIEMENTALION ... s n e s 297
CONSBOUENCES. ...cueeeeererserserstssessessessessssssssssssesasssssessssssessessssssssessessessessessessessessessessessessessessessessessssans 298

Domain Object FACLOrY.......c.ccucvvrcercrcirsir sttt 298
LT3 50 (0] T S 298
IMPIEMENTALION ... e ne e e e e en 299
CONSBOUENCES. ...cueeueeerersersersessesssssesssssssssssssssesssssesassssssessessssssssessessessessessessessessessessessessessessessessessnsans 300

The Identity ODJECL........ccocveercrer e sr e 301
LT3 52 (0]] OO 301
IMPIEMENTALION ... ———————————— 302
0] =T 0 T T 307

The Selection Factory and Update Factory Patterns............ccceevverrnrcrnicnnscsesenenns 307
THE ProDIBM ... 307
IMPIEMENTALION ... ———————————— 307
0] =T 0 T T 311

What’s Left of Data Mapper NOW? ... sss s ses s 311

3T S 313

Part 4: PracliCeccccesssmmmmmmessssssssssssmssssssssssssssssssssssnsssssssssssssnnnnnssssssssssssnnnnnnnnnns 315

Chapter 14: Good (and Bad) PractiCecccumssmmnmmssssnnnssssssnsnsssssssnsssssssnnssssssnns 317

BEYONA COURceererererer sttt sttt n e sn e sn e n e e s 317

Borrowing @ WHeel..........o et 317

PlAYiNg NICEcoveiereiiie et s sn e s s ne e n e s nenne s 319

CONTENTS

GIVING YOUF COUE WINGS ...ccueevereereereereertereeseessessessssaessesssssssassassssssssssssssssssssssssssssssssanses 319
DOCUMENLALION.......ccceeeeerere e 320
LIS T SRS 321
ContinuOUS INEQratioN........cocceevere e e 322
R3] 11 4= 322
Chapter 15: An Introduction to PEAR and PYruscccccuneemnmnsssssnnsnssssssnsssssans 323
WhAL IS PEAR?........eieeeet et ss s sn s s sae s n e s nn e 323
Phar OUt WIth PYFUScocerieririri sttt se e e s e sn s e s sn s sns s 324
InStalling @ PACKAQEccovverrrireirc e sn s sn e nne s nnens 326

PEAR CRANNEIS......ccueireirerirscris i seses s ss st s et s s se s e s s be st s s st s se e sae e sas e s e e enennnans 327
USing @ PEAR PACKAQE..........cccveeruererirrennserese s s s s sse e sns e ssessssesssssssessssennes 329

HaNAING PEAR EFTOIS......ccieiieeccrereeecesese et e s e s s ss s nsns 331
Creating Your OWn PEAR PaCKagE..........ccccrrrmrererserrennsensssessessssessssessesessesssssssessssennes 334

PACKAGEXIML...cneeieciet ettt se e se e e e s e e s ae e e e s e e e e ee e e e e e s e ne e e nnans 334

PaCKaAGe EIBMENTS......ccoceeceeeeereceee et nesn e p s 334

The contents EIBMENT ... e e 336

LT 0 Lo a0 LT o OO 339

Tweaking Installation with phprelease ... 340

Preparing a Package for SNIPMENT ..o sessns 341

Setting Up YOur OWN ChanNELcccouvuieerereneeseneseesesssssseesssnes 341
31T 4= 346
Chapter 16: Generating Documentation with phpDocumentor..........c.ccccunriisnnns 347
WHY DOCUMENE? ..ottt sttt n s sn s sn e nn e nn s nn e n e 347
INSTANIALION ..o ——————————— 348
Generating DocumeNntation ..o —————— 349
DOCBIOCK COMMENTS.......cocereririrerer ettt 350
DOCUMENTING CIASSEScoveevruerrrerneresersesesesesessesssesessessese s ssssssssssssessssssssssssesssnsanens 352
File-Level Documentationcocvvvcrvrnrsnsnscr st 353
Documenting Propertiesccoucveerserenmsesessessesssesessessssessessssesssssssesssssssessssesssnsnsens 353
Documenting Methods...........cceeeieereresresr e r e 355

xiii

Xiv

CONTENTS

Creating Links in Documentation..........cccceevererennnesnenses e sse e s e e e saess 356
R3] 11 1= 359
Chapter 17: Version Control with Subversioncccinnneennnnnnssennnnnsssnnmmse. 361
Why Use Version CONtrol?.........ccocvvervrveniensensensesses s sessessessessesssssessssssssssssssssssssssssssnns 361
GEttiNG SUDVEISION.....cc.cceceereeceerie e ra e sa e sa e sa e sa e sa e sn s na e sn s 362
Configuring a Subversion RepoSitory........ccoceevererrnnnesns s see e 363
Creating @ REPOSITONY.......ccccerrrrrererrrrsiesesrseseesssesssesssssssesesssss e e s ssssssesssssssssssssssssssssssssssssessasssssnsans 363
Beginning @ ProjECL.........occevierreieresinsc s sse s se s sns s e s e s snssnnens 364
Updating and COMmMIttingccoceevceienniennseressse e sns e 368
Adding and Removing Files and DireCtoriesccooeerrernnesesssesssesessssessssesesesenns 371
LN [1T R T L OSSR 371
REMOVING @ Fil@ ...ttt s 372
BN (o T T s W DT =T (o TS 372
ReMOVING DIrBCIOMIESecueeererecrererece et e s e e s nennns 373
Tagging and EXporting @ REIEASEcccuceeeermrermnerrenrsesssse e s sesse s 373
LIS T[0T T 5 (0] =T TS 373
EXPOrtiNg @ PrOJECT........cecetccr ettt e e 374
Branching @ Project.........ccccvcrvrircnsr sttt 374
111 1P SRS 378
Chapter 18: Testing with PHPUNILccccccccnnnnnseessmmnnnnsssssssssssssssssssssssssssssssnnns 379
Functional Tests and Unit TESES........cccocrvrvrirnrcrsr st 379
Testing DY HaNd ...ttt 380
Introducing PHPURIL ...ttt 382
Creating @ TESE CASEccvveerrverrrierrnire sttt s s s e e b et r e e b e s a e p e r e e ne e nis 382
ASSErtion MELNOUScciueirccirerir st e s b s r e s n e e e nnnne 383
TeSHING EXCEPLIONSccceiircerircer ettt se e e st et e e e e a e st e e e nnesaeneens 384
RUNNING TEST SUITES ...eveererirererires s s st s eres e sae e s e e s e ss e e ssesesaesa s e sae e saesesaesesaesassesassesasnesssnsnaes 385
CONSIIAINTSc.cvirieeceri et e r e e e b e e E e E e s R e b e b e e e e R e ae e nn e 386
MOCKS aN0 STUDSceiiieiciririnecriss e e st a e se e s sp b nnn s 388
Tests Succeed When They Falilcovcveeerenriererrersseresessesessessssessesesessssessesesssssssessesesssssssessssensnsens 391

CONTENTS

Writing Webh TestS ..ot ne e 394
Refactoring a Web Application for TeStiNg.......cccoovveeerrnescnnnssesesrs e sessns 394
SiMPIE WED TESTINGcuceieieerrrreesesr e a s ne s na s s e nes 397
INtrOdUCING SEIENIUMeceeteerc e e e r s sn s e e s e e e nnns 398

A NOte Of CaULIONcoerercr e 403

SUMMANY.....etiereeceseree e a s e s ae e e sre e s e re e e ae e s e e ae e e e nnn e nnes 405

Chapter 19: Automated Build with Phing..........cccicnnnemmmmnnnsnmnmnnsssssnmmsssnnmnnne 407

What IS PRINQ? ...t sns e sne s s sn s s s snn s 407

Getting and Installing PRiNgccoovveeeeiiernsrerrse e 408

Composing the Build DOCUMENL............ccovereirerne e 408
LIS L OSSR 410
L (0] 1] T TP 412
17701 OO 416
2T OO 421

111 1P SRS 425

Chapter 20: Continuous Integrationccccussemmmmnssmmnmmnssssnmmssssnmssssnsna. 427

What Is Continuous Integration?...........cccevrercrcnsrssss e 427
Preparing @ ProjECt fOr Cl........coiiiicsircsirc st s sr s s 428

CruiseControl and phpUnderControl............cccoeeeeeeerece s 436
INStalling CruiSECONTIOL......ccccceeiereeere et r e s e s p e s r e r e nenrnnis 436
Installing phpUNderCONtroL..........ccoviieciiienncrn st sn s s r e r e s 438
INStalliNg YOUK PrOJECT......ccoticeirccrtr ettt p e s p e 440

SUMMAIY.....oeeecir et s a e s e e e se e s a e e nn e nns 450

Part 5: CONCIUSIONccociremrcsssnmmsssnsmsssnsmssssssssssnsssssnsesssnsessansessansesssnnesssnnesssnnesssnnss 451

Chapter 21: Objects, Patterns, Practice........cccsccrrsrmmmssmsssssmsmsssssssssssssssnsssssanas 453

00T SRS 453
CROICE ...uereeeuecreres ettt et e e e R e e R A e R e R A A e Re e R A e Re e e A e R e e e R e Re e Ennens 454
Encapsulation and Delegation............ccvvrvninininininsn s 454
0100107 o] o SRS 454
3 LTU T2 o]) TSRS 455

e (=] (S 455

XVi

CONTENTS

PALEIMNS.... .o e n e nae s 455
What Patterns BUY USccvccerecrersmrenrressssesessesessessessssesessessssesssssssssssssssssesssssssssssssssssssssssssssssssnsees 456
Patterns and PrinCiples 0f DESIGN.........cccvreereresssesmsssnsessssssssesesssssssessssssssssssssssssssssssssssssssssnssessssans 456

0 T (o S 458
L= 4o SO S TR S 459
DOCUMENTALION ...t e e s e p e e nn 459
LT £ (0 T o OO RSRS 459
AUtomMALEd BUII........coueereir e e s s ne e 459
ContiNUOUS INTEGFALIONcov et e e 460
WRAL I IMISSEA ...ttt sa s et e s e b st e a e s ae e s e e e ae e e nenenann 460

SUMMANY.....etieeeesirerer e sa s e s ae e s s e s re e s sae e e aennn e e aennnnnnn e nnes 460

Appendix A: Bibliography.......ccceemmmmmsssmmmmssssmmmmssssmmmsssssmmssssssmsssssssssanm 463

3T 463

Y 1T TR 464

R3] | (1 464

Appendix B: A Simple Parsercccccuurmmssssssssssssmsmsssssssssssssssssssssssssssssssnsssssssssnns 467

L (=T o 14 T R 467

L (=T 5 - R 474

1T 487

About the Author

Matt Zandstra has worked as a web programmer, consultant, and writer for over a decade. He is a
senior developer at Yahoo, and a freelance coder and writer. Matt is the author of Teach Yourself PHP in
24 Hours (SAMS) and a contributor to DHTML Unleashed (SAMS). He has written articles for Linux
Magazine, Zend.com, IBM DeveloperWorks, and php|architect Magazine, among others. He works
primarily with PHP and Java, designing and building web and command-line applications.

Matt lives in Liverpool with his wife, Louise, and two children, Holly and Jake.

xvii

About the Technical Reviewer

Wes Hunt is a web-application developer and consultant at 4th Dimension
Development, which builds web solutions for organizations from small to the
enterprise level. For over a decade, he has used Java and PHP to deliver everything
plus the kitchen sink for clients. His latest passion is leveraging Flex with a PHP
back-end to produce RIAs for clients. Wes uses development patterns and best
practices in order to spend more time enjoying the outdoors near his home in
Montana.

xviii

Acknowledgments

When you first have an idea for a book (in my case, while drinking good coffee in a Brighton cafe), it is
the subject matter alone that grips you. In the enthusiasm of the moment, it is easy to forget the scale of
the undertaking. I soon rediscovered the sheer hard work a book demands, and I learned once again that
it’s not something you can do alone. At every stage of this book’s development, I have benefited from
€normous support.

In fact, my thanks must predate the book’s conception. The themes of this book first saw the light of
day in a talk I gave for a Brighton initiative called Skillswap (www.skillswap.org) run by Andy Budd. It
was Andy’s invitation to speak that first planted the seeds of the idea in my mind. For that, I still owe
Andy a pint and much thanks.

By chance, attending that meeting was Jessey White-Cinis, another Apress author, who put me in
touch with Martin Streicher, who commissioned the book for Apress straightaway.

My thanks go out to both Jessey and Martin for seeing potential in the slightest of beginnings.

Once again the Apress team has provided enormous support in the face of a very tight deadline, and
my tendency to go quiet as I moved with my family to a new continent in the middle of the project.

Thanks to Steven Metsker for his kind permission to re-implement in PHP a brutally simplified
version of the parser API he presented in his book Building Parsers in Java.

Writing to a deadline is not conducive to family life, and so I must send my thanks and love to my
wife, Louise, and to our children, Holly and Jake. I have missed you all.

Since the publication of the first edition, I have been lucky to receive much enthusiastic and
constructive feedback from readers. I'm sorry that I haven’t been able to reply to everyone individually,
but I'd like to take this opportunity to thank all correspondents for your messages.

The soundtrack to the writing of the first edition was provided by John Peel. John was a broadcaster
who waged a 40-year war on the bland and mass-produced in music simply by championing everything
original and eclectic he could lay his hands on. John died suddenly in October 2004, leaving listeners
around the world bereft. He had an extraordinary impact on many lives, and I would like to add my
thanks here.

Introduction to the Third Edition

When I first had the idea for PHP Objects, Patterns, and Practice, 1 felt I was swimming against the tide.
Many pattern implementations in PHP felt like glorified workarounds due to limitations in the
language. These days, though, it can be hard to keep up with pace of innovation in PHP objects,
design, and project practice.

If that's a problem, well, it's the kind you want to have. Especially if you have the tools at hand to
navigate the risks and opportunities that present themselves.

PHP continues to tick items off the object-oriented developer's wish list. Since the last edition of
this book, we have seen namespaces make it into the language, late static binding, anonymous
functions, and closures (if those don't yet mean anything to you, don't worry, they're all covered by
this book). PHP is an active language, constantly evolving to meet the needs of its users.

For a developer, this presents some interesting challenges. Not least, the tension between a stable
codebase and the desire to take advantage of the goodies that every new release brings. With a good
suite of tests, preferably run automatically, tools for collaboration, and an easily installed system, you
can improve the design of your code, play with new features, and be fairly sure that you're not
breaking stuff.

And that's where this book comes in, I hope. I want to explore what's exciting, both in the
language and in the wider world of object-oriented design. At the same time, I want to take in the
tools and practices you can use to safeguard your project from the hordes of bugs that lurk beyond
sight whenever you make a change.

As well as new language features, this edition benefits from coverage of web testing with Selenium,
and the ultimate tool of tools: a Continuous Integration server that runs tests, builds your system, and
applies diagnostic tools to your project.

How real is a web application? It exists as lines of code, of course, bits stored on a computer. It
exists in its execution on a server. But really, for the developer, an application first lives in the
imagination. It is a structure made up of parts that interlock more or less elegantly. Then, if we're
lucky, it is realized and deployed, and it really comes alive at the moment someone uses it. There,
right there, is where the magic of coding lives.

That's what this book is really about. It's about taking an idea and shaping it, and the pleasure to
be found in the process. It's about the shapes of a system in your imagination, and the satisfaction
when these shapes are expressed in code. And then again when the system actually works. It's about
the freedom that tests give you to take risks, and the risks that your imagination inspires you to take.
It's the moment that something you wrote becomes real in the eyes of another.

PART 1
EEN

Introduction

CHAPTER 1

PHP: Design and Management

When PHP 5 was released early in 2004, among the most important features it introduced was enhanced
support for object-oriented programming. This stimulated much interest in objects and design within
the PHP community. In fact, this was an intensification of a process that began when version 4 first
made object-oriented programming with PHP a serious reality.

In this chapter, I look at some of the needs that coding with objects can address. I very briefly
summarize the evolution of patterns and related practices in the Java world. I look at signs that indicate
a similar process is occurring among PHP coders.

I also outline the topics covered by this book.

I will look at

e Theevolution of disaster: A project goes bad.

e Design and PHP: How object-oriented design techniques are taking root in the
PHP community.

e This book: Objects. Patterns. Practice.

The Problem

The problem is that PHP is just too easy. It tempts you to try out your ideas, and flatters you with good
results. You write much of your code straight into your web pages, because PHP is designed to support
that. You add utility functions (such as database access code) to files that can be included from page to
page, and before you know it you have a working web application.

You are well on the road to ruin. You don’t realize this, of course, because your site looks fantastic. It
performs well, your clients are happy, and your users are spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a larger team,
some more users, a bigger budget. Yet without warning, things begin to go wrong. It’s as if your project
has been poisoned.

Your new programmer is struggling to understand code that is second nature to you, though
perhaps a little byzantine in its twists and turns. She is taking longer than you expected to reach full
strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you must update 20 or
more web pages as a result.

One of your coders saves his version of a file over major changes you made to the same code some
time earlier. The loss is not discovered for three days, by which time you have amended your own local
copy. It takes a day to sort out the mess, holding up a third developer who was also working on the file.

Because of the application’s popularity, you need to shift the code to a new server. The project has
to be installed by hand, and you discover that file paths, database names, and passwords are hard-coded
into many source files. You halt work during the move because you don’t want to overwrite the

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

configuration changes the migration requires. The estimated two hours becomes eight as it is revealed
that someone did something clever involving the Apache module ModRewrite, and the application now
requires this to operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes in as you are
about to leave the office. The client phones minutes later to complain. Her report is similar to the first,
but a little more scrutiny reveals that it is a different bug causing similar behavior. You remember the
simple change back at the start of the phase that necessitated extensive modifications throughout the
rest of the project.

You realize that not all the required modifications are in place. This is either because they were
omitted to start with or because the files in question were overwritten in merge collisions. You hurriedly
make the modifications needed to fix the bugs. You're in too much of a hurry to test the changes, but
they are a simple matter of copy and paste, so what can go wrong?

The next morning you arrive at the office to find that a shopping basket module has been down all
night. The last-minute changes you made omitted a leading quotation mark, rendering the code
unusable. Of course, while you were asleep, potential customers in other time zones were wide awake
and ready to spend money at your store. You fix the problem, mollify the client, and gather the team for
another day’s firefighting.

This everyday tale of coding folk may seem a little over the top, but I have seen all these things
happen over and over again. Many PHP projects start their life small and evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in early as
database queries, authentication checks, form processing, and more are copied from page to page. Every
time a change is required to one of these blocks of code, it must be made everywhere the code is found,
or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows obscure bugs to go
undiscovered until deployment. The changing nature of a client’s business often means that code
evolves away from its original purpose until it is performing tasks for which it is fundamentally unsuited.
Because such code has often evolved as a seething intermingled lump, it is hard, if not impossible, to
switch out and rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and fixing a system
like this can fund expensive espresso drinks and DVD box sets for six months or more. More seriously,
though, problems of this sort can mean the difference between a business’s success or failure.

PHP and Other Languages

PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As you will see in
the next chapter, PHP started life as a set of macros for managing personal home pages. With the advent
of PHP 3 and, to a greater extent, PHP 4, the language rapidly became the successful power behind large
enterprise Web sites. In many ways, though, the legacy of PHP’s beginnings carried through into script
design and project management. In some quarters, PHP retained an unfair reputation as a hobbyist
language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining currency in other
coding communities. An interest in object-oriented design galvanized the Java community. You may
think that this is a redundancy, since Java is an object-oriented language. Java provides a grain that is
easier to work with than against, of course, but using classes and objects does not in itself make a
particular design approach.

The concept of the design pattern, as a way of describing a problem together with the essence of its
solution, was first discussed in the '70s. Perhaps aptly, the idea originated in the field of architecture, and
not computer science. By the early '90s, object-oriented programmers were using the same technique to
name and describe problems of software design. The seminal book on design patterns, Design Patterns:
Elements of Reusable Object-Oriented Software, by the affectionately nicknamed Gang of Four, was
published in 1995, and is still indispensable today. The patterns it contains are a required first step for
anyone starting out in this field, which is why most of the patterns in this book are drawn from it.

CHAPTER 1 © PHP: DESIGN AND MANAGEMENT

The Java language itself deployed many core patterns in its API, but it wasn’t until the late '90s that
design patterns seeped into the consciousness of the coding community at large. Patterns quickly
infected the computer sections of High Street bookstores, and the first flame wars began on mailing lists
and forums.

Whether you think that patterns are a powerful way of communicating craft knowledge or largely
hot air (and, given the title of this book, you can probably guess where I stand on that issue), it is hard to
deny that the emphasis on software design they have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming (XP), championed
by Kent Beck. XP is an approach to projects that encourages flexible, design-oriented, highly focused
planning and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s success. Tests
should be automated, run often, and preferably designed before their target code is written.

XP also dictates that projects should be broken down into small (very small) iterations. Both code
and requirements should be scrutinized at all times. Architecture and design should be a shared and
constant issue, leading to the frequent revision of code.

If XP is the militant wing of the design movement, then the moderate tendency is well represented
by one of the best books about programming I have ever read: The Pragmatic Programmer by Andrew
Hunt and David Thomas, which was published in 2000.

XP is deemed a tad cultish by some, but it grew out of two decades of object-oriented practice at the
highest level and its principles were widely cannibalized. In particular, code revision, known as
refactoring, was taken up as a powerful adjunct to patterns. Refactoring has evolved since the '80s, but it
was codified in Martin Fowler’s catalog of refactorings, Refactoring: Improving the Design of Existing
Code, which was published in 1999 and defined the field.

Testing too became a hot issue with the rise to prominence of XP and patterns. The importance of
automated tests was further underlined by the release of the powerful JUnit test platform, which became
a key weapon in the Java programmer’s armory. A landmark article on the subject, “Test Infected:
Programmers Love Writing Tests” by Kent Beck and Erich Gamma
(http://junit.sourceforge.net/doc/testinfected/testing.htm), gives an excellent introduction to the
topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency and, crucially,
enhanced support for objects. These enhancements made fully object-oriented projects a possibility.
Programmers embraced this feature, somewhat to the surprise of Zend founders Zeev Suraski and Andi
Gutmans, who had joined Rasmus Lerdorf to manage PHP development. As you shall see in the next
chapter, PHP’s object support was by no means perfect, but with discipline and careful use of syntax,
one could really think in objects and PHP at the same time.

Nevertheless, design disasters like the one depicted at the start of this chapter remained common.
Design culture was some way off, and almost nonexistent in books about PHP. Online, though, the
interest was clear. Leon Atkinson wrote a piece about PHP and patterns for Zend in 2001 , and Harry
Fuecks launched his journal at www.phppatterns.com (now largely mothballed, it seems) in 2002.
Pattern-based framework projects such as BinaryCloud began to emerge, as well as tools for automated
testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for object-
oriented programming. The Zend 2 Engine provided greatly improved object support. Equally
important, it sent a signal that objects and object-oriented design were now central to the PHP project.

Over the years, PHP 5 has continued to evolve and improve, incorporating important new features
such as namespaces and closures. During this time, it has secured its reputation as the best choice for
server side web programming.

About This Book

This book does not attempt to break new ground in the field of object-oriented design; in that respect it
perches precariously upon the shoulders of giants. Instead, I examine, in the context of PHP, some well-
established design principles and some key patterns (particularly those inscribed in Design Patterns, the

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

classic Gang of Four book). Finally, I move beyond the strict limits of code to look at tools and
techniques that can help to ensure the success of a project. Aside from this introduction and a brief
conclusion, the book is divided into three main parts: objects, patterns, and practice.

Objects

I begin Part 2 with a quick look at the history of PHP and objects, charting their shift from afterthought in
PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little or no knowledge of
objects. For this reason, I start from first principles to explain objects, classes, and inheritance. Even at
this early stage, I look at some of the object enhancements that PHP 5 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more advanced object-
oriented features. I also devote a chapter to the tools that PHP provides to help you work with objects
and classes.

It is not enough, though, to know how to declare a class, and to use it to instantiate an object. You
must first choose the right participants for your system and decide the best ways for them to interact.
These choices are much harder to describe and to learn than the bald facts about object tools and
syntax. I finish Part 2 with an introduction to object-oriented design with PHP.

Patterns

A pattern describes a problem in software design and provides the kernel of a solution. “Solution” here
does not mean the kind of cut-and-paste code you might find in a cookbook (excellent though
cookbooks are as resources for the programmer). Instead, a design pattern describes an approach that
can be taken to solve a problem. A sample implementation may be given, but it is less important than
the concept it serves to illustrate.

Part 3 begins by defining design patterns and describing their structure. I also look at some of the
reasons behind their popularity.

Patterns tend to promote and follow certain core design principles. An understanding of these can
help in analyzing a pattern’s motivation, and can usefully be applied to all programming. I discuss some
of these principles. I also examine the Unified Modeling Language (UML), a platform-independent way
of describing classes and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and useful patterns.
I describe the problem that each pattern addresses, analyze the solution, and present an
implementation example in PHP.

Practice

Even a beautifully balanced architecture will fail if it is not managed correctly. In Part 4, I look at the
tools available to help you create a framework that ensures the success of your project. If the rest of the
book is about the practice of design and programming, Part 4 is about the practice of managing your
code. The tools I examine can form a support structure for a project, helping to track bugs as they occur,
promoting collaboration among programmers, and providing ease of installation and clarity of code.

I have already discussed the power of the automated test. I kick off Part 4 with an introductory
chapter that gives an overview of problems and solutions in this area.

Many programmers are guilty of giving in to the impulse to do everything themselves. The PHP
community maintains PEAR, a repository of quality-controlled packages that can be stitched into
projects with ease. I look at the trade-offs between implementing a feature yourself and deploying a
PEAR package.

CHAPTER 1 © PHP: DESIGN AND MANAGEMENT

While I'm on the topic of PEAR, I look at the installation mechanism that makes the deployment of a
package as simple as a single command. Best suited for stand-alone packages, this mechanism can be
used to automate the installation of your own code. I show you how to do it.

Documentation can be a chore, and along with testing, it is probably the easiest part of a project to
jettison when deadlines loom. I argue that this is probably a mistake, and show you PHPDocumentor, a
tool that helps you turn comments in your code into a set of hyperlinked HTML documents that
describe every element of your APIL

Almost every tool or technique discussed in this book directly concerns or is deployed using PHP.
The one exception to this rule is Subversion. Subversion is a version control system that enables many
programmers to work together on the same codebase without overwriting one another’s work. It lets you
grab snapshots of your project at any stage in development, see who has made which changes, and split
the project into mergeable branches. Subversion will save your project one day.

Two facts seem inevitable. First, bugs often recur in the same region of code, making some work
days an exercise in déja vu. Second, often improvements break as much as, or more than, they fix.
Automated testing can address both of these issues, providing an early warning system for problems in
your code. [introduce PHPUnit, a powerful implementation of the so-called xUnit test platform
designed first for Smalltalk but ported now to many languages, notably Java. I look in particular at
PHPUnit’s features and more generally at the benefits, and some of the costs, of testing.

PEAR provides a build tool that is ideal for installing self-enclosed packages. For a complete
application, however, greater flexibility is required. Applications are messy. They may need files to be
installed in nonstandard locations, or want to set up databases, or need to patch server configuration. In
short, applications need stuffto be done during installation. Phing is a faithful port of a Java tool called
Ant. Phing and Ant interpret a build file and process your source files in any way you tell them to. This
usually means copying them from a source directory to various target locations around your system, but
as your needs get more complex, Phing scales effortlessly to meet them.

Testing and build are all very well, but you have to install and run your tests, and keep on doing so in
order to reap the benefits. It’s easy to become complacent and let things slide if you don’t automate your
builds and tests. I look at some tools and techniques that are lumped together in the category
“continuous integration” that will help you do just that.

What’s New in the Third Edition

PHP is a living language, and as such it’s under constant review and development. This new edition has
been reviewed and thoroughly updated to take account of changes and new opportunities. I cover new
features such as closures, for example. The second edition examined an experimental version of
namespaces, which has since been rendered obsolete by the release of PHP 5.3, with its own namespace
support. I have, of course, updated this edition to address this.

I have updated the chapter on version control to cover Subversion rather than CVS. This reflects the
general migration to the newer platform I have perceived since this book was first published. I also
include a new chapter on continuous integration, both a practice and a set of tools that allows
developers to automate and monitor their build and test strategies..

Summary

This is a book about object-oriented design and programming. It is also about tools for managing a PHP
codebase from collaboration through to deployment.

These two themes address the same problem from different but complementary angles. The aim is
to build systems that achieve their objectives and lend themselves well to collaborative development.

A secondary goals lies in the aesthetics of software systems. As programmers, we build machines
that have shape and action. We invest many hours of our working day, and many days of our lives,
writing these shapes into being. We want the tools we build, whether individual classes and objects,

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

software components, or end products, to form an elegant whole. The process of version control, testing,
documentation, and build does more than support this objective, it is part of the shape we want to
achieve. Just as we want clean and clever code, we want a codebase that is designed well for developers
and users alike. The mechanics of sharing, reading, and deploying the project should be as important as
the code itself.

PART 2
EEN

Objects

CHAPTER 2

PHP and Objects

Objects were not always a key part of the PHP project. In fact, they have been described as an
afterthought by PHP’s designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I introduce coverage
of objects by summarizing the development of PHP’s object-oriented features.

We will look at

e PHP/FI 2.0: PHP, but not as we know it.

e PHP 3: Objects make their first appearance.

e PHP 4: Object-oriented programming grows up.
e PHP 5: Objects at the heart of the language.

e PHP 6: A glimpse of the future

The Accidental Success of PHP Objects

With so many object-oriented PHP libraries and applications in circulation, to say nothing of PHP 5’s
extensive object enhancements, the rise of the object in PHP may seem like the culmination of a natural
and inevitable process. In fact, nothing could be further from the truth.

In the Beginning: PHP/FI

The genesis of PHP as we know it today lies with two tools developed by Rasmus Lerdorf using Perl. PHP
stood for Personal Homepage Tools. FI stood for Form Interpreter. Together, they comprised macros for
sending SQL statements to databases, processing forms, and flow control.

These tools were rewritten in C and combined under the name PHP/FI 2.0. The language at this
stage looked different from the syntax we recognize today, but not that different. There was support for
variables, associative arrays, and functions. Objects, though, were not even on the horizon.

Syntactic Sugar: PHP 3

In fact, even as PHP 3 was in the planning stage, objects were off the agenda. As today, the principal
architects of PHP 3 were Zeev Suraski and Andi Gutmans. PHP 3 was a complete rewrite of PHP/FI 2.0,
but objects were not deemed a necessary part of the new syntax.

11

12

CHAPTER 2 " PHP AND OBJECTS

According to Zeev Suraski, support for classes was added almost as an afterthought (on 27 August
1997, to be precise). Classes and objects were actually just another way to define and access
associative arrays.

Of course, the addition of methods and inheritance made classes much more than glorified
associative arrays, but there were still severe limitations as to what you could do with your classes. In
particular, you could not access a parent class’s overridden methods (don’t worry if you don’t know
what this means yet; I will explain later). Another disadvantage that I will examine in the next section
was the less than optimal way that objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of prominence in official
documentation. The manual devoted one sentence and a code example to objects. The example did not
illustrate inheritance or properties.

PHP 4 and the Quiet Revolution

If PHP 4 was yet another ground-breaking step for the language, most of the core changes took place
beneath the surface. The Zend Engine (its name derived from Zeev and Andi) was written from scratch
to power the language. The Zend Engine is one of the main components that drive PHP. Any PHP
function you might care to call is in fact part of the high level extensions layer. These do the busy work
they were named for, like talking to database APIs or juggling strings for you. Beneath that the Zend
Engine manages memory, delegates control to other components, and translates the familiar PHP syntax
you work with every day into runnable bytecode. It is the Zend Engine we have to thank for core
language features like classes.

From our objective perspective, the fact that PHP 4 made it possible to override parent methods and
access them from child classes was a major benefit.

A major drawback remained, however. Assigning an object to a variable, passing it to a function, or
returning it from a method, resulted in a copy being made. So an assignment like this

$my obj = new User('bob');
$other = $my obj;

resulted in the existence of two User objects, rather than two references to the same User object. In most
object-oriented languages you would expect assignment by reference, rather than by value as here. This
means that you pass and assign handles that point to objects rather than copy the objects themselves. The
default pass-by-value behavior resulted in many obscure bugs as programmers unwittingly modified
objects in one part of a script, expecting the changes to be seen via references elsewhere. Throughout this
book, you will see many examples in which I maintain multiple references to the same object.

Luckily, there was a way of enforcing pass-by-reference, but it meant remembering to use a clumsy
construction.

Assign by reference as follows:

$other =& $my_obj;
// $other and $my_obj point to same object

Pass by reference as follows:

function setSchool(& $school) {
// $school is now a reference to not a copy of passed object
}

And return by reference as follows:

function & getSchool() {
// returning a reference not a copy
return $this->school;

