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Introduction to the Third Edition

When I first had the idea for PHP Objects, Patterns, and Practice, 1 felt I was swimming against the tide.
Many pattern implementations in PHP felt like glorified workarounds due to limitations in the
language. These days, though, it can be hard to keep up with pace of innovation in PHP objects,
design, and project practice.

If that's a problem, well, it's the kind you want to have. Especially if you have the tools at hand to
navigate the risks and opportunities that present themselves.

PHP continues to tick items off the object-oriented developer's wish list. Since the last edition of
this book, we have seen namespaces make it into the language, late static binding, anonymous
functions, and closures (if those don't yet mean anything to you, don't worry, they're all covered by
this book). PHP is an active language, constantly evolving to meet the needs of its users.

For a developer, this presents some interesting challenges. Not least, the tension between a stable
codebase and the desire to take advantage of the goodies that every new release brings. With a good
suite of tests, preferably run automatically, tools for collaboration, and an easily installed system, you
can improve the design of your code, play with new features, and be fairly sure that you're not
breaking stuff.

And that's where this book comes in, I hope. I want to explore what's exciting, both in the
language and in the wider world of object-oriented design. At the same time, I want to take in the
tools and practices you can use to safeguard your project from the hordes of bugs that lurk beyond
sight whenever you make a change.

As well as new language features, this edition benefits from coverage of web testing with Selenium,
and the ultimate tool of tools: a Continuous Integration server that runs tests, builds your system, and
applies diagnostic tools to your project.

How real is a web application? It exists as lines of code, of course, bits stored on a computer. It
exists in its execution on a server. But really, for the developer, an application first lives in the
imagination. It is a structure made up of parts that interlock more or less elegantly. Then, if we're
lucky, it is realized and deployed, and it really comes alive at the moment someone uses it. There,
right there, is where the magic of coding lives.

That's what this book is really about. It's about taking an idea and shaping it, and the pleasure to
be found in the process. It's about the shapes of a system in your imagination, and the satisfaction
when these shapes are expressed in code. And then again when the system actually works. It's about
the freedom that tests give you to take risks, and the risks that your imagination inspires you to take.
It's the moment that something you wrote becomes real in the eyes of another.
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CHAPTER 1

PHP: Design and Management

When PHP 5 was released early in 2004, among the most important features it introduced was enhanced
support for object-oriented programming. This stimulated much interest in objects and design within
the PHP community. In fact, this was an intensification of a process that began when version 4 first
made object-oriented programming with PHP a serious reality.

In this chapter, I look at some of the needs that coding with objects can address. I very briefly
summarize the evolution of patterns and related practices in the Java world. I look at signs that indicate
a similar process is occurring among PHP coders.

I also outline the topics covered by this book.

I will look at

e  Theevolution of disaster: A project goes bad.

e Design and PHP: How object-oriented design techniques are taking root in the
PHP community.

e This book: Objects. Patterns. Practice.

The Problem

The problem is that PHP is just too easy. It tempts you to try out your ideas, and flatters you with good
results. You write much of your code straight into your web pages, because PHP is designed to support
that. You add utility functions (such as database access code) to files that can be included from page to
page, and before you know it you have a working web application.

You are well on the road to ruin. You don’t realize this, of course, because your site looks fantastic. It
performs well, your clients are happy, and your users are spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a larger team,
some more users, a bigger budget. Yet without warning, things begin to go wrong. It’s as if your project
has been poisoned.

Your new programmer is struggling to understand code that is second nature to you, though
perhaps a little byzantine in its twists and turns. She is taking longer than you expected to reach full
strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you must update 20 or
more web pages as a result.

One of your coders saves his version of a file over major changes you made to the same code some
time earlier. The loss is not discovered for three days, by which time you have amended your own local
copy. It takes a day to sort out the mess, holding up a third developer who was also working on the file.

Because of the application’s popularity, you need to shift the code to a new server. The project has
to be installed by hand, and you discover that file paths, database names, and passwords are hard-coded
into many source files. You halt work during the move because you don’t want to overwrite the
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configuration changes the migration requires. The estimated two hours becomes eight as it is revealed
that someone did something clever involving the Apache module ModRewrite, and the application now
requires this to operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes in as you are
about to leave the office. The client phones minutes later to complain. Her report is similar to the first,
but a little more scrutiny reveals that it is a different bug causing similar behavior. You remember the
simple change back at the start of the phase that necessitated extensive modifications throughout the
rest of the project.

You realize that not all the required modifications are in place. This is either because they were
omitted to start with or because the files in question were overwritten in merge collisions. You hurriedly
make the modifications needed to fix the bugs. You're in too much of a hurry to test the changes, but
they are a simple matter of copy and paste, so what can go wrong?

The next morning you arrive at the office to find that a shopping basket module has been down all
night. The last-minute changes you made omitted a leading quotation mark, rendering the code
unusable. Of course, while you were asleep, potential customers in other time zones were wide awake
and ready to spend money at your store. You fix the problem, mollify the client, and gather the team for
another day’s firefighting.

This everyday tale of coding folk may seem a little over the top, but I have seen all these things
happen over and over again. Many PHP projects start their life small and evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in early as
database queries, authentication checks, form processing, and more are copied from page to page. Every
time a change is required to one of these blocks of code, it must be made everywhere the code is found,
or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows obscure bugs to go
undiscovered until deployment. The changing nature of a client’s business often means that code
evolves away from its original purpose until it is performing tasks for which it is fundamentally unsuited.
Because such code has often evolved as a seething intermingled lump, it is hard, if not impossible, to
switch out and rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and fixing a system
like this can fund expensive espresso drinks and DVD box sets for six months or more. More seriously,
though, problems of this sort can mean the difference between a business’s success or failure.

PHP and Other Languages

PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As you will see in
the next chapter, PHP started life as a set of macros for managing personal home pages. With the advent
of PHP 3 and, to a greater extent, PHP 4, the language rapidly became the successful power behind large
enterprise Web sites. In many ways, though, the legacy of PHP’s beginnings carried through into script
design and project management. In some quarters, PHP retained an unfair reputation as a hobbyist
language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining currency in other
coding communities. An interest in object-oriented design galvanized the Java community. You may
think that this is a redundancy, since Java is an object-oriented language. Java provides a grain that is
easier to work with than against, of course, but using classes and objects does not in itself make a
particular design approach.

The concept of the design pattern, as a way of describing a problem together with the essence of its
solution, was first discussed in the '70s. Perhaps aptly, the idea originated in the field of architecture, and
not computer science. By the early '90s, object-oriented programmers were using the same technique to
name and describe problems of software design. The seminal book on design patterns, Design Patterns:
Elements of Reusable Object-Oriented Software, by the affectionately nicknamed Gang of Four, was
published in 1995, and is still indispensable today. The patterns it contains are a required first step for
anyone starting out in this field, which is why most of the patterns in this book are drawn from it.
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The Java language itself deployed many core patterns in its API, but it wasn’t until the late '90s that
design patterns seeped into the consciousness of the coding community at large. Patterns quickly
infected the computer sections of High Street bookstores, and the first flame wars began on mailing lists
and forums.

Whether you think that patterns are a powerful way of communicating craft knowledge or largely
hot air (and, given the title of this book, you can probably guess where I stand on that issue), it is hard to
deny that the emphasis on software design they have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming (XP), championed
by Kent Beck. XP is an approach to projects that encourages flexible, design-oriented, highly focused
planning and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s success. Tests
should be automated, run often, and preferably designed before their target code is written.

XP also dictates that projects should be broken down into small (very small) iterations. Both code
and requirements should be scrutinized at all times. Architecture and design should be a shared and
constant issue, leading to the frequent revision of code.

If XP is the militant wing of the design movement, then the moderate tendency is well represented
by one of the best books about programming I have ever read: The Pragmatic Programmer by Andrew
Hunt and David Thomas, which was published in 2000.

XP is deemed a tad cultish by some, but it grew out of two decades of object-oriented practice at the
highest level and its principles were widely cannibalized. In particular, code revision, known as
refactoring, was taken up as a powerful adjunct to patterns. Refactoring has evolved since the '80s, but it
was codified in Martin Fowler’s catalog of refactorings, Refactoring: Improving the Design of Existing
Code, which was published in 1999 and defined the field.

Testing too became a hot issue with the rise to prominence of XP and patterns. The importance of
automated tests was further underlined by the release of the powerful JUnit test platform, which became
a key weapon in the Java programmer’s armory. A landmark article on the subject, “Test Infected:
Programmers Love Writing Tests” by Kent Beck and Erich Gamma
(http://junit.sourceforge.net/doc/testinfected/testing.htm), gives an excellent introduction to the
topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency and, crucially,
enhanced support for objects. These enhancements made fully object-oriented projects a possibility.
Programmers embraced this feature, somewhat to the surprise of Zend founders Zeev Suraski and Andi
Gutmans, who had joined Rasmus Lerdorf to manage PHP development. As you shall see in the next
chapter, PHP’s object support was by no means perfect, but with discipline and careful use of syntax,
one could really think in objects and PHP at the same time.

Nevertheless, design disasters like the one depicted at the start of this chapter remained common.
Design culture was some way off, and almost nonexistent in books about PHP. Online, though, the
interest was clear. Leon Atkinson wrote a piece about PHP and patterns for Zend in 2001 , and Harry
Fuecks launched his journal at www.phppatterns.com (now largely mothballed, it seems) in 2002.
Pattern-based framework projects such as BinaryCloud began to emerge, as well as tools for automated
testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for object-
oriented programming. The Zend 2 Engine provided greatly improved object support. Equally
important, it sent a signal that objects and object-oriented design were now central to the PHP project.

Over the years, PHP 5 has continued to evolve and improve, incorporating important new features
such as namespaces and closures. During this time, it has secured its reputation as the best choice for
server side web programming.

About This Book

This book does not attempt to break new ground in the field of object-oriented design; in that respect it
perches precariously upon the shoulders of giants. Instead, I examine, in the context of PHP, some well-
established design principles and some key patterns (particularly those inscribed in Design Patterns, the
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classic Gang of Four book). Finally, I move beyond the strict limits of code to look at tools and
techniques that can help to ensure the success of a project. Aside from this introduction and a brief
conclusion, the book is divided into three main parts: objects, patterns, and practice.

Objects

I begin Part 2 with a quick look at the history of PHP and objects, charting their shift from afterthought in
PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little or no knowledge of
objects. For this reason, I start from first principles to explain objects, classes, and inheritance. Even at
this early stage, I look at some of the object enhancements that PHP 5 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more advanced object-
oriented features. I also devote a chapter to the tools that PHP provides to help you work with objects
and classes.

It is not enough, though, to know how to declare a class, and to use it to instantiate an object. You
must first choose the right participants for your system and decide the best ways for them to interact.
These choices are much harder to describe and to learn than the bald facts about object tools and
syntax. I finish Part 2 with an introduction to object-oriented design with PHP.

Patterns

A pattern describes a problem in software design and provides the kernel of a solution. “Solution” here
does not mean the kind of cut-and-paste code you might find in a cookbook (excellent though
cookbooks are as resources for the programmer). Instead, a design pattern describes an approach that
can be taken to solve a problem. A sample implementation may be given, but it is less important than
the concept it serves to illustrate.

Part 3 begins by defining design patterns and describing their structure. I also look at some of the
reasons behind their popularity.

Patterns tend to promote and follow certain core design principles. An understanding of these can
help in analyzing a pattern’s motivation, and can usefully be applied to all programming. I discuss some
of these principles. I also examine the Unified Modeling Language (UML), a platform-independent way
of describing classes and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and useful patterns.
I describe the problem that each pattern addresses, analyze the solution, and present an
implementation example in PHP.

Practice

Even a beautifully balanced architecture will fail if it is not managed correctly. In Part 4, I look at the
tools available to help you create a framework that ensures the success of your project. If the rest of the
book is about the practice of design and programming, Part 4 is about the practice of managing your
code. The tools I examine can form a support structure for a project, helping to track bugs as they occur,
promoting collaboration among programmers, and providing ease of installation and clarity of code.

I have already discussed the power of the automated test. I kick off Part 4 with an introductory
chapter that gives an overview of problems and solutions in this area.

Many programmers are guilty of giving in to the impulse to do everything themselves. The PHP
community maintains PEAR, a repository of quality-controlled packages that can be stitched into
projects with ease. I look at the trade-offs between implementing a feature yourself and deploying a
PEAR package.
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While I'm on the topic of PEAR, I look at the installation mechanism that makes the deployment of a
package as simple as a single command. Best suited for stand-alone packages, this mechanism can be
used to automate the installation of your own code. I show you how to do it.

Documentation can be a chore, and along with testing, it is probably the easiest part of a project to
jettison when deadlines loom. I argue that this is probably a mistake, and show you PHPDocumentor, a
tool that helps you turn comments in your code into a set of hyperlinked HTML documents that
describe every element of your APIL

Almost every tool or technique discussed in this book directly concerns or is deployed using PHP.
The one exception to this rule is Subversion. Subversion is a version control system that enables many
programmers to work together on the same codebase without overwriting one another’s work. It lets you
grab snapshots of your project at any stage in development, see who has made which changes, and split
the project into mergeable branches. Subversion will save your project one day.

Two facts seem inevitable. First, bugs often recur in the same region of code, making some work
days an exercise in déja vu. Second, often improvements break as much as, or more than, they fix.
Automated testing can address both of these issues, providing an early warning system for problems in
your code. [ introduce PHPUnit, a powerful implementation of the so-called xUnit test platform
designed first for Smalltalk but ported now to many languages, notably Java. I look in particular at
PHPUnit’s features and more generally at the benefits, and some of the costs, of testing.

PEAR provides a build tool that is ideal for installing self-enclosed packages. For a complete
application, however, greater flexibility is required. Applications are messy. They may need files to be
installed in nonstandard locations, or want to set up databases, or need to patch server configuration. In
short, applications need stuffto be done during installation. Phing is a faithful port of a Java tool called
Ant. Phing and Ant interpret a build file and process your source files in any way you tell them to. This
usually means copying them from a source directory to various target locations around your system, but
as your needs get more complex, Phing scales effortlessly to meet them.

Testing and build are all very well, but you have to install and run your tests, and keep on doing so in
order to reap the benefits. It’s easy to become complacent and let things slide if you don’t automate your
builds and tests. I look at some tools and techniques that are lumped together in the category
“continuous integration” that will help you do just that.

What’s New in the Third Edition

PHP is a living language, and as such it’s under constant review and development. This new edition has
been reviewed and thoroughly updated to take account of changes and new opportunities. I cover new
features such as closures, for example. The second edition examined an experimental version of
namespaces, which has since been rendered obsolete by the release of PHP 5.3, with its own namespace
support. I have, of course, updated this edition to address this.

I have updated the chapter on version control to cover Subversion rather than CVS. This reflects the
general migration to the newer platform I have perceived since this book was first published. I also
include a new chapter on continuous integration, both a practice and a set of tools that allows
developers to automate and monitor their build and test strategies..

Summary

This is a book about object-oriented design and programming. It is also about tools for managing a PHP
codebase from collaboration through to deployment.

These two themes address the same problem from different but complementary angles. The aim is
to build systems that achieve their objectives and lend themselves well to collaborative development.

A secondary goals lies in the aesthetics of software systems. As programmers, we build machines
that have shape and action. We invest many hours of our working day, and many days of our lives,
writing these shapes into being. We want the tools we build, whether individual classes and objects,
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software components, or end products, to form an elegant whole. The process of version control, testing,
documentation, and build does more than support this objective, it is part of the shape we want to
achieve. Just as we want clean and clever code, we want a codebase that is designed well for developers
and users alike. The mechanics of sharing, reading, and deploying the project should be as important as
the code itself.
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CHAPTER 2

PHP and Objects

Objects were not always a key part of the PHP project. In fact, they have been described as an
afterthought by PHP’s designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I introduce coverage
of objects by summarizing the development of PHP’s object-oriented features.

We will look at

e  PHP/FI 2.0: PHP, but not as we know it.

e PHP 3: Objects make their first appearance.

e  PHP 4: Object-oriented programming grows up.
e PHP 5: Objects at the heart of the language.

e PHP 6: A glimpse of the future

The Accidental Success of PHP Objects

With so many object-oriented PHP libraries and applications in circulation, to say nothing of PHP 5’s
extensive object enhancements, the rise of the object in PHP may seem like the culmination of a natural
and inevitable process. In fact, nothing could be further from the truth.

In the Beginning: PHP/FI

The genesis of PHP as we know it today lies with two tools developed by Rasmus Lerdorf using Perl. PHP
stood for Personal Homepage Tools. FI stood for Form Interpreter. Together, they comprised macros for
sending SQL statements to databases, processing forms, and flow control.

These tools were rewritten in C and combined under the name PHP/FI 2.0. The language at this
stage looked different from the syntax we recognize today, but not that different. There was support for
variables, associative arrays, and functions. Objects, though, were not even on the horizon.

Syntactic Sugar: PHP 3

In fact, even as PHP 3 was in the planning stage, objects were off the agenda. As today, the principal
architects of PHP 3 were Zeev Suraski and Andi Gutmans. PHP 3 was a complete rewrite of PHP/FI 2.0,
but objects were not deemed a necessary part of the new syntax.
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According to Zeev Suraski, support for classes was added almost as an afterthought (on 27 August
1997, to be precise). Classes and objects were actually just another way to define and access
associative arrays.

Of course, the addition of methods and inheritance made classes much more than glorified
associative arrays, but there were still severe limitations as to what you could do with your classes. In
particular, you could not access a parent class’s overridden methods (don’t worry if you don’t know
what this means yet; I will explain later). Another disadvantage that I will examine in the next section
was the less than optimal way that objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of prominence in official
documentation. The manual devoted one sentence and a code example to objects. The example did not
illustrate inheritance or properties.

PHP 4 and the Quiet Revolution

If PHP 4 was yet another ground-breaking step for the language, most of the core changes took place
beneath the surface. The Zend Engine (its name derived from Zeev and Andi) was written from scratch
to power the language. The Zend Engine is one of the main components that drive PHP. Any PHP
function you might care to call is in fact part of the high level extensions layer. These do the busy work
they were named for, like talking to database APIs or juggling strings for you. Beneath that the Zend
Engine manages memory, delegates control to other components, and translates the familiar PHP syntax
you work with every day into runnable bytecode. It is the Zend Engine we have to thank for core
language features like classes.

From our objective perspective, the fact that PHP 4 made it possible to override parent methods and
access them from child classes was a major benefit.

A major drawback remained, however. Assigning an object to a variable, passing it to a function, or
returning it from a method, resulted in a copy being made. So an assignment like this

$my obj = new User('bob');
$other = $my obj;

resulted in the existence of two User objects, rather than two references to the same User object. In most
object-oriented languages you would expect assignment by reference, rather than by value as here. This
means that you pass and assign handles that point to objects rather than copy the objects themselves. The
default pass-by-value behavior resulted in many obscure bugs as programmers unwittingly modified
objects in one part of a script, expecting the changes to be seen via references elsewhere. Throughout this
book, you will see many examples in which I maintain multiple references to the same object.

Luckily, there was a way of enforcing pass-by-reference, but it meant remembering to use a clumsy
construction.

Assign by reference as follows:

$other =& $my_obj;
// $other and $my_obj point to same object

Pass by reference as follows:

function setSchool( & $school ) {
// $school is now a reference to not a copy of passed object
}

And return by reference as follows:

function & getSchool( ) {
// returning a reference not a copy
return $this->school;



