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        INTRODUCTION          

 AS A CONSULTANT, I WORK WITH MANY DEVELOPERS. At each client I get to meet a new team and 
see how they develop software. I ’ ve seen great teams, and I ’ ve seen teams that are so broken they 
have never had a successful project. Over the years I ’ ve noticed that different teams along this 
success continuum have different traits. And I ’ ve started to formulate an idea of what makes a 
development team able to develop and deploy applications that are high - quality and deliver value 
to the business. 

 The observation that most people expect me to make is that the successful teams had smarter, more 
competent people, and certainly they did. But the teams that failed had plenty of smart people as 
well. Clearly intelligence is not a key factor in success. 

 What I observed about the successful teams was that they had a passion for technology and pride 
in the work they produced. They were always learning about new tools and techniques, with the 
aim of developing software faster and with fewer bugs. On the other hand, the less successful teams 
were content to stick with their old ways of doing things and never took an interest in the changes 
that were going on around them. 

 Not all those successful, passionate development teams were practicing test - driven development 
(TDD) when I fi rst found them. However, most of them quickly and eagerly latched on to it 
when introduced to the concept. These teams have found that adding the practice of test - driven 
development to their process of building software produced immediate, measurable results by 
increasing quality and reducing the number of defects in the delivered application. 

 Passion is diffi cult to create but easy to kill. In teams that lack passion, the introduction of test -
 driven development has, in many cases, reignited passion in developers. This is particularly true of 
developers who have grown tired of doing the same kind of development day in and day out. 

 Passion aside, there is another very compelling reason to investigate test - driven development. 
Arguably the two biggest changes in recent years with the potential to reach the largest number of 
developers are the rise of agile methodologies and test - driven development. Often the two go hand 
in hand. I don ’ t believe that an agile methodology can succeed in the long term without the use of 
test - driven development, and I have great diffi culty seeing how test - driven development could work 
in a waterfall environment. 

 Agile is here to stay. It ’ s no longer a  “ crazy cowboy coding ”  way of working practiced by small 
development shops. Large companies that have made huge investments in structuring their 
IT departments around waterfalls are starting to build more and more projects with an agile 
methodology. Even the most bureaucratic organization in existence, government, is starting to 
investigate agile with great success. These developments spell out a clear reality: Developers who 
can work in agile environments, including the practice of test - driven development, soon will be 
more valuable than those who can ’ t. 
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INTRODUCTION

 Test - driven development has not existed in a vacuum. In the past several years, many groups and 
movements have been aimed at raising the quality of the software being developed and bringing 
business into the process. New principles and ways of doing things have been advanced to help 
developers build maintainable applications that serve the needs of the business. Terms such as 
software craftsmanship and SOLID have made their way into the lexicon of passionate developers 
all over the world. Some developers have even gone so far as to call themselves software artisans or 
craftsmen. 

 Many books, websites, and workshops have appeared to feed the need to learn test - driven 
development and all its supporting pieces. Many of these are very good. But others are nothing 
more than commercials for a common and transportable way of doing things that is dressed up 
as an expensive and proprietary solution. Many smart, passionate developers talk about and 
evangelize test - driven development. However, no  “ one - stop shopping ”  resource has been able to 
take a developer  —  specifi cally, a .NET developer  —  from neophyte to, well, still a neophyte, but a 
neophyte with some information. 

 The fact that you are reading this book indicates that you have some interest in test - driven 
development. Maybe you ’ re a developer who ’ s heard a lot about test - driven development but never 
really had an opportunity to explore it. Perhaps you ’ re an experienced test - driven developer who is 
curious to see how this book is different from all the other books on the subject. In either case, the 
fact that you are reading this book indicates that test - driven development has become mainstream 
and is worthy of your time to learn, practice, and promote.  

  WHO THIS BOOK IS FOR 

 Test - driven development is an effective way to build quality into your application from the start. 
The supporting principles and practices of test - driven development will enable you and your 
development team to quickly write maintainable software that is more aligned with the needs of 
the business. If you are a developer interested in improving your skills, this book is for you. 

 If you ’ re new to test - driven development, start with Chapter 1. Doing so will give you a good 
background in why test - driven development has become such a compelling practice. It will 
also introduce you to the concepts of object - oriented programming, the SOLID Principles, and 
refactoring. These skills are a crucial foundation for the practice of test - driven development. 

 If you ’ ve dabbled in test - driven development, you might want to start with Chapter 3, which 
provides a refresher on object - oriented development, the SOLID Principles, and refactoring. 
Even seasoned developers sometimes need a reminder of how these concepts relate to application 
development. The rest of the book, starting with Chapter 4, provides form and structure for 
test - driven development for these developers. 

 Developers who are experienced with test - driven development will probably want to start with 
Part III. Doing so assumes that you have a high degree of skill with test - driven development, 
object - oriented programming (OOP), and SOLID. This part focuses on specifi c scenarios that 
.NET developers face. It covers how to practice test - driven development in web - based applications 
(including web forms, ASP.NET MVC, and JavaScript), applications built on Windows Presentation 
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Foundation (WPF) with the Model - View - ViewModel (MVVM) pattern, and service applications 
built using Microsoft ’ s Windows Communication Foundation (WCF). The most diffi cult part of 
an application to test is the edge. These chapters will show you how to make the edges around 
your application as thin as possible and therefore more testable.  

  WHAT THIS BOOK COVERS 

 This book starts by covering the conditions that brought the software industry to the point where test -
 driven development could fl ourish. It ’ s important to understand this history and the conditions that 
brought software development to its current state. Avoiding the mistakes of the past is important. But 
identifying these antipatterns in your current development practice is even more important. 

 To support your practice of test - driven development, this book also includes extensive coverage of 
object - oriented programming, agile methodologies, and the SOLID software design and coding 
principles. 

 Of course, this book covers the concepts inherent in and necessary to test - driven development. The 
fi rst tests you will be exposed to are simple and easy to understand. You ’ ll see how the NUnit 
unit - testing framework can be used to write unit tests in Visual Studio. 

 Later, the dependency injection pattern is introduced. You will see how this pattern is implemented 
and how dependency injection frameworks such as Ninject can help manage the dependencies in 
your application. The practice of mocking and mocking frameworks also are covered, including 
an introduction to the mocking framework Moq. 

 The basics of behavior - driven development are covered, but a deep discussion of this topic is not 
included. This book explains the idea behind behavior - driven development and showcases the 
business - driven development style of naming tests. This book also introduces the NBehave testing 
framework. NBehave has many features, but this book simply uses it to provide syntactic sugar 
for the tests.  

  HOW THIS BOOK IS STRUCTURED 

 A great deal of effort has been expended to structure the information in this book so that each 
chapter builds upon the lessons in the previous one. The fi rst chapters are designed to provide a 
foundation built on the importance of test - driven development and the underlying skills needed to 
effectively practice it. Each chapter and section build on a concept such as dependency injection and 
mocking until you ’ ve been exposed to all the necessary tools and techniques to practice test - driven 
development. 

 Incorporating the test - driven development skills taught in the previous chapters, Part III 
demonstrates how to practice test - driven development with several of Microsoft ’ s frameworks aimed 
at developing interfaces for applications, including ASP.NET MVC, WPF, and WCF. 
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 The book ends with an appendix that lists some alternative tools that can help you develop 
applications using test - driven development. It also lists potential user stories to use as practice if you 
are not in a position to use test - driven development in your everyday work.  

  WHAT YOU NEED TO USE THIS BOOK 

 To follow along with the examples in this book and use the demonstration application available for 
download at  www.wrox.com , you need the following tools: 

  Visual Studio 2010 (any version)  

  NUnit version 2.5.2.9222 or later, available at  nunit.org   

  Moq version 4 beta 4 (build 4.0.10827.0) or later, available at  code.google.com/p/moq   

  Ninject version 2 (build 2.1.0.91) or later, available at  ninject.org   

  NBehave version 0.4.5.183 or later, available at  nbehave.org   

  Fluent NHibernate version 1.1 or later, available at  fluentnhibernate.org   

  A Database Management System (DBMS) is required for the sample applications. The  examples 
in this book use Microsoft SQL Server Developer, but any relational database system will 
suffi ce.     

  CONVENTIONS 

 To help you get the most from the text and keep track of what ’ s happening, we use a number of 
conventions throughout the book: As for styles in the text: 

  We  italicize  new terms and important words when we introduce them.  

  We show keyboard strokes like this: Ctrl+A.  

  We show fi lenames, URLs, and code within the text like so:  persistence.properties .    

 We present code in two different ways: 

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that’s particularly important in the present context.           

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

   The pencil icon indicates notes, tips, hints, tricks, or asides to the current 
discussion. 
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