

FFIRS.indd iiFFIRS.indd ii 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

PROFESSIONAL

TEST-DRIVEN DEVELOPMENT WITH C#

INTRODUCTION . xxv

PART I GETTING STARTED

CHAPTER 1 The Road to Test-Driven Development . 3

CHAPTER 2 An Introduction to Unit Testing . 19

CHAPTER 3 A Quick Review of Refactoring .41

CHAPTER 4 Test-Driven Development: Let the Tests Be Your Guide 73

CHAPTER 5 Mocking External Resources . 97

PART II PUTTING BASICS INTO ACTION

CHAPTER 6 Starting the Sample Application . 117

CHAPTER 7 Implementing the First User Story .137

CHAPTER 8 Integration Testing . 169

PART III TDD SCENARIOS

CHAPTER 9 TDD on the Web . 197

CHAPTER 10 Testing Windows Communication Foundation Services 227

CHAPTER 11 Testing WPF and Silverlight Applications . 245

PART IV REQUIREMENTS AND TOOLS

CHAPTER 12 Dealing with Defects and New Requirements . 267

CHAPTER 13 The Great Tool Debate . 279

CHAPTER 14 Conclusions . 299

APPENDIX TDD Katas . 307

INDEX . 311

�

�

�

�

FFIRS.indd iFFIRS.indd i 3/31/11 8:14:15 AM3/31/11 8:14:15 AM

FFIRS.indd iiFFIRS.indd ii 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

PROFESSIONAL

Test-Driven Development with C#

FFIRS.indd iiiFFIRS.indd iii 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

FFIRS.indd ivFFIRS.indd iv 3/31/11 8:14:17 AM3/31/11 8:14:17 AM

PROFESSIONAL

Test-Driven Development with C#

DEVELOPING REAL WORLD APPLICATIONS WITH TDD

James Bender
Jeff McWherter

FFIRS.indd vFFIRS.indd v 3/31/11 8:14:18 AM3/31/11 8:14:18 AM

Professional Test-Driven Development with C#: Developing

Real World Applications with TDD

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-64320-4
ISBN: 978-1-118-10210-7 (ebk)
ISBN: 978-1-118-10211-4 (ebk)
ISBN: 978-1-118-10212-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or website is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or website may provide or recommendations it may make. Further,
readers should be aware that Internet websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011924919

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

FFIRS.indd viFFIRS.indd vi 3/31/11 8:14:18 AM3/31/11 8:14:18 AM

http://www.wiley.com
http://www.wiley.com/go/permissions

 For Gayle. Thank you for being so awesome!

 — James

 To everyone who has believed in me.

 — Jeff

 To my wonderful wife Courtney and my

two amazing kids, Katie and Jacob.

 — Michael

FFIRS.indd viiFFIRS.indd vii 3/31/11 8:14:18 AM3/31/11 8:14:18 AM

FFIRS.indd viiiFFIRS.indd viii 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

 ABOUT THE AUTHORS

 JAMES BENDER is Vice Present of Technology for Improving Enterprises and has been involved in
software development and architecture for 17 years. He has worked as a developer and architect
on everything from small, single - user applications to Enterprise - scale, multi - user systems. His
specialties are .NET development and architecture, SOA, WCF, WF, cloud computing, and agile
development methodologies. He is an experienced mentor and author.

 James has spent his career pushing the envelope of software development and pursuing new and
better ways of building applications. He began his career developing credit card processing
applications in C++ on SCO Unix based systems. In the late 90 ’ s James began exploring web
development with both Java based JSP pages and Microsoft ’ s ASP technologies. He was an early
adopter of .NET starting with the fi rst public beta. He continued exploring the .NET technology
stack, focusing on the distributed computing paradigm made possible by .NET web services, which
naturally evolved into a somewhat obsessive interest in Microsoft ’ s Windows Communication
Foundation (WCF).

 James has been practicing agile - based methodologies since 2003, including Scrum and eXtreme
Programming (XP). At part of this interest in agile methodologies, James began exploring test-driven
development at the same time. He was instrumental in introducing the concepts and techniques used
in agile software development and test-driven development to many developers at his clients and in
the software development community in general.

 James is a Microsoft MVP for Visual C#. James is an active member of the development community.
He is the current president of the Central Ohio .NET Developers Group (www.condg.org) and
continues to lead the Columbus Architects Group (www.colarc.org) and is the senior editor of
fi rst - party content for nplus1.org, an educational website aimed toward architects and aspiring
architects. His blog can be found at www.jamescbender.com .

 JEFF MCWHERTER is a partner and director of development at Gravity Works Design and
Development, based in a historic offi ce in Lansing Michigan ’ s Old Town District. A graduate of
Michigan State University with over 12 years of professional software development experience, Jeff
holds numerous certifi cations from Microsoft including Microsoft Certifi ed Solutions Developer
(MCSD), Microsoft Certifi ed Database Administrator (MCDBA), Microsoft Certifi ed Application
Developer (MCAD), and Microsoft Technology Specialist (MCTS).

 In 2010 Jeff was awarded with the Microsoft Most Valuable Professional (MVP) for the third year
in a row. Also in 2010, Jeff received the Ten Over The Next Ten award presented by the Lansing
Regional Chamber of Commerce, which recognizes 10 young professionals to “ watch ” over the next
10 years. Jeff is also a published author, with Testing ASP.NET Web Applications published by
Wrox Press.

FFIRS.indd ixFFIRS.indd ix 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

http://www.condg.org
http://www.colarc.org
http://www.jamescbender.com

 Along with being an author and software developer, Jeff is very active in developing programming
communities across the country by speaking at conferences and organizing events such as the
Lansing Give Camp, which pairs developers with non - profi t organizations for volunteer projects.

 MICHAEL EATON has been developing awesome solutions using Microsoft tools and technologies
since 1994, but in 2001 he broke free from the confi nes of the cube farm to go out on his own.
While he lives in the middle - of - nowhere Michigan, he serves clients throughout the Midwest. Well
known for his dislike of web development and box lunches, his focus over the past few years has
been on XAML - based technologies like WPF and Silverlight. He speaks at regional events and user
groups, runs the Kalamazoo X Conference and helps with the Ann Arbor Give Camp. He is also a
C# MVP. When not working on projects or spending time with his family, he treats his World of
Warcraft addiction with ample doses of time on his XBox 360.

x

ABOUT THE AUTHORS

FFIRS.indd xFFIRS.indd x 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

 ABOUT THE TECHNICAL EDITOR

 MITCHEL SELLERS specializes in software development using Microsoft technologies. He is the CEO
of IowaComputerGurus Inc., a Microsoft C# MVP, a Microsoft Certifi ed Professional, has served
as an author on two books, and served as technical editor on many other books. You will often fi nd
Mitchel interacting with the greater software development community either at events/conferences
or in online discussion forums. To obtain additional information on Mitchel ’ s professional
experience, certifi cations, and publications refer to his resume at MitchelSellers.com .

FFIRS.indd xiFFIRS.indd xi 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

http://MitchelSellers.com

FFIRS.indd xiiFFIRS.indd xii 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

ACQUISITIONS EDITOR

Paul Reese

PROJECT EDITOR

Sydney Jones

TECHNICAL EDITORS

Jeff McWherter

Mitchell Sellers

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Gayle Johnson

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Carrie Hunter, Word One New York

INDEXER

J & J Indexing

COVER DESIGNER

Michael E. Trent

COVER IMAGE

© iStock / technotr

CREDITS

FFIRS.indd xiiiFFIRS.indd xiii 3/31/11 8:14:19 AM3/31/11 8:14:19 AM

FFIRS.indd xivFFIRS.indd xiv 3/31/11 8:14:20 AM3/31/11 8:14:20 AM

 ACKNOWLEDGMENTS

 I WANT TO START BY THANKING MY GIRLFRIEND (with any luck, fi anc é by the time you are reading
this) Gayle. She has been very supportive and EXTREMELY understanding during the process of
writing this book. More than she should have had to be. Thank you.

 I want to thank my parents for making this book possible by making me possible. My mother is so
proud she ’ ll read every page of this book. Bless her heart. I hope she ’ s still proud when she realizes
I lied and this is NOTHING like a Stephen King novel.

 In the understanding and supporting department I would also like to thank Daniel Grey, Mark
Kovacevich, Jeff Perry and everyone else at Improving Enterprises. I ’ d also like to thank Pete
Klassen. We miss you man!

 I ’ d like to thank Jeff McWherter and Michael Eaton for their contributions to this book. Jeff; thanks
for taking some of the load off. Mike; thank you for pushing me to include the “ non - web ” people.
I ’ d also like to thank my editor Sydney for making this book look like I know how to write.

 Brian Prince; thank you for pushing me to get involved in the development community. I was going
to write something funny here, but I couldn ’ t think of anything. I ’ ll getcha in the next one.

 When I was presented with the opportunity to write this book, I almost said no. I want to thank
Ted Neward for talking me into it. So, this is kinda your fault too.

 I want to thank my partners in NPlus1.org Mike Wood and Chris Woodruff for picking up my slack
of the past several months while I worked on this.

 Long list of general thanks: Brahma Ghosh, Brian Sherwin, Bill Sempf, Jeff Blankenburg, Carey
Payette, Caleb Jenkins, Jennifer Marsman, Sarah & Kevin Dutkiewicz, Steve Harman, Josh
Holmes. Thanks to Matt Groves for pimping this book almost as much as I did. I ’ m sure I forgot
someone, so I apologize.

 — James

 FIRST AND FOREMOST I WOULD LIKE TO THANK my very patient wife Carla. Thank you for all the
support, patience, and understanding you have provided to me for all of my endeavors. Thank you to
the staff at Gravity Works — Amelia Marschall, Lauren Colton, Scott Gowell and Dave Smith — for
answering my random questions that appeared to come out of nowhere. And lastly I would like to
thank James for his hard work, dedication, and friendship.

 — Jeff

FFIRS.indd xvFFIRS.indd xv 3/31/11 8:14:20 AM3/31/11 8:14:20 AM

FFIRS.indd xviFFIRS.indd xvi 3/31/11 8:14:20 AM3/31/11 8:14:20 AM

CONTENTS

INTRODUCTION xxv

PART I: GETTING STARTED

CHAPTER 1: THE ROAD TO TEST-DRIVEN DEVELOPMENT 3

The Classical Approach to Software Development 4

A Brief History of Software Engineering 4

From Waterfall to Iterative and Incremental 5

A Quick Introduction to Agile Methodologies 6

A Brief History of Agile Methodologies 6

The Principles and Practices of Test-Driven Development 7

The Concepts Behind TDD 8

TDD as a Design Methodology 8

TDD as a Development Practice 8

The Benefi ts of TDD 9

A Quick Example of the TDD Approach 10

Summary 17

CHAPTER 2: AN INTRODUCTION TO UNIT TESTING 19

What Is a Unit Test? 19

Unit Test Defi nition 20

What Is Not a Unit Test? 20

Other Types of Tests 22

A Brief Look at NUnit 24

What Is a Unit Test Framework? 24

The Basics of NUnit 25

Decoupling with Mock Objects 28

Why Mocking Is Important 28

Dummy, Fake, Stub, and Mock 29

Best and Worst Practices 35

A Brief Look at Moq 36

What Does a Mocking Framework Do? 36

A Bit About Moq 36

Moq Basics 36

Summary 40

TOC.indd xviiTOC.indd xvii 3/31/11 8:16:30 AM3/31/11 8:16:30 AM

xviii

CONTENTS

CHAPTER 3: A QUICK REVIEW OF REFACTORING 41

Why Refactor? 42

A Project’s Lifecycle 42

Maintainability 43

Code Metrics 43

Clean Code Principles 45

OOP Principles 45

Encapsulation 45

Inheritance 46

Polymorphism 48

The SOLID Principles 49

The Single Responsibility Principle 50

The Open/Close Principle 50

The Liskov Substitution Principle 51

The Interface Segregation Principle 51

The Dependency Inversion Principle 52

Code Smells 52

What Is a Code Smell? 52

Duplicate Code and Similar Classes 53

Big Classes and Big Methods 54

Comments 55

Bad Names 56

Feature Envy 57

Too Much If/Switch 58

Try/Catch Bloat 59

Typical Refactoring 60

Extract Classes or Interfaces 60

Extract Methods 62

Rename Variables, Fields, Methods, and Classes 66

Encapsulate Fields 67

Replace Conditional with Polymorphism 68

Allow Type Inference 71

Summary 71

CHAPTER 4: TEST-DRIVEN DEVELOPMENT: LET THE TESTS
BE YOUR GUIDE 73

It Starts with the Test 74

Red, Green, Refactor 76

The Three Phases of TDD 77

The Red Phase 77

The Green Phase 78

TOC.indd xviiiTOC.indd xviii 3/31/11 8:16:30 AM3/31/11 8:16:30 AM

xix

CONTENTS

The Refactoring Phase 79

Starting Again 79

A Refactoring Example 79

The First Feature 80

Making the First Test Pass 83

The Second Feature 83

Refactoring the Unit Tests 85

The Third Feature 87

Refactoring the Business Code 88

Correcting Refactoring Defects 91

The Fourth Feature 93

Summary 94

CHAPTER 5: MOCKING EXTERNAL RESOURCES 97

The Dependency Injection Pattern 98

Working with a Dependency Injection Framework 99

Abstracting the Data Access Layer 108

Moving the Database Concerns Out of the Business Code 108

Isolating Data with the Repository Pattern 108

Injecting the Repository 109

Mocking the Repository 112

Summary 113

PART II: PUTTING BASICS INTO ACTION

CHAPTER 6: STARTING THE SAMPLE APPLICATION 117

Defi ning the Project 118

Developing the Project Overview 118

Defi ning the Target Environment 119

Choosing the Application Technology 120

Defi ning the User Stories 120

Collecting the Stories 120

Defi ning the Product Backlog 122

The Agile Development Process 123

Estimating 124

Working in Iterations 124

Communication Within Your Team 126

Iteration Zero: Your First Iteration 127

Testing in Iteration Zero 127

Ending an Iteration 128

TOC.indd xixTOC.indd xix 3/31/11 8:16:31 AM3/31/11 8:16:31 AM

xx

CONTENTS

Creating the Project 129

Choosing the Frameworks 129

Defi ning the Project Structure 131

Organizing Project Folders 131

Creating the Visual Studio Solution 132

Summary 134

CHAPTER 7: IMPLEMENTING THE FIRST USER STORY 137

The First Test 138

Choosing the First Test 138

Naming the Test 139

Writing the Test 140

Implementing the Functionality 148

Writing the Simplest Thing That Could Possibly Work 148

Running the Passing Test 157

Writing the Next Test 158

Improving the Code by Refactoring 165

Triangulation of Tests 166

Summary 166

CHAPTER 8: INTEGRATION TESTING 169

Integrate Early; Integrate Often 170

Writing Integration Tests 171

How to Manage the Database 171

How to Write Integration Tests 172

Reviewing the ItemTypeRepository 173

Adding Ninject for Dependency Injection 174

Creating the Fluent NHibernate Confi guration 177

Creating the Fluent NHibernate Mapping 179

Creating the Integration Test 183

End-to-End Integration Tests 191

Keeping Various Types of Tests Apart 191

When and How to Run Integration Tests 191

Summary 192

PART III: TDD SCENARIOS

CHAPTER 9: TDD ON THE WEB 197

ASP.NET Web Forms 197

Web Form Organization 198

ASPX Files 198

TOC.indd xxTOC.indd xx 3/31/11 8:16:31 AM3/31/11 8:16:31 AM

xxi

CONTENTS

Code-Behind Files 198

Implementing Test-Driven Development with MVP and Web Forms 199

Working with the ASP.NET MVC 210

MVC 101 211

Microsoft ASP.NET MVC 3.0 212

Creating an ASP.NET MVC Project 212

Creating Your First Test 213

Making Your First Test Pass 215

Creating Your First View 216

Gluing Everything Together 217

Using the MVC Contrib Project 220

ASP.NET MVC Summarized 220

Working with JavaScript 220

JavaScript Testing Frameworks 221

Summary 226

CHAPTER 10: TESTING WINDOWS COMMUNICATION
FOUNDATION SERVICES 227

WCF Services in Your Application 228

Services Are Code Too 228

Testing WCF Services 228

Refactoring for Testability 229

Introducing Dependency Injection to Your Service 231

Writing the Test 236

Stubbing the Dependencies 239

Verifying the Results 243

Trouble Spots to Watch 244

Summary 244

CHAPTER 11: TESTING WPF AND SILVERLIGHT APPLICATIONS 245

The Problem with Testing the User Interface 246

The MVVM Pattern 246

How MVVM Makes WPF/Silverlight Applications Testable 248

Bringing It All Together 261

Summary 263

PART IV: REQUIREMENTS AND TOOLS

CHAPTER 12: DEALING WITH DEFECTS AND NEW REQUIREMENTS 267

Handling Change 268

Change Happens 268

TOC.indd xxiTOC.indd xxi 3/31/11 8:16:32 AM3/31/11 8:16:32 AM

xxii

CONTENTS

Adding New Features 268

Addressing Defects 269

Starting with a Test 270

Changing the Code 272

Keeping the Tests Passing 276

Summary 276

CHAPTER 13: THE GREAT TOOL DEBATE 279

Test Runners 279

TestDriven.NET 280

Developer Express Test Runner 280

Gallio 281

Unit Testing Frameworks 282

MSTest 282

MbUnit 283

xUnit 284

Mocking Frameworks 285

Rhino Mocks 285

Type Mock 287

Dependency Injection Frameworks 289

Structure Map 289

Unity 291

Windsor 293

Autofac 294

Miscellaneous Useful Tools 295

nCover 295

PEX 295

How to Introduce TDD to Your Team 296

Working in Environments That Are Resistant to Change 297

Working in Environments That Are Accepting of Change 297

Summary 297

CHAPTER 14: CONCLUSIONS 299

What You Have Learned 299

You Are the Client of Your Code 300

Find the Solutions Step by Step 300

Use the Debugger as a Surgical Instrument 300

TDD Best Practices 301

Use Signifi cant Names 301

Write at Least One Test for One Unit of Functionality 301

Keep Your Mocks Simple 302

TOC.indd xxiiTOC.indd xxii 3/31/11 8:16:32 AM3/31/11 8:16:32 AM

xxiii

CONTENTS

The Benefi ts of TDD 302

How to Introduce TDD in Your Team 303

Summary 304

APPENDIX: TDD KATAS 307

Working with TDD Katas 307

Share Your Work 308

OSIM User Stories 308

INDEX 311

TOC.indd xxiiiTOC.indd xxiii 3/31/11 8:16:32 AM3/31/11 8:16:32 AM

FLAST.indd xxivFLAST.indd xxiv 3/31/11 8:15:18 AM3/31/11 8:15:18 AM

 INTRODUCTION

 AS A CONSULTANT, I WORK WITH MANY DEVELOPERS. At each client I get to meet a new team and
see how they develop software. I ’ ve seen great teams, and I ’ ve seen teams that are so broken they
have never had a successful project. Over the years I ’ ve noticed that different teams along this
success continuum have different traits. And I ’ ve started to formulate an idea of what makes a
development team able to develop and deploy applications that are high - quality and deliver value
to the business.

 The observation that most people expect me to make is that the successful teams had smarter, more
competent people, and certainly they did. But the teams that failed had plenty of smart people as
well. Clearly intelligence is not a key factor in success.

 What I observed about the successful teams was that they had a passion for technology and pride
in the work they produced. They were always learning about new tools and techniques, with the
aim of developing software faster and with fewer bugs. On the other hand, the less successful teams
were content to stick with their old ways of doing things and never took an interest in the changes
that were going on around them.

 Not all those successful, passionate development teams were practicing test - driven development
(TDD) when I fi rst found them. However, most of them quickly and eagerly latched on to it
when introduced to the concept. These teams have found that adding the practice of test - driven
development to their process of building software produced immediate, measurable results by
increasing quality and reducing the number of defects in the delivered application.

 Passion is diffi cult to create but easy to kill. In teams that lack passion, the introduction of test -
 driven development has, in many cases, reignited passion in developers. This is particularly true of
developers who have grown tired of doing the same kind of development day in and day out.

 Passion aside, there is another very compelling reason to investigate test - driven development.
Arguably the two biggest changes in recent years with the potential to reach the largest number of
developers are the rise of agile methodologies and test - driven development. Often the two go hand
in hand. I don ’ t believe that an agile methodology can succeed in the long term without the use of
test - driven development, and I have great diffi culty seeing how test - driven development could work
in a waterfall environment.

 Agile is here to stay. It ’ s no longer a “ crazy cowboy coding ” way of working practiced by small
development shops. Large companies that have made huge investments in structuring their
IT departments around waterfalls are starting to build more and more projects with an agile
methodology. Even the most bureaucratic organization in existence, government, is starting to
investigate agile with great success. These developments spell out a clear reality: Developers who
can work in agile environments, including the practice of test - driven development, soon will be
more valuable than those who can ’ t.

FLAST.indd xxvFLAST.indd xxv 3/31/11 8:15:18 AM3/31/11 8:15:18 AM

xxvi

INTRODUCTION

 Test - driven development has not existed in a vacuum. In the past several years, many groups and
movements have been aimed at raising the quality of the software being developed and bringing
business into the process. New principles and ways of doing things have been advanced to help
developers build maintainable applications that serve the needs of the business. Terms such as
software craftsmanship and SOLID have made their way into the lexicon of passionate developers
all over the world. Some developers have even gone so far as to call themselves software artisans or
craftsmen.

 Many books, websites, and workshops have appeared to feed the need to learn test - driven
development and all its supporting pieces. Many of these are very good. But others are nothing
more than commercials for a common and transportable way of doing things that is dressed up
as an expensive and proprietary solution. Many smart, passionate developers talk about and
evangelize test - driven development. However, no “ one - stop shopping ” resource has been able to
take a developer — specifi cally, a .NET developer — from neophyte to, well, still a neophyte, but a
neophyte with some information.

 The fact that you are reading this book indicates that you have some interest in test - driven
development. Maybe you ’ re a developer who ’ s heard a lot about test - driven development but never
really had an opportunity to explore it. Perhaps you ’ re an experienced test - driven developer who is
curious to see how this book is different from all the other books on the subject. In either case, the
fact that you are reading this book indicates that test - driven development has become mainstream
and is worthy of your time to learn, practice, and promote.

 WHO THIS BOOK IS FOR

 Test - driven development is an effective way to build quality into your application from the start.
The supporting principles and practices of test - driven development will enable you and your
development team to quickly write maintainable software that is more aligned with the needs of
the business. If you are a developer interested in improving your skills, this book is for you.

 If you ’ re new to test - driven development, start with Chapter 1. Doing so will give you a good
background in why test - driven development has become such a compelling practice. It will
also introduce you to the concepts of object - oriented programming, the SOLID Principles, and
refactoring. These skills are a crucial foundation for the practice of test - driven development.

 If you ’ ve dabbled in test - driven development, you might want to start with Chapter 3, which
provides a refresher on object - oriented development, the SOLID Principles, and refactoring.
Even seasoned developers sometimes need a reminder of how these concepts relate to application
development. The rest of the book, starting with Chapter 4, provides form and structure for
test - driven development for these developers.

 Developers who are experienced with test - driven development will probably want to start with
Part III. Doing so assumes that you have a high degree of skill with test - driven development,
object - oriented programming (OOP), and SOLID. This part focuses on specifi c scenarios that
.NET developers face. It covers how to practice test - driven development in web - based applications
(including web forms, ASP.NET MVC, and JavaScript), applications built on Windows Presentation

FLAST.indd xxviFLAST.indd xxvi 3/31/11 8:15:19 AM3/31/11 8:15:19 AM

INTRODUCTION

xxvii

Foundation (WPF) with the Model - View - ViewModel (MVVM) pattern, and service applications
built using Microsoft ’ s Windows Communication Foundation (WCF). The most diffi cult part of
an application to test is the edge. These chapters will show you how to make the edges around
your application as thin as possible and therefore more testable.

 WHAT THIS BOOK COVERS

 This book starts by covering the conditions that brought the software industry to the point where test -
 driven development could fl ourish. It ’ s important to understand this history and the conditions that
brought software development to its current state. Avoiding the mistakes of the past is important. But
identifying these antipatterns in your current development practice is even more important.

 To support your practice of test - driven development, this book also includes extensive coverage of
object - oriented programming, agile methodologies, and the SOLID software design and coding
principles.

 Of course, this book covers the concepts inherent in and necessary to test - driven development. The
fi rst tests you will be exposed to are simple and easy to understand. You ’ ll see how the NUnit
unit - testing framework can be used to write unit tests in Visual Studio.

 Later, the dependency injection pattern is introduced. You will see how this pattern is implemented
and how dependency injection frameworks such as Ninject can help manage the dependencies in
your application. The practice of mocking and mocking frameworks also are covered, including
an introduction to the mocking framework Moq.

 The basics of behavior - driven development are covered, but a deep discussion of this topic is not
included. This book explains the idea behind behavior - driven development and showcases the
business - driven development style of naming tests. This book also introduces the NBehave testing
framework. NBehave has many features, but this book simply uses it to provide syntactic sugar
for the tests.

 HOW THIS BOOK IS STRUCTURED

 A great deal of effort has been expended to structure the information in this book so that each
chapter builds upon the lessons in the previous one. The fi rst chapters are designed to provide a
foundation built on the importance of test - driven development and the underlying skills needed to
effectively practice it. Each chapter and section build on a concept such as dependency injection and
mocking until you ’ ve been exposed to all the necessary tools and techniques to practice test - driven
development.

 Incorporating the test - driven development skills taught in the previous chapters, Part III
demonstrates how to practice test - driven development with several of Microsoft ’ s frameworks aimed
at developing interfaces for applications, including ASP.NET MVC, WPF, and WCF.

FLAST.indd xxviiFLAST.indd xxvii 3/31/11 8:15:19 AM3/31/11 8:15:19 AM

xxviii

INTRODUCTION

 The book ends with an appendix that lists some alternative tools that can help you develop
applications using test - driven development. It also lists potential user stories to use as practice if you
are not in a position to use test - driven development in your everyday work.

 WHAT YOU NEED TO USE THIS BOOK

 To follow along with the examples in this book and use the demonstration application available for
download at www.wrox.com , you need the following tools:

 Visual Studio 2010 (any version)

 NUnit version 2.5.2.9222 or later, available at nunit.org

 Moq version 4 beta 4 (build 4.0.10827.0) or later, available at code.google.com/p/moq

 Ninject version 2 (build 2.1.0.91) or later, available at ninject.org

 NBehave version 0.4.5.183 or later, available at nbehave.org

 Fluent NHibernate version 1.1 or later, available at fluentnhibernate.org

 A Database Management System (DBMS) is required for the sample applications. The examples
in this book use Microsoft SQL Server Developer, but any relational database system will
suffi ce.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, we use a number of
conventions throughout the book: As for styles in the text:

 We italicize new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show fi lenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that’s particularly important in the present context.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

FLAST.indd xxviiiFLAST.indd xxviii 3/31/11 8:15:19 AM3/31/11 8:15:19 AM

http://www.wrox.com
http://code.google.com/p/moq
http://ninject.org
http://nbehave.org
http://fluentnhibernate.org

