~N James J. Nutaro

Building Software
for Simulation

THEORY AND ALGORITHMS,
WITH APPLICATIONS IN O+ +

. James J. Nutaro

Building Software
for Simulation

THEORY AND ALGORITHMS,
WITH APPLICATIONS IN C++

Contents

Cover

Half Title page

Title page

Copyright page

Preface

Chapter 1: Introduction

1.1 Elements of a Software Architecture
1.2 Systems Concepts as an Architectural
Foundation

1.3 Summary

1.4 Organization of the Book

Chapter 2: First Example: Simulating
A Robotic Tank

2.1 Functional Modeling

2.2 A Robotic Tank

2.3 Design of the Tank Simulator
2.4 Experiments

2.5 Summary

Chapter 3: Discrete-Time Systems
3.1 Atomic Models

3.2 Network Models

3.3 A Simulator for Discrete-Time Systems
3.4 Mealy/Moore-Type Systems

3.5 Cellular Automata

3.6 Summary

Chapter 4: Discrete-Event Systems

4.1 Atomic Models

4.2 Network Models

4.3 A Simulator for Discrete-Event Systems
4.4 The Computer in the Tank

4.5 Cellular Automata Revisited

4.6 Summary

Chapter 5: Hybrid systems

5.1 An Elementary Hybrid System

5.2 Networks of Continuous Systems

5.3 Hybrid Models as Discrete-Event
Systems

5.4 Numerical Simulation of Hybrid Systems
5.5 A Simulator for Hybrid Systems

5.6 Interactive Simulation of the Robotic
Tank

5.7 Approximating Continuous Interaction
Between Hybrid Models

5.8 A Final Comment on Cellular Automata
5.9 Summary

Chapter 6: Applications

6.1 Control Through a Packet-Switched
Network

6.2 Frequency Regulation in an Electrical
Power System

6.3 Summary

Chapter 7: The Future

7.1 Simulation Programming Languages
7.2 Parallel Computing and Discrete-Event
Simulation

7.3 The Many Forms of Discrete Systems
and their Simulators

7.4 Other Facets of Modeling and
Simulation

Appendix A: Design and Test of
Simulations

A.1 Decomposing A Model
A.2 Input and Output Objects
A.3 Reducing Execution Time

Appendix B: Parallel Discrete-Event
Simulation

B.1 A Conservative Algorithm

B.2 Implementing the Algorithm with
OpenMP

B.3 Demonstration of Gustafson’s And
Amdahl’s Laws

Appendix C: Mathematical Topics

C.1 System Homomorphisms
C.2 Sinusoidal State-Steady Analysis

References

Index

BUILDING SOFTWARE FOR
SIMULATION

BUILDING SOFTWARE

FOR SIMULATION

Theory and Algorithms,
with Applications in C++

JAMES J. NUTARO
Oak Ridge National Laboratory

W

WILEY
A JOHN WILEY & SONS, INC., PURBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights
reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,
scanning, or otherwise, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax~(978) 750-
4470, or on the web at www.copyright.com. Requests to the
Publisher for permission should addressed to the
Permissions Department, john Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher
and author have used their best efforts in preparing this
book, they make no representations or warranties with
respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales
representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your
situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable
for any loss of profit or any other commercial damages,
including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services
or for technical support, please contact our Customer Care

http://www.copyright.com/
http://www.wiley.com/go/permission

Department within the United States at (800) 762-2974,
outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic
formats. Some content that appears in print may not be
available in electronic format. For more information about
Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Nutaro, James .
Building software for simulation: theory and algorithms with
applications in C++ / James J. Nutaro
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-41469-9 (cloth)

http://www.wiley.com/

PREFACE

Building Software for Simulation is different from many
other books on simulation because its focuses on the design
and implementation of simulation software; by culminating
in @ complete system for simulation, this book makes itself
unique. The design and construction of simulation software
has been a topic persistently absent from textbooks even
though many, if not most, simulation projects require the
development of new software. By addressing this important
topic, Building Software for Simulation will, | hope,
complement other excellent textbooks on modeling and
simulation. This book is intended as both an introduction to
simulation programming and a reference for experienced
practitioners. | hope you will find it useful in these respects.

This book approaches simulation from the perspective of
Zeigler's theory of modeling and simulation, introducing the
theory’s fundamental concepts and showing how to apply
these to problems in engineering. The original concept of
the book was not so ambitious; its early stages more closely
resembled a cookbook for building simulators, focusing
almost exclusively on algorithms, examples of simulation
programs, and guidelines for the object-oriented design of a
simulator. The book retains much of this flavor,
demonstrating each concept and algorithm with working
code. Unlike a cookbook, however, concepts and algorithms
discussed in the text are not disembodied; their origins in
the theory of modeling and simulation are made apparent,
and this motivates and provides greater insight into their
application.

Chapters 3, 4, and 5, are the centerpiece of the text. |
begin with discrete-time systems, their properties and
structure, simulation algorithms, and applications. Discrete-
time system will be familiar to most readers and if not, they
are easily grasped. Discrete-time systems are generalized to
introduce discrete event systems; this approach leads

naturally to Zeigler’s discrete-event system specification, its
properties and structures, and simulation procedures. The
central three chapters conclude with methods for modeling
and simulating systems that have interacting continuous
and discrete-event dynamics.

The three main chapters are bracketed by applications to
robotics, control and communications, and electrical power
systems. These examples are more complicated than might
be expected in a textbook; three examples occupy two
complete chapters. They are, however, described in
sufficient detail for a student to reproduce the printed
results and to go a step further by exploring unanswered
questions about the example systems. The book’s
appendixes discuss technical problems that do not fit
cleanly into the narrative of the manuscript: testing and
design, parallel computing, and a brief review of
mathematical topics needed for the examples.

Many people contributed advice and guidance as the book
evolved. | am particularly grateful to Vladimir Protopopescu
at Oak Ridge National Laboratory for his review of and
critical commentary on my rough drafts; his advice had a
profound impact on the organization of the text and my
presentation of much of the material. I'm also grateful to
Angela, who reviewed very early drafts and remarked only
rarely on the state of the yard and unfinished projects
around the house. Last, but not least, thanks to Joe and
Jake, who, in the early morning hours while | worked, quietly
(for the most part) entertained themselves.

JIM NUTARO

Oak Ridge, Tennessee
December 2009

CHAPTER 1

INTRODUCTION

Simulation has made possible systems that would otherwise
be impracticable. The sophisticated controls in modern
aircraft and automobiles, the powerful microprocessors in
desktop computers, and space-faring robots are possible
because simulations reduce substantially the need for
expensive prototypes. These complicated systems are
designed with the aid of sophisticated simulators, and the
simulation software itself has therefore become a major part
of most engineering efforts. A project’s success may hinge
on the construction of affordable, reliable simulators.

Good software engineering practices and a serviceable
software architecture are essential to building software for
any purpose, and simulators are no exception. The cost of a
simulator is determined less by the technical intricacy of its
subject than by factors common to all software: the clarity
and completeness of requirements, the design and
development processes that control complexity, effective
testing and maintenance, and the ability to adapt to
changing needs. Small software projects that lack any of
these attributes are expensive at best, and the absence of
some or all of these points is endemic to projects that fail.:

It is nonetheless common for the design of a complicated
simulator to be driven almost exclusively by consideration
of the objects being simulated. The project begins with a
problem that is carefully circumscribed: for example, to
calculate the time-varying voltages and currents in a circuit,
to estimate the in-process storage requirements of a
manufacturing facility, or to determine the rate at which a

disease will spread through a population. Equipped with an
appropriate set of algorithms, the scientist or engineer
crafts a program to answer the question at hand. The end
result has three facets: the model, an algorithm for
computing its trajectories, and some means for getting data
into and out of the simulator. The first of these are the
reason why the simulator is being built. The other two,
however, often constitute the majority of the code. Because
they are secondary interests, their scope and size are
reduced by specialization; peculiarities of the model are
exploited as the simulator is built, and so its three aspects
become inextricably linked.

If the model is so fundamental as to merit its exact
application to a large number of similar systems, then this
approach to simulation can be very successful.z More likely,
however, is that a simulator will be replaced if it does not
evolve in step with the system it mimics. A successful
simulator can persist for the lifetime of its subject, changing
to meet new requirements, to accommodate new data and
methods of solution, and to reflect modifications to the
system itself. Indeed, the lifetime cost of the simulator is
determined primarily by the cost of its evolution. A
simulation program built solely for its immediate purpose,
with no thought to future uses and objectives, is unlikely to
flourish. Its integrated aspects are costly to reengineer and
replacement, probably after great expense, is almost certain
when new requirements exceed the limits of an architecture
narrowly conceived. Conversely, a robust software
architecture facilitates good engineering practices and this,
in turn, ensures a long period of useful service for the
software, while at the same time reducing its lifetime cost.

1.1 ELEMENTS OF A SOFTWARE
ARCHITECTURE

Four elements are common to nearly all simulation
frameworks meant for general use: a concept of a dynamic
system, software constructs with which to build models, a
simulation engine to calculate a model’'s dynamic
trajectories, and a means for control and observation of the
simulation as it progresses. The concept a dynamic system
on which the framework grows has a profound influence on
its final form, on the experience of the end user, and on its
suitability for expansion and reuse.

Monolithic modeling concepts, which were employed in the
earliest simulation tools, rapidly gave way to modular ones
for two reasons: (1) the workings of a large system can not
be conceived as a whole. Complex operations must be
broken down into manageable pieces, dealt with one at a
time, and then combined to obtain the desired behavior;
and (2) to reuse a model or part of a model requires that it
and its components be coherent and self-contained. The
near-universal adoption by commercial and academic
simulation tools of modular modeling concepts, and the
simultaneous growth of model libraries for these tools,
demonstrates the fundamental importance of this idea. The
simulation engine produces dynamic behavior from an
assemblage of components. Conceptually, at least, this is
straightforward. A simulator for continuous systems
approximates the solution to a set of differential equations,
the choice of integration method depending on qualitative
features of the system’s trajectories and requirements for
accuracy and precision. A discrete-event simulation
executes events scheduled by its components in the order
of their event times. Putting aside the details of the event
scheduling algorithm and procedure for numerical
integration, these approaches to simulation are quite
intuitive and any two, reasonably constructed simulators
provided with identical models will yield essentially
indistinguishable~results.

In models with discrete events—the opening and closing of
switches, departure and arrival of a data packet, or failure
and repair of a machine—simultaneous occurrences are
often responsible for simulators that, given otherwise
identical models, produce incompatible results (see, e.q.,
Ref. 12). This problem has two facets: intent and
computational precision. The first is a modeling problem:
what is the intended consequence of distinct, discrete
occurrences that act simultaneously on a model? By
selecting a particular solution to this problem, the
simulation tool completes its definition of a dynamic system.
This seemingly obscure problem is therefore of fundamental
importance and, consequently, a topic of substantial
research (a good summary can be found in Wieland [146]
and Raczynski [113]). Simultaneous interactions are
unavoidable in large, modular models, and the clarity with
which a modeler sees their implications has a profound
effect on the cost of developing and maintaining a
simulator.

The issue of how simultaneous events are applied is
distinct from the problem of deciding whether two events
occur at the same time. Discrete-event systems measure
time with real numbers, and so the model itself is
unambiguous about simultaneous occurrences; events are
concurrent when their scheduled times are equal. The
computer, however, approximates the real numbers with a
large, but still finite, set of values. Add to this the problem of
rounding errors in floating-point arithmetic, and it becomes
easy to construct a model that, in fact, does not generate
simultaneous events, but the computer nonetheless insists
that it does. The analysis problems created by this effect
and the related issue of what to do with simultaneous
actions (real or otherwise) are widely discussed in the
simulation literature (again, see the article by Wieland [146]

and the text by Raczynski [113]; see also Refs. 10, 107, and
130).

The concept of a dynamic system and its presentation as
object classes and interfaces to the modeler are of
fundamental importance. Effort expended to make these
clear, consistent, and precise is rewarded in proportion to
the complexity and size of the models constructed. In very
small models the benefit of organization is difficult to
perceive for the same reasons that structure seems
unimportant when experience is confined to 100-line
computer programs. For large, complicated models,
however, adherence to a well-conceived structure is
requisite to a successful outcome; organizing principles are
important for the model’s construction and its later reuse.

The modeling constructs acted on by the simulation
engine are reflected in the interface it presents to the
outside world. Large simulation projects rarely exist in
isolation. More often, the object under study is part of a
bigger system, and when the simulator satisfies its initial
purpose, this success creates a desire to reuse it in the
larger context. Simulators for design can, for example, find
their way into training and testing equipment, component-
based simulations of a finished system, and even into the
operational software of the machine that it models.

Looking beyond the very difficult problems of model
validation and reuse (see, e.g., Ref. 32), issues common to
the reuse of software in general can prevent an otherwise
appropriate simulator from being adapted to a new context.
The means for control and observation of a simulation run,
and in particular the facilities for control of the simulation
clock, for extracting the values of state variables, for
receiving notification of important events, and for injecting
externally derived inputs are of prime importance. The cost
of retrofitting a simulator with these capabilities can be

quite high, but they are invariably needed to integrate with
a larger application.

1.2 SYSTEMS CONCEPTS AS AN
ARCHITECTURAL FOUNDATION

Systems theory, as it is developed by various authors such
as Ashby [7], Zeigler et al. [157], Mesarovic and Takahara
[86], Wymore [149, 150], and Klir [68], presents a precise
characterization of a dynamic system, two aspects of which
are the conceptual foundation of our simulation framework.
First is the state transition model of a dynamic system,
particularly its features that link discrete-time, discrete-
event, and continuous systems. Of specific interest is that
discrete-time simulation, often described as a counterpart to
discrete event simulation, becomes a special case of the
state transition model. This fact is readily established by
appeal to the underlying theory.

Second is the uniform notion of a network of systems,
whereby the components are state transition models and
the rules for their interconnection are otherwise invariant
with their dynamics. This permits models containing discrete
and continuous components to be constructed within a
single conceptual framework. The consistent concept of a
dynamic system—unvarying for components and networks,
for models continuous and discrete—is also reflected in the
facilities provided by the simulation engine for its control
and observation. The conceptual framework is thereby
extended to reuse of the entire simulator, allowing it to
serve as a component in other simulation tools and software
systems.

The small number of fundamental concepts that must be
grasped, and the very broad reach of those same concepts,
makes the simulation framework useful for a tremendous

range of applications. It can also be used as an integrating
framework for existing simulation models and as a tool for
expanding the capabilities of a simulation package already
in hand. Moreover, a simulation framework grounded in a
broad mathematical theory can reveal fundamental
relationships between simulation models and other
representations of dynamic systems; the close relationship
between hybrid automata, which appear frequently in the
modern literature on control, and discrete-event systems is
a pertinent example.

The approach taken here is not exclusive, nor is it
unrelated to the established worldviews for discrete event
simulation. For instance, Cota and Sargent’'s process
interaction worldview [29, 125] incorporates key elements
of Zeigler’s discrete-event system specification [152], from
which the simulation framework in this book is derived. The
activity-scanning worldview is apparent in models
containing discrete events that are contingent on
continuous variables reaching specific values. Discrete-
event models constructed with any of the classic views can
be components in a large model, and conversely models
described within our framework can be components in other
simulations. This capacity for composing a complex model
from pieces in a variety of forms is, perhaps, the most
attractive part of this book’s approach.

1.3 SUMMARY

The modeling and simulation concepts developed in this
book are illustrated with Unified Modeling Language (UML)
diagrams and code examples complete enough to very
nearly constitute a finished simulation engine; a finished
product in C++ can be obtained by downloading the adevs
software at http://freshmeat.net/projects/adevs.

http://freshmeat.net/projects/adevs

Implementing these simulation concepts in other
programming languages is not unduly difficult.:

If this specific framework is not adopted, its major
elements can still be usefully adapted to other simulation
packages. The approach, described in Chapter 5, to
continuous components can be used to build a hybrid
simulator from any discrete-event simulator that embodies
a modular concept of a system. Continuous system
simulation tools can likewise make use of the separation of
discrete-event and continuous components to integrate
complex discrete-event models into an existing framework
for continuous system modeling.

A programmer’s interface to the simulation engine, by
which the advance of time is controlled and the model’s
components are accessed and influenced, should be a
feature of all simulation tools. Its value is attested to by a
very large body of literature on simulation interoperability,
and by the growing number of commercial simulation
packages that provide such an interface. The interface
demonstrated in this text can be easily adapted for a new
simulator design or to an existing simulation tool.

Taken in its entirety, however, the proposed approach
offers a coherent worldview encompassing discrete time,
discrete event, and continuous systems. Two specific
benefits of this worldview are its strict inclusion of the class
of discrete-time systems within the class of discrete-event
systems and the uniformity of its coupling concept, which
allows networks to be built independent of the inner
workings of their components. This unified world view,
however, offers a more important, but less easily quantified,
advantage to the modeler and software engineer. The small
set of very expressive modeling constructs, the natural and
uniform handling of simultaneity, and the resulting
simplicity with which large models are built can greatly
reduce the cost of simulating a complex system.

1.4 ORGANIZATION OF THE
BOOK

Chapter 2 motivates major aspects of the software design,
the inclusion of specific numerical and discrete simulation
methods, and other technical topics appearing in the
subsequent chapters. The robotic tank developed in Chapter
2 has three important facets: (1) it is modeled by interacting
discrete-event and continuous subsystems, (2) the parts are
experimented with individually and collectively, and (3) its
simulator is used both interactively and for batch runs.

Chapter 3 introduces state transition systems, networks of
state transition systems, and builds from these concepts the
core of a simulation engine. This is done in the simple,
almost trivial, context of discrete-time systems, where
fundamental concepts are most easily grasped and applied.
The software is demonstrated with a simulator for cellular
automata.

Chapter 4 builds on this foundation, introducing discrete-
event systems as a generalization of discrete-time systems.
Using these new concepts, the simulation engine is
expanded and then demonstrated with a simulator for the
computer that controls the robotic tank introduced in
Chapter 2. Chapter 4 also revisits the cellular automata from
Chapter 3 to show that they are a special case of
asynchronous cellular automata, which are conveniently
described as discrete-event systems.

Chapter 5 completes the simulation framework by
introducing continuous systems. Numerical techniques for
locating state events, scheduling time events, and solving
differential equations are used to construct a special class of
systems having internal dynamics that are continuous, but
that produce and consume event trajectories and so are
readily incorporated into a discrete-event model. The
simulation framework from Chapter 4 is expanded to include

these new models, and the whole is demonstrated with a
complete simulator for the robotic tank. The cellular
automata are again revisited, and it is shown that the
asynchronous cellular automata of Chapter 4 are, in fact, a
special case of differential automata, which have attracted
considerable attention in recent years.

Chapter 6 has examples of engineering problems that
exemplify different aspects of the simulation technology.
The book concludes with a discussion of open problems and
directions for future research. The appendixes contain
supplemental material on the design and test of simulation
models, the use of parallel computers for simulating
discrete-event systems, and a brief introduction to system
homomorphisms as they are used in the running discussion
of cellular automata.

! Charette’s article on why software fails [22] gives an
excellent and readable account of spectacular software
failures, and Brooks’ The Mythical Man Month [14] is as
relevant today as its was in the 1970s.

2 Arrillaga and Watson’s Computer Modelling of Electrical
Power Systems [6] provides an excellent example of how
and where this approach can succeed. In that text, the
authors build an entire simulation program, based on the
principles of structured design, to solve problems that are
relevant to nearly all electrical power systems.

2 Implementations in other programming languages can
be found with a search for discrete-event (system)
simulation (DEVS) and simulation on the World Wide Web.

CHAPTER 2

FIRST EXAMPLE: SIMULATING A
ROBOTIC TANK

This example serves two purposes. First, it illustrates how
hybrid dynamics can appear in engineering problems. The
model has three main parts: the equations of motion, a
model of the propulsion system, and a model of the
computer. The first two are piecewise continuous with
discontinuities caused by step changes in the motor voltage
and the sticking friction of the rubber tracks. The third
model is a prototypical example of a discrete-event system;
the tank’s computer is modeled with an interruptible server
and queue. The equations of motion, propulsion system, and
computer are combined to form a complete model of the
tank.

Second, this example illustrates the basic elements of a
software architecture for large simulation programs. The
simulation engine is responsible solely for calculating the
dynamic behavior of the model; other functions
(visualization and interactive controls, calculation of
performance metrics, etc.) are delegated to other parts of
the software. This approach is based on two patterns or
principles: model-view-control and the experimental frame.

Model-view-control is a pattern widely used in the design
of user interfaces (see, e.g., Refs. 47 and 101); the
simulation engine and model are treated as a dynamic
document and, with this perspective, the overarching design
will probably be familiar to most software engineers. The
experimental frame (as described, e.g., by Daum and

Sargent [31])! is a logical separation of the model from the
components of the program that provide it with input and
observe its behavior. These principles simplify reuse;
programs for two experiments illustrate how they are
applied and the benefit of doing so.

The entirety of this example need not be grasped at once,
and its pieces will be revisited as their foundations are
established in later chapters. Its purpose here is to be a
specific example of how the simulation engine is used, and
to motivate the software architecture and algorithms that
are discussed in the subsequent chapters of this book.

2.1 FUNCTIONAL MODELING

Fishwick [42] defines a functional model as a thing that
transforms input into output. This view of a system is
advantageous because it leads to a natural decomposition
of the simulation software into objects that implement
precisely defined transformations. Distinct functions within
the model are described by distinct functional blocks which
are connected to form a complete model of the system. The
software objects that implement the functional blocks are
connected in the same way to build a simulator.

There are numerous methods for designing models. Many
of them are quite general: bond graphs and state transition
diagrams, for instance. Others are specific to particular
problems: the mesh current method for electric circuits and
the Lagrangian formulation of a rigid body. The majority of
methods culminate in a state space model of a system: a
set of state variables and a description of their dynamic
behavior. Mathematical formulations of a state space model
can take the form of, for example, differential equations,
difference equations, and finite-state machines.

To change a state space model into a functional model is
simple in principle. The state variables define the model’s

internal state; state variables or functions of state variables
that can be seen from outside the system are the model’s
output; variables that are not state variables but are needed
for the system to evolve become the model’s input. In
practice, this change requires judgment, experience, and a
careful consideration of sometimes subtle technical matters.
It may be advantageous to split a state space model into
several interacting functional models, or to combine several
state space models into a single functional model. Some
state space models can be simplified to obtain a model that
is easier to work with; simplification might be done with
precise mathematical transformations or by simply throwing
out terms. The best gquides during this process are
experience building simulation software, familiarity with the
system being studied, and a clear understanding of the
model’s intended use.

Functional models and their interconnections are the
specification for the simulation software. For this purpose,
there are two types of functional model: atomic and
network. An atomic model has state variables, a state
transition function that defines its internal response to
input, and an output function that transforms internal action
into observable behavior. A network model is constructed
from other functional models, and the behavior of the
network is defined by the collective behavior of its
interconnected components. The simulator is built from the
bottom up by implementing atomic models, connecting
these to form network models, combining these network
models to create larger components, and repeating until the
software is finished. This bottom-up approach to model
construction is illustrated in Figure 2.1.

FIGURE 2.1 Bottom-up construction of a model from
functional pieces: (a) input, output, and internal state of an
atomic model; (b) a network model constructed from three
atomic models.

[nput Chutput
—= State -

System C

= Systermn A = System B = System D

L]

The simulation engine operates on software objects that
implement atomic and network models. To build a simulator
therefore requires the parts of a dynamic system to be
expressed in this form. Functional models need not be built
in a single step. Atomic and network models are more easily
obtained by a set of steps that start with an appropriate
modeling technique, proceed to a state space description of
the model’'s fundamental dynamics, combine these to
create more sophisticated components, and end with a—
possibly large—functional model that can be acted on by
the simulation engine.

2.2 A ROBOTIC TANK

The robotic tank is simple enough to permit a thorough
discussion of its continuous and discrete dynamics, but
sufficiently complicated that it has features present in
larger, more practical systems. The robot’s operator controls
it through a wireless network, and the receipt, storage, and
processing of packets is modeled by a discrete event
system. An onboard computer transforms the operator’s
commands into control signals for the motors. The motors
and physical motion of the tank are modeled as a
continuous system. These components are combined to
create a complete model of the tank.

Our goal is to allocate the cycles of the tank’s onboard
computer to two tasks: physical control of the tank’s motors
and processing commands from the tank’s operator. The
tank has four parts that are relevant to our objective: the
radio that receives commands from the operator, the
computer and software that turn these commands into
control signals for the motors, the electric circuit that
delivers power to the motors, and the gearbox and tracks
that propel the tank. The tank has two tracks, left and right,
each driven by its own brushless direct-current (DC) motor.
A gearbox connects each motor to the sprocket wheel of its
track. The operator drives the tank by setting the duty ratio
of the voltage signal at the terminals of the motors. The
duty ratio are set using the control sticks on a gamepad and
sent via a wireless network to the computer.

The computer generates two periodic voltage signals, one
for each motor. The motor’s duty ratio is the fraction of time
that it is turned on in one period of the signal (i.e., its ON
time). Because the battery voltage is fixed, the power
delivered to a motor is proportional to its duty ratio. Driving
the tank is straightforward. If the duty ratio of the left and
right motors are equal then the tank moves in a straight
line. The tank spins clockwise if the duty ratio of the left
motor is higher than that of the right motor. The tank spins
counterclockwise if the duty ratio of the right motor is
higher than that of the left motor. A high duty ratio causes
the tank to move quickly; a low duty ratio causes the tank
to move slowly.

If the voltage signal has a high frequency, then the inertia
of the motor will carry it smoothly through moments when it
is disconnected from the batteries; the motors operate
efficiently and the tank handles well. If the frequency is too
low, then the motor operates inefficiently. It speeds up when
the batteries are connected, slows down when they are
disconnected, and speeds up again when power is

reapplied. This creates heat and noise, wasting energy and
draining the batteries without doing useful work. Therefore,
we want the voltage signal to have a high frequency.

Unfortunately, a high-frequency signal means less time for
the computer to process data from the radio. If the
frequency is too high, then there is a noticeable delay as the
tank processes commands from the operator. At some point,
the computer will be completely occupied with the motors,
and when this happens, the tank becomes unresponsive.

Somewhere in between is a frequency that is both
acceptable to the driver and efficient enough to give a
satisfactory battery life. There are physical limits on the
range of usable frequencies. It cannot be so high that the
computer is consumed entirely by the task of driving the
motors. It cannot be so low that the tank lurches
uncontrollably or overheats its motors and control circuits.
Within this range, the choice of frequency depends on how
sensitive the driver is to the nuances of the tank’s control.

An acceptable frequency could be selected by
experimenting with the real tank; let a few people drive it
around using different frequencies and see which they like
best. If we use the real tank to do this, then we can get the
opinions of a small number of people about a small number
of frequencies. The tank’s batteries are one constraint on
the number of experiments that can be conducted. They will
run dry after a few trials and need several hours to
recharge. That we have only one tank is another constraint.
Experiments must be conducted one at a time. If, however,
we build a simulation of the tank, then we can give the
simulator to anyone who cares to render an opinion, and
that person can try as many different frequencies as time
and patience permit.

2.2.1 Equations of Motion

The model of the tank’s motion is adapted from Anh Tuan
Le’'s PhD dissertation [74]. The model’'s parameters are
listed in Table 2.1, and the coordinate system and forces
acting on the tank are illustrated in Figure 2.2. The model
assumes that the tank is driven on a hard, flat surface and
that the tracks do not slip. The position of the tank is given
by its x and y coordinates. The heading 6 of the tank is
measured with respect to the x axis of the coordinate
system and the tank moves in this direction with a speed v.

FIGURE 2.2 Coordinate system, variables, and parameters
used in the tank’s equations of motion.
5]

o
A

vy

T

\

i~

1 — =TT

v,

i

= —={[TTITIT]

-
TABLE 2.1 Value of Parameters Used in the Tank’s
Equations of Motion

Parameter Value Description

m; 0.8 kg Mass of the tank

Jr 5 x 10~ kg - m? Angular mass of the tank

B 0.1m Width of the tank from track to track

B, 1.ON:-s/m Mechanical resistance of the tracks to rolling forward
B, 140N:-s/m Mechanical resistance of the tracks to sliding forward
B, 0.7 N - m - s/ rad Mechanical resistance of the tracks to turning

S, 0.3N'm Lateral friction of the tracks

The left track pushes the tank forward with a force F; the
right track, with a force F; and B is the mechanical
resistance of the tracks to rolling. The tank uses skid
steering; to turn, the motors must collectively create
enough torque to cause the tracks to slide sideways. This

requires overcoming the sticking force S. When sufficient
torque is created, the vehicle begins to turn. As it turns,
some of the propulsive force is expended to drag the tracks
laterally; this is modeled by an additional resistance B, to its
turning motion and B, to its rolling motion.

The tank’s motion is described by two sets of equations,
one for when the tank is turning and one for when it is not.
The switch from turning to not turning (and vice versa) has
two discrete effects: (1) the angular velocity w changes
instantaneously to and remains at zero when the tracks
stick and the turn ends, and (2) the rolling resistance of the
tank changes instantaneously when the tank starts and
ends a turn. The Boolean variable turning is used to change
the set of equations. The equations that model the motion
of the tank are

ve SR —Fl>S
turning = | "¢ 1 T| 1= F =5
(2 1) false otherwise

1
_(E. +F. — (B, + B_T‘n-) if turning = true
. iy
v=14 .
1
—|\ i+ F. — B if rurning = false
(2.2) m.r(S)
1 /B . .
o= 17 (7EF,- — F— B,'cu) if furming = true
L — I)
(2 3) 0 if rurming = false
(2.4) 6=«
(2 5) X = vsin(d)
(2 6) ¥ =vcosid)
(2] 7) If rurming = false thenw =0

When turning changes from false to true, every state
variable evolves from its value immediately prior to starting
the turn, but using the equations designated for turning =
true. When turning changes from true to false, every state

