




Contents

Cover

Half Title page

Title page

Copyright page

Preface

Chapter 1: Introduction

1.1 Elements of a Software Architecture

1.2 Systems Concepts as an Architectural

Foundation

1.3 Summary

1.4 Organization of the Book

Chapter 2: First Example: Simulating

A Robotic Tank

2.1 Functional Modeling

2.2 A Robotic Tank

2.3 Design of the Tank Simulator

2.4 Experiments

2.5 Summary

Chapter 3: Discrete-Time Systems

3.1 Atomic Models



3.2 Network Models

3.3 A Simulator for Discrete-Time Systems

3.4 Mealy/Moore-Type Systems

3.5 Cellular Automata

3.6 Summary

Chapter 4: Discrete-Event Systems

4.1 Atomic Models

4.2 Network Models

4.3 A Simulator for Discrete-Event Systems

4.4 The Computer in the Tank

4.5 Cellular Automata Revisited

4.6 Summary

Chapter 5: Hybrid systems

5.1 An Elementary Hybrid System

5.2 Networks of Continuous Systems

5.3 Hybrid Models as Discrete-Event

Systems

5.4 Numerical Simulation of Hybrid Systems

5.5 A Simulator for Hybrid Systems

5.6 Interactive Simulation of the Robotic

Tank

5.7 Approximating Continuous Interaction

Between Hybrid Models

5.8 A Final Comment on Cellular Automata

5.9 Summary

Chapter 6: Applications



6.1 Control Through a Packet-Switched

Network

6.2 Frequency Regulation in an Electrical

Power System

6.3 Summary

Chapter 7: The Future

7.1 Simulation Programming Languages

7.2 Parallel Computing and Discrete-Event

Simulation

7.3 The Many Forms of Discrete Systems

and their Simulators

7.4 Other Facets of Modeling and

Simulation

Appendix A: Design and Test of

Simulations

A.1 Decomposing A Model

A.2 Input and Output Objects

A.3 Reducing Execution Time

Appendix B: Parallel Discrete-Event

Simulation

B.1 A Conservative Algorithm

B.2 Implementing the Algorithm with

OpenMP

B.3 Demonstration of Gustafson’s And

Amdahl’s Laws



Appendix C: Mathematical Topics

C.1 System Homomorphisms

C.2 Sinusoidal State-Steady Analysis

References

Index



BUILDING SOFTWARE FOR

SIMULATION





Copyright © 2011 by John Wiley & Sons, Inc. All rights

reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording,

scanning, or otherwise, except as permitted under Section

107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or

authorization through payment of the appropriate per-copy

fee to the Copyright Clearance Center, Inc., 222 Rosewood

Drive, Danvers, MA 01923, (978) 750-8400, fax~(978) 750-

4470, or on the web at www.copyright.com. Requests to the

Publisher for permission should addressed to the

Permissions Department, john Wiley & Sons, Inc., 111 River

Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-

6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher

and author have used their best efforts in preparing this

book, they make no representations or warranties with

respect to the accuracy or completeness of the contents of

this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No

warranty may be created or extended by sales

representatives or written sales materials. The advice and

strategies contained herein may not be suitable for your

situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable

for any loss of profit or any other commercial damages,

including but not limited to special, incidental,

consequential, or other damages.

For general information on our other products and services

or for technical support, please contact our Customer Care

http://www.copyright.com/
http://www.wiley.com/go/permission


Department within the United States at (800) 762-2974,

outside the United States at (317) 572-3993 or fax (317)

572-4002.

Wiley also publishes its books in a variety of electronic

formats. Some content that appears in print may not be

available in electronic format. For more information about

Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Nutaro, James J.

Building software for simulation: theory and algorithms with

applications in C++ / James J. Nutaro

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-41469-9 (cloth)

http://www.wiley.com/


PREFACE
Building Software for Simulation is different from many

other books on simulation because its focuses on the design

and implementation of simulation software; by culminating

in a complete system for simulation, this book makes itself

unique. The design and construction of simulation software

has been a topic persistently absent from textbooks even

though many, if not most, simulation projects require the

development of new software. By addressing this important

topic, Building Software for Simulation will, I hope,

complement other excellent textbooks on modeling and

simulation. This book is intended as both an introduction to

simulation programming and a reference for experienced

practitioners. I hope you will find it useful in these respects.

This book approaches simulation from the perspective of

Zeigler’s theory of modeling and simulation, introducing the

theory’s fundamental concepts and showing how to apply

these to problems in engineering. The original concept of

the book was not so ambitious; its early stages more closely

resembled a cookbook for building simulators, focusing

almost exclusively on algorithms, examples of simulation

programs, and guidelines for the object-oriented design of a

simulator. The book retains much of this flavor,

demonstrating each concept and algorithm with working

code. Unlike a cookbook, however, concepts and algorithms

discussed in the text are not disembodied; their origins in

the theory of modeling and simulation are made apparent,

and this motivates and provides greater insight into their

application.

Chapters 3, 4, and 5, are the centerpiece of the text. I

begin with discrete-time systems, their properties and

structure, simulation algorithms, and applications. Discrete-

time system will be familiar to most readers and if not, they

are easily grasped. Discrete-time systems are generalized to

introduce discrete event systems; this approach leads



naturally to Zeigler’s discrete-event system specification, its

properties and structures, and simulation procedures. The

central three chapters conclude with methods for modeling

and simulating systems that have interacting continuous

and discrete-event dynamics.

The three main chapters are bracketed by applications to

robotics, control and communications, and electrical power

systems. These examples are more complicated than might

be expected in a textbook; three examples occupy two

complete chapters. They are, however, described in

sufficient detail for a student to reproduce the printed

results and to go a step further by exploring unanswered

questions about the example systems. The book’s

appendixes discuss technical problems that do not fit

cleanly into the narrative of the manuscript: testing and

design, parallel computing, and a brief review of

mathematical topics needed for the examples.

Many people contributed advice and guidance as the book

evolved. I am particularly grateful to Vladimir Protopopescu

at Oak Ridge National Laboratory for his review of and

critical commentary on my rough drafts; his advice had a

profound impact on the organization of the text and my

presentation of much of the material. I’m also grateful to

Angela, who reviewed very early drafts and remarked only

rarely on the state of the yard and unfinished projects

around the house. Last, but not least, thanks to Joe and

Jake, who, in the early morning hours while I worked, quietly

(for the most part) entertained themselves.

JIM NUTARO

Oak Ridge, Tennessee

December 2009



CHAPTER 1

INTRODUCTION

Simulation has made possible systems that would otherwise

be impracticable. The sophisticated controls in modern

aircraft and automobiles, the powerful microprocessors in

desktop computers, and space-faring robots are possible

because simulations reduce substantially the need for

expensive prototypes. These complicated systems are

designed with the aid of sophisticated simulators, and the

simulation software itself has therefore become a major part

of most engineering efforts. A project’s success may hinge

on the construction of affordable, reliable simulators.

Good software engineering practices and a serviceable

software architecture are essential to building software for

any purpose, and simulators are no exception. The cost of a

simulator is determined less by the technical intricacy of its

subject than by factors common to all software: the clarity

and completeness of requirements, the design and

development processes that control complexity, effective

testing and maintenance, and the ability to adapt to

changing needs. Small software projects that lack any of

these attributes are expensive at best, and the absence of

some or all of these points is endemic to projects that fail.1

It is nonetheless common for the design of a complicated

simulator to be driven almost exclusively by consideration

of the objects being simulated. The project begins with a

problem that is carefully circumscribed: for example, to

calculate the time-varying voltages and currents in a circuit,

to estimate the in-process storage requirements of a

manufacturing facility, or to determine the rate at which a



disease will spread through a population. Equipped with an

appropriate set of algorithms, the scientist or engineer

crafts a program to answer the question at hand. The end

result has three facets: the model, an algorithm for

computing its trajectories, and some means for getting data

into and out of the simulator. The first of these are the

reason why the simulator is being built. The other two,

however, often constitute the majority of the code. Because

they are secondary interests, their scope and size are

reduced by specialization; peculiarities of the model are

exploited as the simulator is built, and so its three aspects

become inextricably linked.

If the model is so fundamental as to merit its exact

application to a large number of similar systems, then this

approach to simulation can be very successful.2 More likely,

however, is that a simulator will be replaced if it does not

evolve in step with the system it mimics. A successful

simulator can persist for the lifetime of its subject, changing

to meet new requirements, to accommodate new data and

methods of solution, and to reflect modifications to the

system itself. Indeed, the lifetime cost of the simulator is

determined primarily by the cost of its evolution. A

simulation program built solely for its immediate purpose,

with no thought to future uses and objectives, is unlikely to

flourish. Its integrated aspects are costly to reengineer and

replacement, probably after great expense, is almost certain

when new requirements exceed the limits of an architecture

narrowly conceived. Conversely, a robust software

architecture facilitates good engineering practices and this,

in turn, ensures a long period of useful service for the

software, while at the same time reducing its lifetime cost.

1.1 ELEMENTS OF A SOFTWARE

ARCHITECTURE



Four elements are common to nearly all simulation

frameworks meant for general use: a concept of a dynamic

system, software constructs with which to build models, a

simulation engine to calculate a model’s dynamic

trajectories, and a means for control and observation of the

simulation as it progresses. The concept a dynamic system

on which the framework grows has a profound influence on

its final form, on the experience of the end user, and on its

suitability for expansion and reuse.

Monolithic modeling concepts, which were employed in the

earliest simulation tools, rapidly gave way to modular ones

for two reasons: (1) the workings of a large system can not

be conceived as a whole. Complex operations must be

broken down into manageable pieces, dealt with one at a

time, and then combined to obtain the desired behavior;

and (2) to reuse a model or part of a model requires that it

and its components be coherent and self-contained. The

near-universal adoption by commercial and academic

simulation tools of modular modeling concepts, and the

simultaneous growth of model libraries for these tools,

demonstrates the fundamental importance of this idea. The

simulation engine produces dynamic behavior from an

assemblage of components. Conceptually, at least, this is

straightforward. A simulator for continuous systems

approximates the solution to a set of differential equations,

the choice of integration method depending on qualitative

features of the system’s trajectories and requirements for

accuracy and precision. A discrete-event simulation

executes events scheduled by its components in the order

of their event times. Putting aside the details of the event

scheduling algorithm and procedure for numerical

integration, these approaches to simulation are quite

intuitive and any two, reasonably constructed simulators

provided with identical models will yield essentially

indistinguishable~results.



In models with discrete events—the opening and closing of

switches, departure and arrival of a data packet, or failure

and repair of a machine—simultaneous occurrences are

often responsible for simulators that, given otherwise

identical models, produce incompatible results (see, e.g.,

Ref. 12). This problem has two facets: intent and

computational precision. The first is a modeling problem:

what is the intended consequence of distinct, discrete

occurrences that act simultaneously on a model? By

selecting a particular solution to this problem, the

simulation tool completes its definition of a dynamic system.

This seemingly obscure problem is therefore of fundamental

importance and, consequently, a topic of substantial

research (a good summary can be found in Wieland [146]

and Raczynski [113]). Simultaneous interactions are

unavoidable in large, modular models, and the clarity with

which a modeler sees their implications has a profound

effect on the cost of developing and maintaining a

simulator.

The issue of how simultaneous events are applied is

distinct from the problem of deciding whether two events

occur at the same time. Discrete-event systems measure

time with real numbers, and so the model itself is

unambiguous about simultaneous occurrences; events are

concurrent when their scheduled times are equal. The

computer, however, approximates the real numbers with a

large, but still finite, set of values. Add to this the problem of

rounding errors in floating-point arithmetic, and it becomes

easy to construct a model that, in fact, does not generate

simultaneous events, but the computer nonetheless insists

that it does. The analysis problems created by this effect

and the related issue of what to do with simultaneous

actions (real or otherwise) are widely discussed in the

simulation literature (again, see the article by Wieland [146]



and the text by Raczynski [113]; see also Refs. 10, 107, and

130).

The concept of a dynamic system and its presentation as

object classes and interfaces to the modeler are of

fundamental importance. Effort expended to make these

clear, consistent, and precise is rewarded in proportion to

the complexity and size of the models constructed. In very

small models the benefit of organization is difficult to

perceive for the same reasons that structure seems

unimportant when experience is confined to 100-line

computer programs. For large, complicated models,

however, adherence to a well-conceived structure is

requisite to a successful outcome; organizing principles are

important for the model’s construction and its later reuse.

The modeling constructs acted on by the simulation

engine are reflected in the interface it presents to the

outside world. Large simulation projects rarely exist in

isolation. More often, the object under study is part of a

bigger system, and when the simulator satisfies its initial

purpose, this success creates a desire to reuse it in the

larger context. Simulators for design can, for example, find

their way into training and testing equipment, component-

based simulations of a finished system, and even into the

operational software of the machine that it models.

Looking beyond the very difficult problems of model

validation and reuse (see, e.g., Ref. 32), issues common to

the reuse of software in general can prevent an otherwise

appropriate simulator from being adapted to a new context.

The means for control and observation of a simulation run,

and in particular the facilities for control of the simulation

clock, for extracting the values of state variables, for

receiving notification of important events, and for injecting

externally derived inputs are of prime importance. The cost

of retrofitting a simulator with these capabilities can be



quite high, but they are invariably needed to integrate with

a larger application.

1.2 SYSTEMS CONCEPTS AS AN

ARCHITECTURAL FOUNDATION

Systems theory, as it is developed by various authors such

as Ashby [7], Zeigler et al. [157], Mesarovic and Takahara

[86], Wymore [149, 150], and Klir [68], presents a precise

characterization of a dynamic system, two aspects of which

are the conceptual foundation of our simulation framework.

First is the state transition model of a dynamic system,

particularly its features that link discrete-time, discrete-

event, and continuous systems. Of specific interest is that

discrete-time simulation, often described as a counterpart to

discrete event simulation, becomes a special case of the

state transition model. This fact is readily established by

appeal to the underlying theory.

Second is the uniform notion of a network of systems,

whereby the components are state transition models and

the rules for their interconnection are otherwise invariant

with their dynamics. This permits models containing discrete

and continuous components to be constructed within a

single conceptual framework. The consistent concept of a

dynamic system—unvarying for components and networks,

for models continuous and discrete—is also reflected in the

facilities provided by the simulation engine for its control

and observation. The conceptual framework is thereby

extended to reuse of the entire simulator, allowing it to

serve as a component in other simulation tools and software

systems.

The small number of fundamental concepts that must be

grasped, and the very broad reach of those same concepts,

makes the simulation framework useful for a tremendous



range of applications. It can also be used as an integrating

framework for existing simulation models and as a tool for

expanding the capabilities of a simulation package already

in hand. Moreover, a simulation framework grounded in a

broad mathematical theory can reveal fundamental

relationships between simulation models and other

representations of dynamic systems; the close relationship

between hybrid automata, which appear frequently in the

modern literature on control, and discrete-event systems is

a pertinent example.

The approach taken here is not exclusive, nor is it

unrelated to the established worldviews for discrete event

simulation. For instance, Cota and Sargent’s process

interaction worldview [29, 125] incorporates key elements

of Zeigler’s discrete-event system specification [152], from

which the simulation framework in this book is derived. The

activity-scanning worldview is apparent in models

containing discrete events that are contingent on

continuous variables reaching specific values. Discrete-

event models constructed with any of the classic views can

be components in a large model, and conversely models

described within our framework can be components in other

simulations. This capacity for composing a complex model

from pieces in a variety of forms is, perhaps, the most

attractive part of this book’s approach.

1.3 SUMMARY

The modeling and simulation concepts developed in this

book are illustrated with Unified Modeling Language (UML)

diagrams and code examples complete enough to very

nearly constitute a finished simulation engine; a finished

product in C++ can be obtained by downloading the adevs

software at http://freshmeat.net/projects/adevs.

http://freshmeat.net/projects/adevs


Implementing these simulation concepts in other

programming languages is not unduly difficult.3

If this specific framework is not adopted, its major

elements can still be usefully adapted to other simulation

packages. The approach, described in Chapter 5, to

continuous components can be used to build a hybrid

simulator from any discrete-event simulator that embodies

a modular concept of a system. Continuous system

simulation tools can likewise make use of the separation of

discrete-event and continuous components to integrate

complex discrete-event models into an existing framework

for continuous system modeling.

A programmer’s interface to the simulation engine, by

which the advance of time is controlled and the model’s

components are accessed and influenced, should be a

feature of all simulation tools. Its value is attested to by a

very large body of literature on simulation interoperability,

and by the growing number of commercial simulation

packages that provide such an interface. The interface

demonstrated in this text can be easily adapted for a new

simulator design or to an existing simulation tool.

Taken in its entirety, however, the proposed approach

offers a coherent worldview encompassing discrete time,

discrete event, and continuous systems. Two specific

benefits of this worldview are its strict inclusion of the class

of discrete-time systems within the class of discrete-event

systems and the uniformity of its coupling concept, which

allows networks to be built independent of the inner

workings of their components. This unified world view,

however, offers a more important, but less easily quantified,

advantage to the modeler and software engineer. The small

set of very expressive modeling constructs, the natural and

uniform handling of simultaneity, and the resulting

simplicity with which large models are built can greatly

reduce the cost of simulating a complex system.



1.4 ORGANIZATION OF THE

BOOK

Chapter 2 motivates major aspects of the software design,

the inclusion of specific numerical and discrete simulation

methods, and other technical topics appearing in the

subsequent chapters. The robotic tank developed in Chapter

2 has three important facets: (1) it is modeled by interacting

discrete-event and continuous subsystems, (2) the parts are

experimented with individually and collectively, and (3) its

simulator is used both interactively and for batch runs.

Chapter 3 introduces state transition systems, networks of

state transition systems, and builds from these concepts the

core of a simulation engine. This is done in the simple,

almost trivial, context of discrete-time systems, where

fundamental concepts are most easily grasped and applied.

The software is demonstrated with a simulator for cellular

automata.

Chapter 4 builds on this foundation, introducing discrete-

event systems as a generalization of discrete-time systems.

Using these new concepts, the simulation engine is

expanded and then demonstrated with a simulator for the

computer that controls the robotic tank introduced in

Chapter 2. Chapter 4 also revisits the cellular automata from

Chapter 3 to show that they are a special case of

asynchronous cellular automata, which are conveniently

described as discrete-event systems.

Chapter 5 completes the simulation framework by

introducing continuous systems. Numerical techniques for

locating state events, scheduling time events, and solving

differential equations are used to construct a special class of

systems having internal dynamics that are continuous, but

that produce and consume event trajectories and so are

readily incorporated into a discrete-event model. The

simulation framework from Chapter 4 is expanded to include



these new models, and the whole is demonstrated with a

complete simulator for the robotic tank. The cellular

automata are again revisited, and it is shown that the

asynchronous cellular automata of Chapter 4 are, in fact, a

special case of differential automata, which have attracted

considerable attention in recent years.

Chapter 6 has examples of engineering problems that

exemplify different aspects of the simulation technology.

The book concludes with a discussion of open problems and

directions for future research. The appendixes contain

supplemental material on the design and test of simulation

models, the use of parallel computers for simulating

discrete-event systems, and a brief introduction to system

homomorphisms as they are used in the running discussion

of cellular automata.

1 Charette’s article on why software fails [22] gives an

excellent and readable account of spectacular software

failures, and Brooks’ The Mythical Man Month [14] is as

relevant today as its was in the 1970s.

2 Arrillaga and Watson’s Computer Modelling of Electrical

Power Systems [6] provides an excellent example of how

and where this approach can succeed. In that text, the

authors build an entire simulation program, based on the

principles of structured design, to solve problems that are

relevant to nearly all electrical power systems.

3 Implementations in other programming languages can

be found with a search for discrete-event (system)

simulation (DEVS) and simulation on the World Wide Web.



CHAPTER 2

FIRST EXAMPLE: SIMULATING A

ROBOTIC TANK

This example serves two purposes. First, it illustrates how

hybrid dynamics can appear in engineering problems. The

model has three main parts: the equations of motion, a

model of the propulsion system, and a model of the

computer. The first two are piecewise continuous with

discontinuities caused by step changes in the motor voltage

and the sticking friction of the rubber tracks. The third

model is a prototypical example of a discrete-event system;

the tank’s computer is modeled with an interruptible server

and queue. The equations of motion, propulsion system, and

computer are combined to form a complete model of the

tank.

Second, this example illustrates the basic elements of a

software architecture for large simulation programs. The

simulation engine is responsible solely for calculating the

dynamic behavior of the model; other functions

(visualization and interactive controls, calculation of

performance metrics, etc.) are delegated to other parts of

the software. This approach is based on two patterns or

principles: model–view–control and the experimental frame.

Model–view–control is a pattern widely used in the design

of user interfaces (see, e.g., Refs. 47 and 101); the

simulation engine and model are treated as a dynamic

document and, with this perspective, the overarching design

will probably be familiar to most software engineers. The

experimental frame (as described, e.g., by Daum and



Sargent [31])1 is a logical separation of the model from the

components of the program that provide it with input and

observe its behavior. These principles simplify reuse;

programs for two experiments illustrate how they are

applied and the benefit of doing so.

The entirety of this example need not be grasped at once,

and its pieces will be revisited as their foundations are

established in later chapters. Its purpose here is to be a

specific example of how the simulation engine is used, and

to motivate the software architecture and algorithms that

are discussed in the subsequent chapters of this book.

2.1 FUNCTIONAL MODELING

Fishwick [42] defines a functional model as a thing that

transforms input into output. This view of a system is

advantageous because it leads to a natural decomposition

of the simulation software into objects that implement

precisely defined transformations. Distinct functions within

the model are described by distinct functional blocks which

are connected to form a complete model of the system. The

software objects that implement the functional blocks are

connected in the same way to build a simulator.

There are numerous methods for designing models. Many

of them are quite general: bond graphs and state transition

diagrams, for instance. Others are specific to particular

problems: the mesh current method for electric circuits and

the Lagrangian formulation of a rigid body. The majority of

methods culminate in a state space model of a system: a

set of state variables and a description of their dynamic

behavior. Mathematical formulations of a state space model

can take the form of, for example, differential equations,

difference equations, and finite-state machines.

To change a state space model into a functional model is

simple in principle. The state variables define the model’s



internal state; state variables or functions of state variables

that can be seen from outside the system are the model’s

output; variables that are not state variables but are needed

for the system to evolve become the model’s input. In

practice, this change requires judgment, experience, and a

careful consideration of sometimes subtle technical matters.

It may be advantageous to split a state space model into

several interacting functional models, or to combine several

state space models into a single functional model. Some

state space models can be simplified to obtain a model that

is easier to work with; simplification might be done with

precise mathematical transformations or by simply throwing

out terms. The best guides during this process are

experience building simulation software, familiarity with the

system being studied, and a clear understanding of the

model’s intended use.

Functional models and their interconnections are the

specification for the simulation software. For this purpose,

there are two types of functional model: atomic and

network. An atomic model has state variables, a state

transition function that defines its internal response to

input, and an output function that transforms internal action

into observable behavior. A network model is constructed

from other functional models, and the behavior of the

network is defined by the collective behavior of its

interconnected components. The simulator is built from the

bottom up by implementing atomic models, connecting

these to form network models, combining these network

models to create larger components, and repeating until the

software is finished. This bottom–up approach to model

construction is illustrated in Figure 2.1.

FIGURE 2.1 Bottom–up construction of a model from

functional pieces: (a) input, output, and internal state of an

atomic model; (b) a network model constructed from three

atomic models.



The simulation engine operates on software objects that

implement atomic and network models. To build a simulator

therefore requires the parts of a dynamic system to be

expressed in this form. Functional models need not be built

in a single step. Atomic and network models are more easily

obtained by a set of steps that start with an appropriate

modeling technique, proceed to a state space description of

the model’s fundamental dynamics, combine these to

create more sophisticated components, and end with a—

possibly large—functional model that can be acted on by

the simulation engine.

2.2 A ROBOTIC TANK

The robotic tank is simple enough to permit a thorough

discussion of its continuous and discrete dynamics, but

sufficiently complicated that it has features present in

larger, more practical systems. The robot’s operator controls

it through a wireless network, and the receipt, storage, and

processing of packets is modeled by a discrete event

system. An onboard computer transforms the operator’s

commands into control signals for the motors. The motors

and physical motion of the tank are modeled as a

continuous system. These components are combined to

create a complete model of the tank.



Our goal is to allocate the cycles of the tank’s onboard

computer to two tasks: physical control of the tank’s motors

and processing commands from the tank’s operator. The

tank has four parts that are relevant to our objective: the

radio that receives commands from the operator, the

computer and software that turn these commands into

control signals for the motors, the electric circuit that

delivers power to the motors, and the gearbox and tracks

that propel the tank. The tank has two tracks, left and right,

each driven by its own brushless direct-current (DC) motor.

A gearbox connects each motor to the sprocket wheel of its

track. The operator drives the tank by setting the duty ratio

of the voltage signal at the terminals of the motors. The

duty ratio are set using the control sticks on a gamepad and

sent via a wireless network to the computer.

The computer generates two periodic voltage signals, one

for each motor. The motor’s duty ratio is the fraction of time

that it is turned on in one period of the signal (i.e., its ON

time). Because the battery voltage is fixed, the power

delivered to a motor is proportional to its duty ratio. Driving

the tank is straightforward. If the duty ratio of the left and

right motors are equal then the tank moves in a straight

line. The tank spins clockwise if the duty ratio of the left

motor is higher than that of the right motor. The tank spins

counterclockwise if the duty ratio of the right motor is

higher than that of the left motor. A high duty ratio causes

the tank to move quickly; a low duty ratio causes the tank

to move slowly.

If the voltage signal has a high frequency, then the inertia

of the motor will carry it smoothly through moments when it

is disconnected from the batteries; the motors operate

efficiently and the tank handles well. If the frequency is too

low, then the motor operates inefficiently. It speeds up when

the batteries are connected, slows down when they are

disconnected, and speeds up again when power is



reapplied. This creates heat and noise, wasting energy and

draining the batteries without doing useful work. Therefore,

we want the voltage signal to have a high frequency.

Unfortunately, a high-frequency signal means less time for

the computer to process data from the radio. If the

frequency is too high, then there is a noticeable delay as the

tank processes commands from the operator. At some point,

the computer will be completely occupied with the motors,

and when this happens, the tank becomes unresponsive.

Somewhere in between is a frequency that is both

acceptable to the driver and efficient enough to give a

satisfactory battery life. There are physical limits on the

range of usable frequencies. It cannot be so high that the

computer is consumed entirely by the task of driving the

motors. It cannot be so low that the tank lurches

uncontrollably or overheats its motors and control circuits.

Within this range, the choice of frequency depends on how

sensitive the driver is to the nuances of the tank’s control.

An acceptable frequency could be selected by

experimenting with the real tank; let a few people drive it

around using different frequencies and see which they like

best. If we use the real tank to do this, then we can get the

opinions of a small number of people about a small number

of frequencies. The tank’s batteries are one constraint on

the number of experiments that can be conducted. They will

run dry after a few trials and need several hours to

recharge. That we have only one tank is another constraint.

Experiments must be conducted one at a time. If, however,

we build a simulation of the tank, then we can give the

simulator to anyone who cares to render an opinion, and

that person can try as many different frequencies as time

and patience permit.

2.2.1 Equations of Motion



The model of the tank’s motion is adapted from Anh Tuan

Le’s PhD dissertation [74]. The model’s parameters are

listed in Table 2.1, and the coordinate system and forces

acting on the tank are illustrated in Figure 2.2. The model

assumes that the tank is driven on a hard, flat surface and

that the tracks do not slip. The position of the tank is given

by its x and y coordinates. The heading θ of the tank is

measured with respect to the x axis of the coordinate

system and the tank moves in this direction with a speed v.

FIGURE 2.2 Coordinate system, variables, and parameters

used in the tank’s equations of motion.

TABLE 2.1 Value of Parameters Used in the Tank’s

Equations of Motion

Parameter Value Description

m
t 0.8 kg Mass of the tank

J
t 5 × 10

−4
 kg · m

2
Angular mass of the tank

B 0.1 m Width of the tank from track to track

B
r 1.0 N · s / m Mechanical resistance of the tracks to rolling forward

B
s 14.0 N · s / m Mechanical resistance of the tracks to sliding forward

B
l 0.7 N · m · s / rad Mechanical resistance of the tracks to turning

S
l 0.3 N · m Lateral friction of the tracks

The left track pushes the tank forward with a force F
l
; the

right track, with a force F
r
; and B

r
 is the mechanical

resistance of the tracks to rolling. The tank uses skid

steering; to turn, the motors must collectively create

enough torque to cause the tracks to slide sideways. This



requires overcoming the sticking force S
l
. When sufficient

torque is created, the vehicle begins to turn. As it turns,

some of the propulsive force is expended to drag the tracks

laterally; this is modeled by an additional resistance B
l
 to its

turning motion and B
s
 to its rolling motion.

The tank’s motion is described by two sets of equations,

one for when the tank is turning and one for when it is not.

The switch from turning to not turning (and vice versa) has

two discrete effects: (1) the angular velocity ω changes

instantaneously to and remains at zero when the tracks

stick and the turn ends, and (2) the rolling resistance of the

tank changes instantaneously when the tank starts and

ends a turn. The Boolean variable turning is used to change

the set of equations. The equations that model the motion

of the tank are

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

When turning changes from false to true, every state

variable evolves from its value immediately prior to starting

the turn, but using the equations designated for turning =

true. When turning changes from true to false, every state


