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Paris VII, Hôpital Beaujon, 100 Boulevard du G�en�eral Leclerc, 92118 Clichy,

France (eric.raymond@bjn.aphp.fr)

Claus Riemer, F. Hoffmann-LaRoche Ltd., Pharmaceuticals Division, Discovery

Chemistry, Building/Room 92/3.10C, CH-4070 Basel, Switzerland (claus.

riemer@roche.com)

Bryan L. Roth, Department of Pharmacology, University of North Carolina and

Department of Psychiatry and Lineberger Cancer Center, School of Medicine,

Division of Medicinal Chemistry, School of Pharmacy, and National Institute of

Mental Health Psychoactive Drug Screening Program, University of North

Carolina, Chapel Hill, NC 27514 (bryan_roth@med.unc.edu)

Marie-Paule Sablin, Service Inter-Hospitalier de Canc�erologie, Laboratoire de Phar-
macobiologie des Anticancereux (RayLab), U 728 Inserm Universit�e Paris VII,
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PREFACE

Polypharmacology, the activity of compounds at multiple targets, has been gaining

increasing attention since the 1990s, and is currently a hot topic in industrial drug

discovery, as well as in academia. The 1990s witnessed the withdrawal of several

drugs due to severe adverse effects, which led to permanent injury or deaths, with

multi-billion-dollar legal damages. Some of these adverse effects have been linked to

unintended interactions with specific off-targets, namely, the serotonin 5HT2B

receptor for fenfluramine; the cardiac hERG channel for astemizole, terfenadine,

and grepafloxacin; and the M2 receptor for rapacuronium. During this time, large

screening panels were established by drug discovery and contract research organiza-

tions, which made it possible to recognize a wide range of off-target activities during

the discovery process. As a consequence, more recent research has focused on

identifying exquisitely selective drugs, with an expectation to avoid adverse drug

reactions (ADRs), to improve compliance, and to gain a competitive advantage over

less selective drugs.

On the other hand, the “one drug–one target” paradigm has been increasingly

challenged in recent years. Not only has it been associated with a productivity decline

throughout the pharmaceutical industry; it has also been increasingly being recog-

nized that the therapy for polygenic diseases benefits more from a polypharmaco-

logical approach, which modulates a network of disease-related targets, rather than

“switching” a single target on or off. For instance, despite a long quest for selective

drugs, all clinically established antipsychotics today are polypharmacological drugs,

with the gold standard clozapine having nanomolar activities at more than 25 targets.

Polypharmacological therapies are often superior in the prevention of drug resistance,

which is amajor issue in the treatment of infections and cancer. In some disease areas,

such as inflammatory diseases, the parallel inhibition of redundant disease-relevant

pathways may be an attractive strategy for pharmacological intervention. In many

instances, the inhibition of several targetsmay have synergistic therapeutic effects and

may thus lead to more efficacious drugs. Additionally, polypharmacological drug

discovery provides an opportunity to diversify research, to obtain drug candidates

with unique pharmacological profiles, and to avoid a heavy focus on single targets that

are often pursued across the whole industry at the same time.

Moreover, the idea that highly selective drugs are inherently safer and better

tolerated than multitargeted drugs has been questioned. Rofecoxib may be a point in

case; this drug, as well as other “coxibs,” was designed to more selective, and thus to

be safer, than older antiinflammatory drugs such as ibuprofen. Rofecoxib was,

however, found to increase the risk for cardiovascular events such as myocardial
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infarction and stroke. These cardiovascular risks are believed to be the result of

rofecoxib’s selectivity for one cyclooxygenase isoform, and have led to the with-

drawal of this multi-billion-dollar drug in 2004. Another example are the selective

serotonin reuptake inhibitiors (SSRIs) and serotonin / norepinephrine reuptake

inhibitiors (SNRIs); although they are considered to be very safe antidepressants,

they have a high incidence of unpleasant side effects, which contribute to a high

discontinuation rate. These side effects, such as disrupted sleep, sexual dysfunction,

and acute nausea and anxiety, are thought to be alleviated by intervention at additional

targets. Consequently, several ongoing research programs aim to combine reuptake

inhibition with, for example, antagonism at certain serotonin receptors for an

improved tolerability. As a more general concept, it has been argued that polyphar-

macological drugs can even have a safety advantage, because themodulation of target

networks, without permanent, full blockade or activation of a single target, may

reduce target-related adverse effects, or may lead to lower efficacious doses.

Thus, there are two sides of the polypharmacology coin: (1) unwanted off-target

activities may lead to adverse drug reactions and need to be avoided, while

(2) polypharmacological drugs with multiple activities across a disease-relevant

target class, such as G-protein-coupled receptors (GPCRs), ion channels, or kinases

represent opportunities for improved therapies, as illustrated by the approvals of

asenapine (2009), dronedarone (2009), and sunitinib (2006), respectively. Both of

these sides will be discussed in this book. For an easy orientation according to the

reader’s background and interests, the book is divided in four parts:

Part A. Unintended activities at “antitargets” are typically discovered late in the

drug discovery process, and have been a reason for late-stage failures, or

at least a major hurdle in late lead optimization. The first part of the book

discusses concepts and tools that help to recognize, interpret, and address such

“antitarget” liabilities early in the drug discovery process, and thus to reduce

costly late-stage attrition. Part A opens with an introduction to the relevance of

polypharmacology for the safety of drugs, illustrated with salient cases of

drugs and drug candidates with off-target-related toxicity. This is followed by

an insightful guide to why, when, and how to screen for off-target activities,

and how to predict and mitigate potential ADRs. The avoidance of promiscu-

ity-related molecular properties as a strategy to reduce the risk for promiscuity

is discussed in the third chapter. Numerous important antitargets will be

introduced in these first three chapters, with a focus on GPCR targets. Two

other classes of frequently encountered antitargets, kinases and cardiac ion

channels, are discussed next in dedicated chapters. Part A concludes with a

chapter on data mining and pharmacological “fingerprint” profiling, which

allows for the prediction of otherwise nonobvious ADRs. All this is supported

by useful reference information, such as lists of off-targets associated with

potential ADRs, frequently hit off-targets, and practical examples of lead

optimization.
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Part B. The productivity of the drug discovery industry as a whole has declined

since the 1990s, with only �20 new chemical entities per year reaching the

market, despite ever-increasing research budgets.Newdiscovery paradigms are

therefore necessary to deviate from established research strategies, and to

address those unmetmedical needs that do not succumb to the ubiquitous “small

molecule–single target protein” approach. Multitargeted, or polypharmacolo-

gical, drug discoverymaypresent opportunitieswhere conventional approaches

have been failing, especially for the treatment of diseases with multiple

pathogenic factors, and diseases where resistance poses an important problem.

Part B highlights four such disease areas: psychiatric diseases, cancer, bacterial

infections, and epilepsy. Although the introductory chapter is dedicated to

psychiatric drugs, the concepts discussed are instructive and generally appli-

cable. In contrast to the antischizophrenia drugs, which were originally

discovered serendipitously without knowledge of their polypharmacological

nature, more recently approved kinase inhibitors for the treatment of cancer

were developed with the knowledge of their polypharmacology, or were even

deliberately designed to be polypharmacological, as outlined in the second

chapter. The third chapter shows that most clinically established antibiotics rely

on the inhibition of several targets, or targets encoded by multiple genes. In

contrast, targets encoded by single genes, such as those obtained from bacterial

genomes, have not led to novel antibacterials, or are associated with rapid

resistance mutations. The fourth chapter shows how antiepilepsy drugs often

enhance or inhibit multiple ligand- or voltage-gated ion channels, and proposes

a strategy for the discovery of novel, multitargeted antiepilesy therapies. The

final chapter of the “opportunity” part of the book is not related to a disease area,

but rather highlights an approach to lead finding that exploits the polypharma-

cology of existing drugs: the selective optimization of side activities (SOSA).

This approach has been historically very successful, but has been neglected in

more recent years in favor of high-throughput screening. The chapter shows

how this concept can be revived and complemented with modern in silico

methods.As Sir JamesBlack states: “Themost fruitful basis for the discovery of

a new drug is to start with an old drug.”

Part C. Most of today’s “multitargeted” drug discovery programs seem to have

originated from the serendipitous discovery of dual, and sometimes multiple,

ligands of often related disease-relevant targets. Apart from such obvious

opportunities, multitargeted drug discovery is often perceived as not very

feasible by industrial researchers, because of the more difficult lead

finding, and the increased complexity of lead optimization. To illustrate how

multitargeted drug discovery can be put into practice, a number of selected

approaches are presented in Part C. The first chapter discusses how starting

points for multitargeted drug discovery programs may be obtained either

by screening or rational framework combination, and how such compounds

can be optimized. This is illustrated with many examples. The in silico

approaches for multitarget screening can be employed to find multitargeted
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drugs or repurposing opportunities for existing drugs. This is discussed in the

second chapter, with a focus on the 2010 NIH Director’s Pioneer Award–

winning CANDOmethod. This chapter provides also a detailed introduction to

in silico screening in general, and will certainly attract the interest of in silico

experts and nonspecialists alike. The third chapter introduces an intriguing

method of high-throughput in vivo screening, in which a large number of

behavioral readouts are automatically recognized, processed, and compared

with a database of behavioral signatures of central nervous system (CNS)-active

drugs. Such methods may constitute a modern version of the physiologically

based screening paradigm that was the mainstay of the golden era of drug

discovery. Many other possibilities are perhaps more obvious and do not

warrant a detailed discussion. For instance, the mining of proprietary high-

throughput screening (HTS) or safety panel data, or commercial or public

pharmacological databases may be a rich source of multitargeted leads as

starting points for discovery projects. Also, the “anticonvulsants” chapter of

Part B proposes a generally applicable screening strategy, where novel multi-

targeted leads are sought tomimic the profile of successful drugs. Finally, Part C

is rounded off with an introduction to multicomponent therapeutics, and shows

how combinations of drugs can be selectively synergistic for therapeutic versus

adverse effects, because the drug targets of the components are expressed

together only in the tissue that is responsible for the therapeutic effect.

Part D. The last part is a collection of various instructive case studies. Most of the

chapters in this part are dedicated to the discovery of polypharmacological or

specifically multitargeted drugs, ranging from the highly promiscuous antican-

cer drug sunitinib and antipsychotics over broad-spectrum antidepressants to

the dual-acting drug candidate licofelone for inflammatory diseases. The

achievement of (reasonable) selectivity in the kinase field, and activity across

mutant targets, is discussed in the imatinib case study. An untypical type of dual

activity is displayed by the experimental drug PA1103, which is able to inhibit

the polymerization of heme, aswell as to alkylate heme, both validated concepts

for the treatment of malaria. The penultimate chapter discusses multitargeted

approaches to the treatment of Alzheimer’s disease, and specific clinical and

preclinical compounds. A final chapter is dedicated to the (off-target) activities

of established drugs at carbonic anhydrases; this chapter illustrates the potential

of target discovery, drug repurposing and the discovery of new drugs based on

the polypharmacology of existing pharmaceuticals. Throughout Part D, many

authors express their personal views on the future of polypharmacological drug

discovery. These views, ranging from slight skepticism to enthusiasm, may

provide the reader with a balanced and realistic impression of the promises and

challenges of polypharmacological drug discovery.

This book is intended as a practical guide for drug hunters to successfully navigate

around the dangers of promiscuous ligands and targets, as well as a source of

inspiration for new polypharmacological drug discovery projects. However, this
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collection of reviews, opinions, and case studies is by no means an exhaustive

treatment of all possible facets of polypharmacology. For instance, drug–drug

interactions are not treated; although formally a polypharmacology issue, this is

usually regarded as DMPK-related, and several excellent books cover this important

topic. Similarly, pleiotropic effects through interaction with single targets, the

achievement of selectivity across related targets or within target classes, or the

contribution of active metabolites to the pharmacological spectra of drugs may

be regarded as “polypharmacology topics,” butwere considered to be beyond scope of

this text.

I am very grateful to the contributing authors, who invested their time and expertise

in this book. Also, I would like to thank Jonathan Rose at Wiley for proposing this

book, and for his continuous advice and support throughout this project.

Note: Color versions of select figures are available at ftp://ftp.wiley.com/

public/sci_tech_med/polypharmacology.

JENS-UWE PETERS

Basel, Switzerland

November 2011
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INTRODUCTION

The Case for Polypharmacology

ANDREW L. HOPKINS

Should a drug be selective or promiscuous? The conventional goal of medicinal

chemistry is to explore the structure–activity landscape to optimize the selectivity of a

compound for a chosen drug target, over all others. Increasing the selectivity of a drug

for one target over all others can lead to a reduction in safety liabilities. Designing

drugs toward single-target profiles has been the dominant philosophy in drug

design since the concept of chemoreceptorsmerged with molecular biology. Indeed,

understanding the so-called off-target activities of a drug by prediction and experi-

ment, and minimizing these is an important aspect of exploiting knowledge of a

drug’s promiscuity. More recent analysis of the physicochemical properties of failed

and successful drug candidates have highlighted the relationships between target

promiscuity, toxicity, and lipophilicity [1,2]. Indeed, promiscuous drugs are often

labeled “dirty” drugs [3]. However, since the 2000s the assumption of the desirability

of single drug target mechanisms has began to be questioned [4–6]. In certain

circumstances, it may be advantageous for a drug to act on multiple drug targets,

deliberately and specifically rather than be too selective.

This book explores themanydifferent aspects of the concept of polypharmacology.

Polypharmacology can be defined as themodulation of several drug targets to achieve

a desired therapeutic effect. Polypharmacology stands in contrast to the dominant

paradigm in current drug discovery of selectively targeting a single type of drug target.

Recently there has been a growing interest in the concept of polypharmacology.

Before proceeding to summarize the arguments for the importance of perturbing

multiple drug targets, let’s consider the concept of a drug target more generally. The

concept of a drug target is as fundamental to modern pharmacology as the concept of

the gene is to molecular biology. The transformation of the concept of the gene from

units of phenotypic inheritance to individual protein-coding units coincides with

the emergence of the concept of specific chemoreceptors as the targets for drugs. The

concept of the gene transformed from the Mendalian unit of phenotypic inheritance

[7] to units of protein coding, culminating in the Beadle–Tatum formation of

Polypharmacology in Drug Discovery, First Edition. Edited by Jens-Uwe Peters.
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the “one gene, one enzyme” model of 1941 [8], later modified to “one gene, one

polypeptide,”with each gene responsible for producing a singe protein [9]. In parallel,

the of the chemoreceptor concept was proposed by both Clark and Ehlrich in the first

decade of the twentieth century [10], yet the theory of receptor-mediated drug

interactions did not gain wide acceptance until Ahlquist demonstrated the differential

action of adrenaline on two distinct receptor populations, in 1948.

However, the concept of “one gene, one protein” was extended to “one gene, one

protein, one disease” and become amajor intellectual assumption behind target-based

drug discovery [11]. This in part is linked to the discovery of the role of individual

genes inMendalian inherited disorders, such as Linus Pauling’s 1949 discovery of the

single-protein cause of sickle cell anemia [12]. The extended concept of “one gene,

one protein, one disease” became a powerful assumption for molecular target-driven

drug discovery and development [11,13]. However the recognition that complex traits

are not the result of one gene but of several interacting genes has been long been

recognized, as far back as Bridge’s work on sex in Drosophila melanogaster in the

early 1920s. Furthermore, as the concept of complex traits beyond single-gene

phenotypes goes back to the foundation of molecular biology, so to, can the roots

of polypharmacology be argued to extend back to Ehrlich’s extension of the concept

of chemoreceptors to include “polyceptors, with multiple binding sites” [10].

Large-scale functional genomics studies, in a variety of model organisms, have

revealed that under laboratory conditions the vast majority of single-gene knockouts

by themselves exhibit little or no effect on phenotype, with approximately 19% of

genes being essential across a number of model organisms [14–16]. In addition to the

19% lethality rate, systematic genomewide homozygous gene deletion experiments in

yeast reveal only 15%of knockouts resulting in a fitness defect, under ideal conditions

[17]. A project intended to delete each of the druggable genes [18] in the mouse

genome and profile each knockout across a battery of phenotypic assays has revealed

that a proportion as low as 10% of knockouts demonstrate phenotypes that may be of

value for drug target validation [14,19–21]. Phenotype robustness can be understood

in terms of redundant functions and alternative compensatory signaling routes that

enable individual nodes to be bypassed [22].

The robustness of individual gene perturbation is also revealed by metabolic flux

analysis, where modulation of single components in a pathway rarely results in large

changes in metabolic flux and therefore phenotype [13,23,24]. Greater phenotype

perturbation is observed in systems where two or more gene products are modulated.

The emergent phenotype that occurs from the perturbation of multiple nodes is

demonstrated by the systematic experiments on synthetic behaviors: synthetic

lethality, synthetic sickness, and synthetic rescue. Systematic experiments with dual

knockouts in model systems have shown that, while the deletion of two genes in

isolation may show no effect, the simultaneous deletion of two genes can lead to

“synthetic lethality” or “synthetic sickness” [25]. When dual knockouts are intro-

duced, by genetic or chemical perturbations, the number of essential genes in yeast is

predicted to significantly expand the 19% of genes for which singleton gene knock-

outs are lethal. A large-scale study by Hillenmeyer et al. demonstrates the extent of

synthetic lethality when gene deletions are augmented by chemical intervention [26].
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Under ideal conditions only 34% of single-gene deletion results in lethality or

sickness.When thewhole-genome panel of yeast single-gene knockoutswas screened

against a diverse, small-molecule library and assayed against a wide range of

environment conditions, an additional 63% of gene knockouts showed a growth

phenotype [26]. Thus 97%of genes demonstrate a fitness defeatwhen challengedwith

a small molecule under at least environment conditions. The vast majority of genes

may be redundant under any one environment, but there appears to be little

redundancy across a spectrum of conditions when a genetic perturbation is combined

with a chemical insult. Genes that may appear dormant and dispensable under one

specific set of conditions may prove essential under other stresses [27,28].

Insight into the experimental results describing phenotype robustness to pertur-

bation can be found from understanding the role of biological networks. The

architecture of networks in the robustness, degeneracy and redundancy of biological

systems is fueling a challenge to the dominant assumption of single-target drug

discovery [5,29–32]. Network analysis of biological pathways and interactions has

revealed that much of the robustness of biological systems can derive from the

structure of the network [33,34]. The scale-free nature of many biological networks

results in a system that is resilient against randomdeletion of any one node but is also

critically dependent on a few highly connected hubs. Network biology analysis

predicts that if, in most cases, deletion of individual nodes may have little effect on

disease networks, modulating multiple proteins may be required to perturb robust

phenotypes [5,33,35].

The inherent robustness of interaction networks, as an underlaying property, has

profound implications for drug discovery; instead of searching for the “disease-

causing gene,” network biology suggests that the strategy should be to perturb the

disease network [36,37]. Hellerstein has argued the true targets of drugs are not

individal proteins but functionally important biochemical pathways embedded in

larger biological networks [11].

These intellectual foundations challenge long-held asumptions behind single-

target selection. In response to these new biological insights into the complexity,

robustness, and redundancy in disease phenotype, a new approach to drug discovery,

namely, polypharmacology, is emerging [3,5,6,29,30,35,38–45]. Therefore, under-

standing the polypharmaoclogy of a drug and its effect on biological networks and

phenotype is essential if wewish to improve efficiacy but also understand toxicity [3].
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