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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even in spe-
cialized subfields. Any attempt to do more and be broadly educated with respect to
a large domain of science has the appearance of tilting at windmills. Yet the syn-
thesis of ideas drawn from different subjects into new, powerful, general concepts
is as valuable as ever, and the desire to remain educated persists in all scientists.
This series, Advances in Chemical Physics, is devoted to helping the reader obtain
general information about a wide variety of topics in chemical physics, a field
that we interpret very broadly. Our intent is to have experts present comprehen-
sive analyses of subjects of interest and to encourage the expression of individual
points of view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning text
for beginners in a field.

Stuart A. Rice
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PREFACE

The simple descriptions of molecular dynamics that we envision for small
molecules, and apply to other areas of chemical physics, such as chemical kinetics,
are often incomplete or even inappropriate when carried over to large, complex
molecules, such as those encountered in biology or nanoscale materials. New tools
are needed to sort through the dynamics on the energy landscape that underlie the
functional motion of biological molecules and energy transport within them. The
aim of this volume is to present some of the theoretical and computational meth-
ods that have been developed recently to address this challenge. The following
chapters provide a summary of topics presented by the authors at several recent
workshops in Japan and the United States.

The first two chapters address dynamics and energy flow in biological
molecules. Chapter 1 focuses on fast motions and energy transfer in biomolecules,
mainly proteins, on the pico- to nanosecond timescale. Besides providing a gen-
eral introduction to the field, this chapter presents a review of a non-Markovian
theory for calculating vibrational energy transfer rates and provides a number of
examples. Chapter 2 addresses functional motions of proteins, which can span a
wide range of timescales, from nanoseconds to seconds. This chapter provides a
review of general concepts and recent computational tools that have been put forth
to elucidate functional motions.

Chapter 3 addresses dynamics and energy flow within basins on the energy
landscape. While developing kinetic models for transitions between such basins
is relatively simple if the dynamics within a basin is ergodic, the situation is
much more complex when the assumptions of ergodicity break down. This chapter
summarizes our understanding of the nature of nonergodic dynamics and the cor-
responding mixed phase space from a classical perspective, and reviews a quantum
mechanical theory for corresponding systems with a mixed vibrational state space.
The latter is also used to correct Rice–Ramsperger–Kassel–Marcus (RRKM) the-
ory predictions of the unimolecular reaction rate when dynamics of the reactant
is nonergodic. Continuing along these lines, Chapter 4 presents a review of recent
work on non-RRKM kinetics from a classical phase space geometrical perspective.
Finally, ergodicity in biological systems is further explored in Chapter 5, where
local measures of ergodic and chaotic behavior are related to the topography of
the energy landscape.

xi



xii preface

The chapters of this volume summarize important areas in our current under-
standing of dynamics and configurational changes of biological molecules and
other many-dimensional systems. We hope that the material presented here will
contribute further to the rapid development in the theory of these complex pro-
cesses.

Tamiki Komatsuzaki
R. Stephen Berry
David M. Leitner

Guest Editors
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I. INTRODUCTION

Energy transfer (relaxation) phenomena are ubiquitous in nature. At a macroscopic
level, the phenomenological theory of heat (Fourier law) successfully describes
heat transfer and energy flow. However, its microscopic origin is still under debate.
This is because the phenomena can contain many-body, multiscale, nonequilib-
rium, and even quantum mechanical aspects, which present significant challenges
to theories addressing energy transfer phenomena in physics, chemistry, and bi-
ology [1]. For example, heat generation and transfer in nanodevices is a critical
problem in the design of nanotechnology. In molecular physics, it is well known
that vibrational energy relaxation (VER) is an essential aspect of any quantitative
description of chemical reactions [2]. In the celebrated RRKM theory of an ab-
solute reaction rate for isolated molecules, it is assumed that the intramolecular
vibrational energy relaxation (IVR) is much faster than the reaction itself. Under
certain statistical assumptions, the reaction rate can be derived [3]. For chemical
reactions in solutions, the transition state theory and its extension such as Kramer’s
theory and the Grote–Hynes theory have been developed [4, 5] and applied to a
variety of chemical systems including biomolecular systems [6]. However, one
cannot always assume separation of timescales. It has been shown that a confor-
mational transition (or reaction) rate can be modulated by the IVR rate [7]. As this
brief survey demonstrates, a detailed understanding of IVR or VER is essential to
study the chemical reaction and conformation change of molecules.

A relatively well-understood class of VER is a single vibrational mode em-
bedded in (vibrational) bath modes. If the coupling between the system and the
bath modes is weak (or assumed to be weak), a Fermi’s-golden-rule style formula
derived using second-order perturbation theory [8–10] may be used to estimate
the VER rate. However, the application of such theories to real molecular systems
poses several (technical) challenges, including how to choose force fields, how to
separate quantum and classical degrees of freedom, or how to treat the separation
of timescales between system and bath modes. Multiple solutions have been pro-
posed to meet those challenges leading to a variety of theoretical approaches to the
treatment of VER [11–16]. These works using Fermi’s golden rule are based on
quantum mechanics and are suitable for the description of high-frequency modes
(more than thermal energy �200 cm−1), on which nonlinear spectroscopy has
recently focused [17–20].

In this chapter, we summarize our recent work on VER of high-frequency modes
in biomolecular systems. In our previous work, we have concentrated on the VER
rate and mechanisms for proteins [21]. Here we shall focus on the time course
of the VER dynamics. We extend our previous Markovian theory of VER to a
non-Markovian theory applicable to a broader range of chemical systems [22, 23].
Recent time-resolved spectroscopy can detect the time course of VER dynamics
(with femtosecond resolution), which may not be accurately described by a single
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timescale. We derive new formulas for VER dynamics and apply them to several
interesting cases, where comparison to experimental data is available.

This chapter is organized as follows: In Section II, we briefly summarize the
normal mode concepts in protein dynamics simulations, on which we build our
non-Markovian VER theory. In Section III, we derive VER formulas under sev-
eral assumptions and discuss the limitations of our formulas. In Section IV, we
apply the VER formulas to several situations: the amide I modes in isolated and
solvated N-methylacetamide and cytochrome c, and two in-plane modes (ν4 and
ν7 modes) in a porphyrin ligated to imidazole. We employ a number of approxi-
mations in describing the potential energy surface (PES) on which the dynamics
takes place, including the empirical CHARMM [24] force-field and density func-
tional calculations [25] for the small parts of the system (N-methylacetamide and
porphyrin). We compare our theoretical results with experiment when available,
and find good agreement. We can deduce the VER mechanism based on our theory
for each case. In Section V, we summarize and discuss the further aspects of VER
in biomolecules and in nanotechnology (molecular devices).

II. NORMAL MODE CONCEPTS APPLIED TO PROTEIN DYNAMICS

Normal mode provides a powerful tool in exploring molecular vibrational dynam-
ics [26] and may be applied to biomolecules as well [27]. The first normal mode
calculations for a protein were performed for BPTI protein [28]. Most biomolecular
simulation softwares support the calculation of normal modes [24, 29, 30]. How-
ever, the calculation of a mass-weighted Hessian Kij , which requires the second
derivatives of the potential energy surface, with elements defined as

Kij = 1√
mimj

∂2V

∂xi∂xj

(1)

can be computationally demanding. Here mi is the mass, xi is the coordinate,
and V is the potential energy of the system. Efficient methods have been devised
including torsional angle normal mode [31], block normal mode [32], and the
iterative mixed-basis diagonalization (DIMB) methods [33], among others. An
alternative direction for efficient calculation of a Hessian is to use coarse-grained
models such as elastic [34] or Gaussian network [35] models. From normal mode
analysis (or instantaneous normal mode analysis [36]), the frequencies, the density
of states, and the normal mode vectors can be calculated. In particular, the last
quantity is important because it is known that the lowest eigenvectors may describe
the functionally important motions such as large-scale conformational change, a
subject that is the focus of another chapter of this volume [37].

There is no doubt as to the usefulness of normal mode concepts. However, for
molecular systems, it is always an approximate model as higher order nonlinear
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coupling and intrinsic anharmonicity become essential. To describe energy transfer
(or relaxation) phenomena in a protein, Moritsugu, Miyashita, and Kidera (MMK)
introduced a reduced model using normal modes with third- and fourth-order
anharmonicity [38], C

(3)
klm and C

(4)
klmn, respectively,

V ({qk}) =
∑

k

ω2
k

2
q2
k + 1

3!

∑
klm

C
(3)
klmqkqlqm + 1

4!

∑
klmn

C
(4)
klmnqkqlqmqn (2)

with

C
(3)
klm ≡ ∂3V

∂qk∂ql∂qm

(3)

C
(4)
klmn ≡ ∂4V

∂qk∂ql∂qm∂qn

(4)

where qk denotes the normal mode calculated by the Hessian Kij and ωk is the
normal mode frequency. Classical (and harmonic) Fermi resonance [39] is a key
ingredient in the MMK theory of energy transfer derived from observations of
all-atom simulations of myoglobin at zero temperature (see Fig. 1).

At finite temperature, nonresonant effects become important and clear inter-
pretation of the numerical results becomes difficult within the classical approx-
imation. Nagaoka and coworkers [40] identified essential vibrational modes in
vacuum simulations of myoglobin and connected these modes to the mechanism
of “heme cooling” explored experimentally by Mizutani and Kitagawa [18]. Con-
temporaneously, nonequilibrium MD simulations of solvated myoglobin carried
out by Sagnella and Straub provided the first detailed and accurate simulation of
heme cooling dynamics [41]. That work supported the conjecture that the motion

Figure 1. (a) The excited eigenvector depicted by arrows in myoglobin. (b) Classical simulation
of mode-specific energy transfer in myoglobin at zero temperature. (Reproduced with permission from
Ref. 38. Copyright 2009 by the American Physical Society.)
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Figure 2. Nonequilibrium MD simulation of energy flow from the excited amide I mode in N-
methylacetamide in heavy water. See also Fig. 3. (Reproduced with permission from Ref. 42. Copyright
2009 by the American Institute of Physics.)

similar to those modes identified by Nagaoka plays an important role in energy
flow pathways.

Nguyen and Stock explored the vibrational dynamics of the small molecule,
N-methylacetamide (NMA) often used as a model of the peptide backbone [42].
Using nonequilibrium MD simulations of NMA in heavy water, VER was observed
to occur on a picosecond timescale for the amide I vibrational mode (see Fig. 2).
They used the instantaneous normal mode concept [36] to interpret their result
and noted the essential role of anharmonic coupling. Leitner also used the normal
mode concept to describe energy diffusion in a protein and found an interesting
link between the anomalous heat diffusion and the geometrical properties of a
protein [43].

In terms of vibrational spectroscopy, Gerber and coworkers calculated the an-
harmonic frequencies in BPTI, within the VSCF level of theory [44], using the
reduced model [Eq. (2)]. Yagi, et al. refined this type of anharmonic frequency cal-
culation for large molecular systems with more efficient methods [45], appropriate
for applications to biomolecules such as DNA base pair [46]. Based on the reduced
model [Eq. (2)] with higher order nonlinear coupling, Leitner also studied quan-
tum mechanical aspects of VER in proteins, by employing the Maradudin–Fein
theory based on Fermi’s golden rule [12]. Using the same model, Fujisaki, Zhang,
and Straub focused on more detailed aspects of VER in biomolecular systems and
calculated the VER rate, mechanisms, or pathways, using their non-Markovian
perturbative formulas (described in Section III).
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As this brief survey demonstrates, the normal mode concept is a powerful
tool that provides significant insight into mode-specific vibrational dynamics and
energy transfer in proteins, when anharmonicity of the potential energy surface is
taken into account.

III. DERIVATION OF NON-MARKOVIAN VER FORMULAS

We have derived a VER formula for the simplest situation, a one-dimensional relax-
ing oscillator coupled to a “static” bath [22]. Here we extend this treatment to two
more general directions: (a) multidimensional relaxing modes coupled to a “static”
bath and (b) a one-dimensional relaxing mode coupled to a “fluctuating” bath [47].

A. Multidimensional Relaxing Mode Coupled to a Static Bath

We take the following time-independent Hamiltonian:

H = H0
S + HB + V 0 (5)

= H0
S + 〈V〉B + HB + V 0 − 〈V〉B (6)

= HS + HB + V (7)

where

HS ≡ H0
S + 〈V〉B (8)

V ≡ V0 − 〈V〉B (9)

In previous work [22], we have considered only a single one-dimensional oscillator
as the system. Here we extend that treatment to the case of an NS-dimensional
oscillator system. That is,

HS =
NS∑
i=1

(
p2

i

2
+ ω2

i

2
q2
i

)
+ V ({qi}) (10)

HB =
NB∑
α=1

(
p2

α

2
+ ω2

α

2
q2
α

)
(11)

V = −
NS∑
i=1

qiδFi({qα}) (12)

where V ({qi}) is the interaction potential function between NS system modes that
can be described by, for example, the reduced model, Eq. (2). The simplest case
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V ({qi}) = 0 is trivial as each system mode may be treated separately within the
perturbation approximation for V.

We assume that |k〉 is a certain state in the Hilbert space spanned by HS . Then
the reduced density matrix is

(ρS)mn(t) = 〈m|e−iHS t/�TrB{ρ̃(t)}eiHS t/�|n〉 (13)

where the tilde denotes the interaction picture. Substituting the time-dependent
perturbation expansion

ρ̃(t) = ρ(0) + 1

i�

∫ t

0
dt′[Ṽ(t′), ρ(0)]

+ 1

(i�)2

∫ t

0
dt′

∫ t′

0
dt′′[Ṽ(t′), [Ṽ(t′′), ρ(0)]] + · · · (14)

into the above, we find

(ρS)mn(t) � (ρS)(0)
mn(t) + (ρS)(1)

mn(t) + (ρS)(2)
mn(t) + · · · (15)

where

(ρS)(0)
mn(t) = 〈m|e−iHS t/�ρS(0)eiHS t/�|n〉,

= 〈m(−t)|ρS(0)|n(−t)〉 = 〈m|ρS(t)|n〉 (16)

(ρS)(2)
mn(t) = 1

(i�)2

∫ t

0
dt′

∫ t′

0
dt′′〈m|e−iHS t/�TrB{[Ṽ(t′), [Ṽ(t′′), ρ(0)]]}eiHS t/�|n〉

= 1

(i�)2

∫ t

0
dt′

∫ t′

0
dt′′

∑
i,j

〈m(−t)|[qi(t
′)qj(t

′′)ρS(0)

− qj(t
′′)ρS(0)qi(t

′)]|n(−t)〉〈δFi(t
′)δFj(t

′′)〉B

+ 1

(i�)2

∫ t

0
dt′

∫ t′

0
dt′′

∑
i,j

〈m(−t)|[ρS(0)qj(t
′′)qi(t

′)

− qi(t
′)ρS(0)qj(t

′′)]|n(−t)〉〈δFj(t
′′)δFi(t

′)〉B (17)

Here we have defined |m(t)〉 = e−iHS t/�|m〉 and taken (ρS)(1)
mn(t) = 0. Recognizing

that we must evaluate expressions of the form

Rmn;ij(t; t
′, t′′) = 〈m(−t)|[qi(t

′)qj(t
′′)ρS(0)|n(−t)〉,

−〈m(−t)|qj(t
′′)ρS(0)qi(t

′)]|n(−t)〉 (18)

Cij(t
′, t′′) = 〈δFi(t

′)δFj(t
′′)〉B (19)
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and their complex conjugates, R∗
nm;ij(t; t

′, t′′), C∗
ij(t

′, t′′), the second-order contri-
bution can be written as

(ρS)(2)
mn(t) = 1

(i�)2

∫ t

0
dt′

∫ t′

0
dt′′

∑
i,j

[Rmn;ij(t; t
′, t′′)Cij(t

′, t′′)

+R∗
nm;ij(t; t

′, t′′)C∗
ij(t

′, t′′)] (20)

We can separately treat the two terms. Assuming that we can solveHS |a〉 = Ea|a〉,
we find

Rmn;ij(t; t
′, t′′) =

∑
abcd

〈m|a〉(qi)ab(qj)bc(ρS)cd〈d|n〉

×e−i(Ea−Ed )t−i(Eb−Ea)t′−i(Ec−Eb)t′′

−
∑
abcd

〈m|a〉(qj)ab(ρS)bc(qi)cd〈d|n〉

×e−i(Ea−Ed )t−i(Ed−Ec)t′−i(Eb−Ea)t′′ (21)

For the bath-averaged term, we assume the following force due to third-order
nonlinear coupling of system mode i to the normal modes, α and β, of the bath [21]:

δFi({qα}) =
∑
α,β

Ciαβ(qαqβ − 〈qαqβ〉) (22)

and we have [21]

Cij(t
′, t′′) = R−−

ij (t′, t′′) + R++
ij (t′, t′′) + R+−

ij (t′, t′′) (23)

with

R−−
ij (t′, t′′) = �

2

2

∑
α,β

Dαβ;ij(1 + nα)(1 + nβ)e−i(ωα+ωβ)(t′−t′′) (24)

R++
ij (t′, t′′) = �

2

2

∑
α,β

Dαβ;ijnαnβei(ωα+ωβ)(t′−t′′) (25)

R+−
ij (t′, t′′) = �2

∑
α,β

Dαβ;ij(1 + nα)nβe−i(ωα−ωβ)(t′−t′′) (26)

where

Dαβ;ij = CiαβCjαβ

ωαωβ

(27)

and nα is the thermal population of the bath mode α.
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This formula reduces to our previous result for a one-dimensional system os-
cillator [22] when NS = 1 and all indices (i, j) are suppressed. Importantly, this
formula can be applied to situations where it is difficult to define a “good” nor-
mal mode to serve as a one-dimensional relaxing mode, as in the case of the
CH stretching modes of a methyl group [21]. However, expanding to an NS-
dimensional system adds the burden of solving the multidimensional Schrödinger
equation HS |a〉 = Ea|a〉. To address this challenge, we may employ vibrational
self-consistent field (VSCF) theory and its extensions developed by Bowman and
coworkers [48] implemented in MULTIMODE program of Carter and Bowman
[49] or in the SINDO program of Yagi and coworkers [50]. As in the case of our
previous theory of a one-dimensional system mode, we must calculate NS-tiple
third-order coupling constants Ciαβ(i = 1, 2, ..., NS) for all bath modes α and β.

B. One-Dimensional Relaxing Mode Coupled to a Fluctuating Bath

We start from the following time-dependent Hamiltonian:

H(t) = H0
S(t) + HB(t) + V0(t) (28)

= H0
S(t) + 〈V(t)〉B + HB(t) + V0(t) − 〈V(t)〉B (29)

= HS(t) + HB(t) + V(t) (30)

where

HS(t) ≡ H0
S(t) + 〈V(t)〉B (31)

V(t) ≡ V0(t) − 〈V(t)〉B (32)

with the goal of solving the time-dependent Schrödinger equation

i�
∂|	(t)〉

∂t
= [HS(t) + HB(t) + V(t)]|	(t)〉 = [H0(t) + V(t)]|	(t)〉 (33)

By introducing a unitary operator U0(t) = US(t)UB(t)

i�
d

dt
U0(t) = H0(t)U0(t) (34)

i�
d

dt
US(t) = HS(t)US(t) (35)

i�
d

dt
UB(t) = HB(t)UB(t) (36)

we can derive an “interaction picture” von Neumann equation

i�
d

dt
ρ̃(t) = [Ṽ(t), ρ̃(t)] (37)
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where

Ṽ(t) = U
†
0(t)V(t)U0(t) (38)

ρ̃(t) = U
†
0(t)ρ(t)U0(t) (39)

We assume the simple form of a harmonic system and bath, but allow fluctuations
in the system and bath modes modeled by time-dependent frequencies

HS(t) = �ωS(t)(a†SaS + 1/2) (40)

HB(t) =
∑
α

�ωα(t)(a†αaα + 1/2) (41)

The unitary operators generated by these Hamiltonians are

US(t) = e
−i

∫ t

0
dτωS (τ)(a†

S
aS+1/2) (42)

UB(t) = e
−i

∫ t

0
dτ

∑
α

ωα(τ)(a†αaα+1/2) (43)

and the time evolution of the annihilation operators is given by

U
†
S(t)aSUS(t) = aSe

−i
∫ t

0
dτωS (τ) (44)

U
†
B(t)aαUB(t) = aαe

−i
∫ t

0
dτωα(τ) (45)

To simplify the evaluation of the force autocorrelation function, we assume that
the temperature is low or the system mode frequency is high as a justification
for the approximation. Substituting the above result into the force autocorrelation
function calculated by the force operator, Eq. (22), we find

〈δF(t′)δF(t′′)〉 � �
2

2

∑
α,β

CSαβ(t′)CSαβ(t′′)√
ωα(t′)ωβ(t′)ωα(t′′)ωβ(t′′)

×e−i[�αβ(t′)−�αβ(t′′)] (46)

where

�S(t) =
∫ t

0
dτωS(τ) (47)

�αβ(t) =
∫ t

0
dτ[ωα(τ) + ωβ(τ)] (48)
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Substituting this approximation into the perturbation expansion Eqs. (15), (16),
(17), we obtain our final result:

(ρS)00(t) � �
2

∑
α,β

∫ t

0
dt′

∫ t′

0
dt′′

CSαβ(t′)CSαβ(t′′)√
ωS(t′)ωα(t′)ωβ(t′)ωS(t′′)ωα(t′′)ωβ(t′′)

× cos
{
�S(t′) − �αβ(t′) − �S(t′′) + �αβ(t′′)

}
(49)

which provides a dynamic correction to the previous formula [22]. The time-
dependent parameters ωS(t), ωα(t), and CSαβ(t) may be computed from a run-
ning trajectory using instantaneous normal mode analysis [36]. This result was
first derived by Fujisaki and Stock [47], and applied to the VER dynamics of N-
methylacetamide as described below. This correction eliminates the assumption
that the bath frequencies are static on the VER timescale.

For the case of a static bath, the frequency and coupling parameters are time-
independent and this formula reduces to the previous one-dimensional formula
(when the off-resonant terms are neglected) [22]:

(ρS)00(t) � �

2ωS

∑
α,β

C2
Sαβ

ωαωβ

1 − cos[(ωS − ωα − ωβ)t]

(ωS − ωα − ωβ)2
(50)

Note that Bakker derived a similar fluctuating Landau–Teller formula in a dif-
ferent manner [51]. It was successfully applied to molecular systems by Sibert and
coworkers [52]. However, the above formula differs from Bakker’s as (a) we use
the instantaneous normal mode analysis to parameterize our expression and (b)
we do not take the Markov limit. Our formula can describe both the time course
of the density matrix and the VER rate.

Another point is that we use the cumulant-type approximation to calculate the
dynamics. When we calculate an excited state probability, we use

(ρS)11(t) = 1 − (ρS)00(t) � exp{−(ρS)00(t)} (51)

Of course, this is valid for the initial process ((ρS)00(t) 	 1), but, at longer
timescales, we take (ρS)11(t) � exp{−(ρS)00(t)} because the naive formula
(ρS)11(t) = 1 − (ρS)00(t) can be negative, which is unphysical [47].

C. Limitations of the VER Formulas and Comments

There are several limitations to the VER formulas derived above. The most obvious
is that they are second-order perturbative formulas and rely on a short-time approx-
imation. As far as we know, however, there exists no nonperturbative quantum me-
chanical treatment of VER applicable to large molecular systems. It is prohibitive to
treat the full molecular dynamics quantum mechanically [53] for large molecules.
Moreover, while there exist several mixed quantum classical methods [11]
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that may be applied to the study of VER, there is no guarantee that such ap-
proximate methods work better than the perturbative treatment [54].

Another important limitation is the adaptation of a normal mode basis set, a
natural choice for molecular vibrations. Because of the normal mode analysis, the
computation can be burdensome. When we employ instantaneous normal mode
analysis [36], there is a concern about the imaginary frequency modes. For the study
of high-frequency modes, this may not be significant. However, for the study of
low-frequency modes, the divergence of quantum (or classical) dynamics due to
the presence of such imaginary frequency modes is a significant concern. For the
study of low-frequency modes, it is more satisfactory to use other methods that
do not rely on normal mode analysis such as semiclassical methods [55] or path
integral methods [56].

We often use “empirical” force fields, with which quantum dynamics is calcu-
lated. However, it is well known that the force fields underestimate anharmonicity
of molecular vibrations [57]. It is often desirable to use ab initio potential energy
surfaces. However, such a rigorous approach is much more demanding. Lower
levels of theory can fail to match the accuracy of some empirical potentials. As a
compromise, approximate potentials of intermediate accuracy, such as QM/MM
potentials [58], may be appropriate. We discuss this issue further in Sections IV.A
and IV.C.

IV. APPLICATIONS OF THE VER FORMULAS TO VIBRATIONAL
MODES IN BIOMOLECULES

We report our quantum dynamics studies of high-frequency modes in biomolecular
systems using a variety of VER formulas described in Section III. The application
of a variety of theoretical approaches to VER processes will allow for a rela-
tive comparison of theories and the absolute assessment of theoretical predictions
compared with experimental observations. In doing so, we address a number of
fundamental questions. What are the limitations of the static bath approximation
for fast VER in biomolecular systems? Can the relaxation dynamics of a relaxing
amide I vibration in a protein be accurately modeled as a one-dimensional system
mode coupled to a harmonic bath? Can the “fluctuating bath” model accurately
capture the system dynamics when the static picture of normal modes is not “good”
on the timescale of the VER process? In Sections IV.A and IV.B, our main focus
is the VER of excited amide I modes in peptides or proteins. In Section IV.C, we
study some vibrational modes in porphyrin ligated to imidazole, which is a mimic
of a heme molecule in heme proteins including myoglobin and hemoglobin.

A. N-Methylacetamide (NMA)

NMA is a well-studied small molecule (CH3–CO–NH–CH3) that serves as a con-
venient model of a peptide bond structure (–CO–NH–) in theory and experiment.
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As in other amino acids, there is an amide I mode, localized on the CO bond stretch,
which is a useful “reporter” of peptide structure and dynamics when probed by
infrared spectroscopy. Many theoretical and experimental studies on amide I and
other vibrational modes (amide II and amide III) have characterized how the mode
frequencies depend on the local secondary structure of peptides or proteins [59,
60]. For the accurate description of frequencies and polarizability of these modes,
see Refs. 15, 16 and 61–65. The main focus of these works is the frequency
sensitivity of amide modes on the molecular configuration and environment. In
this case, the amide mode frequencies are treated in a quantum mechanical way,
but the configuration is treated classically. With a focus on interpreting mode
frequency shifts due to configuration and environment, mode coupling between
amide modes and other modes is often neglected. As we are mainly interested in
VER or IVR dynamics of these modes, an accurate treatment of the mode coupling
is essential.

Recent theoretical development of IVR dynamics in small molecules is sum-
marized in Ref. 53. Leitner and Wolynes [7] utilized the concept of local ran-
dom matrix to clarify the quantum aspects of such dynamics. The usefulness and
applications of their approach are summarized both in Ref. 12 and in this vol-
ume [13]. However, these studies are focused on isolated molecules, whereas our
main interest is in exploring quantum dynamics in a condensed phase. We take
a step-by-step hierarchical approach. Starting from the isolated NMA molecule,
we add several water molecules to form NMA–water clusters, and finally treat
the condensed phase NMA–water system (see Fig. 3). With increasing com-
plexity of our model, the accuracy of our theory, including the quality of the
potential energy surface, and the accuracy of the quantum dynamics must di-
minish. As such, the principal focus of our account is a careful examination
and validation of our procedures through comparison with accurate methods or
experiments.

Figure 3. Representation of three models employed for the study of VER dynamics in N-
methylacetamide. (a) NMA, (b) NMA with three solvating water, and (c) NMA with first solvation
shell derived from simulations in bulk water. ((a and b) Reproduced with permission from Ref. 72.
Copyright 2009 by the American Chemical Society. (c) Reproduced with permission from Ref. 47.
Copyright 2009 by the American Institute of Physics.)


