


Table of Contents

Cover

Title Page

Copyright

Dedication

About the Authors

Credits

Acknowledgments

Foreword

Introduction

Overview of the Book and Technology

How This Book Is Organized

Who Should Read This Book

Tools You Will Need

What’s on the Website

Final Note

Part I: Mac OS X Basics

file:///tmp/calibre_5.41.0_tmp_6ycvhi5m/4r41rwu4_pdf_out/OEBPS/9781118080337cover.xhtml


Chapter 1: Mac OS X Architecture

Basics

Tools of the Trade

Ktrace/DTrace

Objective-C

Universal Binaries and the Mach-O File

Format

Bundles

launchd

Leopard Security

References

Chapter 2: Mac OS X Parlance

Bonjour!

QuickTime

Conclusion

References

Chapter 3: Attack Surface

Searching the Server Side

Cutting into the Client Side

Conclusion

References

Part II: Discovering

Vulnerabilities

Chapter 4: Tracing and Debugging



Pathetic ptrace

Good Ol’ GDB

DTrace

PyDbg

iTunes Hates You

Conclusion

References

Chapter 5: Finding Bugs

Bug-Hunting Strategies

Old-School Source-Code Analysis

vi + Changelog = Leopard 0-day

Apple’s Prerelease-Vulnerability Collection

Fuzz Fun

Conclusion

References

Chapter 6: Reverse Engineering

Disassembly Oddities

Reversing Obj-C

Case Study

Conclusion

References

Part III: Exploitation

Chapter 7: Exploiting Stack Overflows

Stack Basics

Smashing the Stack on PowerPC



Smashing the Stack on x86

Exploiting the x86 Non-executable Stack

Finding Useful Instruction Sequences

Conclusion

References

Chapter 8: Exploiting Heap Overflows

The Heap

The Scalable Zone Allocator

Overwriting Heap Metadata

Taming the Heap with Feng Shui

Case Study

References

Chapter 9: Exploit Payloads

Mac OS X Exploit Payload Development

PowerPC Exploit Payloads

Intel x86 Exploit Payloads

Conclusion

References

Chapter 10: Real-World Exploits

QuickTime RTSP Content-Type Header

Overflow

mDNSResponder UPnP Location Header

Overflow

QuickTime QTJava toQTPointer() Memory

Access

Conclusion



References

Part IV: Post-Exploitation

Chapter 11: Injecting, Hooking, and

Swizzling

Introduction to Mach

Mach Injection

Function Hooking

Objective-C Method Swizzling

Conclusion

References

Chapter 12: Rootkits

Kernel Extensions

System Calls

Hiding Files

Hiding the Rootkit

Maintaining Access across Reboots

Controlling the Rootkit

Remote Access

Hardware-Virtualization Rootkits

Conclusion

References

Index





The Mac® Hacker’s Handbook

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright 2009 by Wiley Publishing, Inc., Indianapolis,

Indiana

Published simultaneously in Canada

ISBN: 978-0-470-39536-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is

available from the publisher.

No part of this publication may be reproduced, stored in a

retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording,

scanning or otherwise, except as permitted under

Sections 107 or 108 of the 1976 United States Copyright

Act, without either the prior written permission of the

Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance

Center, 222 Rosewood Drive, Danvers, MA 01923, (978)

750-8400, fax (978) 646-8600. Requests to the Publisher

for permission should be addressed to the Permissions

Department, John Wiley & Sons, Inc., 111 River Street,

Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,

or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher

and the author make no representations or warranties

with respect to the accuracy or completeness of the

contents of this work and specifically disclaim all

http://www.wiley.com/
http://www.wiley.com/go/permissions


warranties, including without limitation warranties of

fitness for a particular purpose. No warranty may be

created or extended by sales or promotional materials.

The advice and strategies contained herein may not be

suitable for every situation. This work is sold with the

understanding that the publisher is not engaged in

rendering legal, accounting, or other professional

services. If professional assistance is required, the

services of a competent professional person should be

sought. Neither the publisher nor the author shall be

liable for damages arising herefrom. The fact that an

organization or Web site is referred to in this work as a

citation and/or a potential source of further information

does not mean that the author or the publisher endorses

the information the organization or Web site may provide

or recommendations it may make. Further, readers

should be aware that Internet Web sites listed in this work

may have changed or disappeared between when this

work was written and when it is read.

For general information on our other products and

services please contact our Customer Care Department

within the United States at (877) 762-2974, outside the

United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo are trademarks or

registered trademarks of John Wiley & Sons, Inc. and/or

its affiliates, in the United States and other countries, and

may not be used without written permission. Mac is a

registered trademark of Apple, Inc. All other trademarks

are the property of their respective owners. Wiley

Publishing, Inc. is not associated with any product or

vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic

formats. Some content that appears in print may not be

available in electronic books.



I’d like to dedicate this book to the security research

community and everyone who is passionate about

advancing the state of offensive and defensive security

knowledge.

— Dino A. Dai Zovi



About the Authors

Charlie Miller is Principal Analyst at Independent

Security Evaluators. He was the first person to publically

create a remote exploit against Apple’s iPhone and the

G1 Google phone running Android. He has discovered

flaws in numerous applications on various operating

systems. He was the winner of the 2008 PwnToOwn

contest for breaking into a fully patched MacBook Air. He

has spoken at numerous information-security conferences

and is author of Fuzzing for Software Security Testing and

Quality Assurance (Artech House, 2008). He was listed as

one of the top 10 hackers of 2008 by Popular Mechanics

magazine, and has a PhD from the University of Notre

Dame.

Dino Dai Zovi is Chief Scientist at a private information

security firm. Mr. Dai Zovi is perhaps best known in the

security and Mac communities for winning the first

Pwn2Own contest at CanSecWest 2007 by discovering

and exploit- ing a new vulnerability in Apple’s QuickTime

in one night to compromise a fully patched MacBook Pro.

He previously specialized in software penetration testing

in roles at Matasano Security, @stake, and Sandia

National Laboratories. He is an invited speaker at

information security conferences around the world, a

coauthor of The Art of Software Security Testing:

Identifying Software Security Flaws (Addison-Wesley,

2006) and was named one of the 15 Most Influential

People in Security by eWEEK in 2007.



Credits

Executive Editor

Carol Long

Development Editor

Christopher J. Rivera

Technical Editor

Ron Krutz

Production Editor

Elizabeth Ginns Britten

Copy Editor

Candace English

Editorial Manager

Mary Beth Wakefield

Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Lynsey Stanford



Compositor

Jeffrey Lytle, Happenstance Type-O-Rama

Proofreader

Justin Neely, Word One

Indexer

Jack Lewis

Cover Illustration

Michael E. Trent

Cover Designer

Michael E. Trent



Acknowledgments

I’d like to thank my wife Andrea for not getting too upset

when I locked myself away at night to work on the book

after the kids went to bed. I’d also like to thank my two

sons, Theo and Levi, for being good kids and keeping a

smile on my face. Finally, I’d like to thank ISE for giving

me time to do research for the book, and the following

people for donating their time to look at early drafts of it:

Dave Aitel, Thomas Ptacek, Thomas Dullien, and Nate

McFeters.

— Charlie Miller

I’d like to thank my friends for their support and patience

while I was working on this book and lacking a normal

social life for the warmer half of the year. I’d also like to

thank the members of the Apple Product Security team

for their diligence in addressing the security issues that I

have reported to them over the years, as well as Apple

for creating an operating system and computers that are

a joy to use. Finally, I’d like to thank our volunteer

reviewers, Dave Aitel, Halvar Flake, and Thomas Ptacek,

for their advice and comments.

— Dino A. Dai Zovi



Foreword

For better or worse, there are moments in our lives that

we can visualize with startling clarity. Sometimes

momentous and other times trivial, we’re able to

completely recall these snippets of our past even if we

can’t remember the day or context. In my life, there’s one

moment I’d like to call trivial, but the truth is, it was likely

more central in establishing my eventual technology

career than I care to admit at social gatherings.

I think it was the early 1980s, but that’s mostly

irrelevant. My best friend’s parents recently purchased an

Apple II (plus, I think), making my friend the first person I

knew with a computer in his house. One day we noticed a

seam on the top of the plastic case; we slid the bulking

green screen monitor to the side and removed the panel

on the top. For the first time, we peered into the inner

guts of an actual working computer. This was definitely

before the release of WarGames, likely before I’d ever

heard of hacking, and long before “hacker” became

synonymous with “criminal” in the mass media. We lifted

that plastic lid and stared at the copper and black

components on the field of green circuit boards before us.

We were afraid to touch anything, but for the first time,

the walls between hardware and software shattered for

our young minds, opening up a new world of possibilities.

This was something we could touch, manipulate, and,

yes, break.

My young computer career began with those early

Apples (and Commodores). We spent countless hours

exploring their inner workings; from BASIC to binary

math, and more than our fair share of games (for the

record, the Apple joystick was terrible). Early on I realized

I enjoyed breaking things just as much, if not more than,



creating them. By feeling around the seams of software

and systems, learning where they bent, cracked, and

failed, I could understand them in ways just not possible

by coloring between the lines.

The very first Mac I could buy was an early Mac Mini I

purchased mostly for research purposes. I quickly

realized that Mac OS X was a hacker’s delight of an

operating system. Beautiful and clean compared to my

many years on Windows, with a Unix terminal a click

away. Here was a box I could run Microsoft Office on that

came with Apache by default and still held full man

pages. As I delved into Applescript, plists, DMGs, and the

other minutia of OS X, I was amazed by the capabilities of

the operating system, and the breadth and depth of tools

available.

But as I continued to switch completely over to Apple,

especially after the release of Intel Macs, my fingers

started creeping around for those cracks at the edges

again. I wasn’t really worried about viruses, but, as a

security professional, I started wondering if this was by

luck or design. I read the Apple documentation and

realized fairly early that there wasn’t a lot of good

information on how OS X worked from a security

standpoint, other than some configuration guides and

marketing material.

Mac security attitudes have changed a fair bit since I

purchased that first Mac Mini. As Macs increase in

popularity, they face more scrutiny. Windows switchers

come with questions and habits, more security

researchers use Macs in their day-to-day work, the press

is always looking to knock Apple down a notch, and the

bad guys won’t fail to pounce on any profitable

opportunity. But despite this growing attention, there are

few resources for those who want to educate themselves



and better understand the inner workings of the

operating system on which they rely.

That’s why I was so excited when Dino first mentioned

he and Charlie were working on this book. Ripping into

the inner guts of Mac OS X and finding those edges to

tear apart are the only ways to advance the security of

the platform. Regular programming books and system

overviews just don’t look at any operating system from

the right perspective; we need to know how something

breaks in order to make it stronger. And, as any child (or

hacker) will tell you, breaking something is the most

exhilarating way to learn.

If you are a security professional, this book is one of the

best ways to understand the strengths and weaknesses

of Mac OS X. If you are a programmer, this book will not

only help you write more secure code, but it will also help

you in your general coding practices. If you are just a Mac

enthusiast, you’ll learn how hackers look at our operating

system of choice and gain a better understanding of its

inner workings. Hopefully Apple developers will use this

to help harden the operating system; making the book

obsolete with every version. Yes, maybe a few bad guys

will use it to write a few exploits, but the benefits of

having this knowledge far outweigh the risks.

For us hackers, even those of us of limited skills, this

book provides us with a roadmap for exploring those

edges, finding those cracks, and discovering new

possibilities. For me, it’s the literary equivalent of sliding

that beige plastic cover off my childhood friend’s first

Apple and gazing at the inner workings.

—Rich Mogull

Security Editor at TidBITS and Analyst at Securosis



Introduction

As Mac OS X continues to be adopted by more and more

users, it is important to consider the security (or

insecurity) of the devices running it. From a security

perspective, Apple has led a relatively charmed existence

so far. Mac OS X computers have not had any significant

virus or worm outbreaks, making them a relatively safe

computing platform. Because of this, they are perceived

by most individuals to be significantly more secure than

competing desktop operating systems, such as Windows

XP or Vista.

Overview of the Book and

Technology

Is this perception of security justified, or has Mac OS X

simply benefited from its low profile up to this point? This

book offers you a chance to answer this question for

yourself. It provides the tools and techniques necessary

to analyze thoroughly the security of computers running

the Mac OS X operating system. It details exactly what

Apple has done right in the design and implementation of

its code, as well as points out deficiencies and

weaknesses. It teaches how attackers look at Mac OS X

technologies, probe for weaknesses, and succeed in

compromising the system. This book is not intended as a

blueprint for malicious attackers, but rather as an

instrument so the good guys can learn what the bad guys

already know. Penetration testers and other security

analysts can and should use this information to identify

risks and secure the Macs in their environments.



Keeping security flaws secret does not help anybody. It

is important to understand these flaws and point them

out so future versions of Mac OS X will be more secure. It

is also vital to understand the security strengths and

weaknesses of the operating system if we are to defend

properly against attack, both now and in the future.

Information is power, and this book empowers its readers

by providing the most up-to-date and cutting-edge Mac

OS X security research.

How This Book Is Organized

This book is divided into four parts, roughly aligned with

the steps an attacker would have to take to compromise

a computer: Background, Vulnerabilities, Exploitation, and

Post-Exploitation. The first part, consisting of Chapters 1–

3, contains introductory material concerning Mac OS X. It

points out what makes this operating system different

from Linux or Windows and demonstrates the tools that

will be needed for the rest of the book. The next part,

consisting of Chapters 4–6, demonstrates the tools and

techniques necessary to identify security vulnerabilities

in the operating system and applications running on it.

Chapters 7–10 make up the next part of the book. These

chapters illustrate how attackers can take the

weaknesses found in the earlier chapters and turn them

into functional exploits, giving them the ability to

compromise vulnerable machines. Chapters 11 and 12

make up the last part of the book, which deals with what

attackers may do after they have exploited a machine

and techniques they can use to maintain continued

access to the compromised machines.

Chapter 1 begins the book with the basics of the way

Mac OS X is designed. It discusses how it originated from

BSD and the changes that have been made in it since



that time. Chapter 1 gives a brief introduction to many of

the tools that will be needed in the rest of the book. It

highlights the differences between Mac OS X and other

operating systems and takes care to demonstrate how to

perform common tasks that differ among the operating

systems. Finally, it outlines and analyzes some of the

security improvements made in the release of Leopard,

the current version of Mac OS X.

Chapter 2 covers some uncommon protocols and file

formats used by Mac OS X. This includes a description of

how Bonjour works, as well as an inside look at the Mac

OS X implementation, mDNSResponder. It also dissects

the QuickTime file format and the RTSP protocol utilized

by QuickTime Player.

Chapter 3 examines what portions of the operating

system process attacker-supplied data, known as the

attack surface. It begins by looking in some detail at what

services are running by default on a typical Mac OS X

computer and examines the difficulties in attacking these

default services. It moves on to consider the client-side

attack surface, all the code that can be executed if an

attacker can get a client program such as Safari to visit a

server the attacker controls, such as a malicious website.

Chapter 4 dives into the world of debugging in a Mac OS

X environment. It shows how to follow along to see what

applications are doing internally. It covers in some detail

the powerful DTrace mechanism that was introduced in

Leopard. It also outlines the steps necessary to capture

code-coverage information using the Pai Mei reverse-

engineering framework.

Chapter 5 demonstrates how to find security

weaknesses in Mac OS X software. It talks about how you

can look for bugs in the source code Apple makes

available or use a black-box technique such as fuzzing. It

includes detailed instructions for performing either of



these methods. Finally, it shows some tricks to take

advantage of the way Apple develops its software, which

can help find bugs it doesn’t know about or give early

warning of those it does.

Chapter 6 discusses reverse engineering in Mac OS X.

Given that most of the code in Mac OS X is available in

binary form only, this chapter discusses how this software

works statically. It also highlights some differences that

arise in reverse engineering code written in Objective-C,

which is quite common in Mac OS X binaries but rarely

seen otherwise.

Chapter 7 begins the exploitation part of the book. It

introduces the simplest of buffer-overflow attacks, the

stack overflow. It outlines how the stack is laid out for

both PowerPC and x86 architectures and how, by

overflowing a stack buffer, an attacker can obtain control

of the vulnerable process.

Chapter 8 addresses the heap overflow, the other

common type of exploit. This entails describing the way

the Mac OS X heap and memory allocations function. It

shows techniques where overwriting heap metadata

allows an attacker to gain complete control of the

application. It finishes by showing how to arrange the

heap to overwrite other important application data to

compromise the application.

Chapter 9 addresses exploit payloads. Now that you

know how to get control of the process, what can you do?

It demonstrates a number of different possible shellcodes

and payloads for both PowerPC and x86 architectures,

ranging from simple to advanced.

Chapter 10 covers real-world exploitation,

demonstrating a large number of advanced exploitation

topics, including many in-depth example exploits for Tiger

and Leopard on both PowerPC and x86. If Chapters 7–9



were the theory of attack, then this chapter is the

practical aspect of attack.

Chapter 11 covers how to inject code into running

processes using Mac OS X–specific hooking techniques. It

provides all the code necessary to write and test such

payloads. It also includes some interesting code

examples of what an attacker can do, including spying on

iChat sessions and reading encrypted network traffic.

Chapter 12 addresses the topic of rootkits, or code an

attacker uses to hide their presence on a compromised

system. It illustrates how to write basic kernel-level

drivers and moves on to examples that will hide files from

unsuspecting users at the kernel level. It finishes with a

discussion of Mac OS X–specific rootkit techniques,

including hidden in-kernel Mach RPC servers, network

kernel extensions for remote access, and VT-x hardware

virtual-machine hypervisor rootkits for advanced stealth.

Who Should Read This Book

This book is written for a wide variety of readers, ranging

from Mac enthusiasts to hard-core security researchers.

Those readers already knowledgeable about Mac OS X

but wanting to learn more about the security of the

system may want to skip to Chapter 4. Conversely,

security researchers may find the first few chapters the

most useful, as those chapters reveal how to use the OS

X–related skills they already possess.

While the book may be easier to comprehend if you

have some experience writing code or administering Mac

OS X computers, no experience is necessary. It starts

from the very basics and slowly works up to the more-

advanced topics. The book is careful to illustrate the

points it is making with many examples, and outlines

exactly how to perform the steps required. The book is



unique in that, although anybody with enthusiasm for the

subject can pick it up and begin reading it, by the end of

the book the reader will have a world-class knowledge of

the security of the Mac OS X operating system.

Tools You Will Need

For the most part, all you need to follow along with this

book is a computer with Mac OS X Leopard installed.

Although many of the techniques and examples will work

in earlier versions of Mac OS X, they are designed for

Leopard.

To perform the techniques illustrated in Chapter 6, a

recent version of IDA Pro is required. This is a commercial

tool that must be run in Windows and can be purchased

at http://www.hex-rays.com. The remaining tools either

come on supplemental disks, such as Xcode does, or are

freely available online or at this book’s website.

What’s on the Website

This book includes a number of code samples. The small

and moderately sized examples are included directly in

this book. But to save you from having to type these in

yourself, all the code samples are also available for

download at www.wiley.com/go/machackershandbook.

Additionally, some long code samples that are omitted

from the book are available on the site, as are any other

tools developed for the book.

Final Note

We invite you to dive right in and begin reading. We think

there is something in this book for just about everyone

http://www.hex-rays.com/
http://www.wiley.com/go/machackershandbook


who loves Mac OS X. I know we learned a lot in

researching and writing this book. If you have comments,

questions, hate mail, or anything else, please drop us a

line and we’d be happy to discuss our favorite operating

system with you.



Part I: Mac OS X Basics



Chapter 1

Mac OS X Architecture

This chapter begins by addressing many of the basics of

a Mac OS X system. This includes the general

architecture and the tools necessary to deal with the

architecture. It then addresses some of the security

improvements that come with version 10.5 “Leopard”,

the most recent version of Mac OS X. Many of these

security topics will be discussed in great detail

throughout this book.

Basics

Before we dive into the tools, techniques, and security of

Mac OS X, we need to start by discussing how it is put

together. To understand the details of Leopard, you need

first to understand how it is built, from the ground up. As

depicted in Figure 1-1, Mac OS X is built as a series of

layers, including the XNU kernel and the Darwin

operating system at the bottom, and the Aqua interface

and graphical applications on the top. The important

components will be discussed in the following sections.

Figure 1-1: Basic architecture of a Mac OS X system



XNU

The heart of Mac OS X is the XNU kernel. XNU is basically

composed of a Mach core (covered in the next section)

with supplementary features provided by Berkeley

Software Distribution (BSD). Additionally, XNU is

responsible for providing an environment for kernel

drivers called the I/O Kit. We’ll talk about each of these in

more detail in upcoming sections. XNU is a Darwin

package, so all of the source code is freely available.

Therefore, it is completely possible to install the same

kernel used by Mac OS X on any machine with supported

hardware; however, as Figure 1-1 illustrates, there is

much more to the user experience than just the kernel.

From a security researcher’s perspective, Mac OS X

feels just like a FreeBSD box with a pretty windowing

system and a large number of custom applications. For

the most part, applications written for BSD will compile

and run without modification on Mac OS X. All the tools

you are accustomed to using in BSD are available in Mac

OS X. Nevertheless, the fact that the XNU kernel contains

all the Mach code means that some day, when you have

to dig deeper, you’ll find many differences that may

cause you problems and some you may be able to

leverage for your own purposes. We’ll discuss some of



these important differences briefly; for more detailed

coverage of these topics, see Mac OS X Internals: A

Systems Approach (Addison-Wesley, 2006).

Mach

Mach, developed at Carnegie Mellon University by Rick

Rashid and Avie Tevanian, originated as a UNIX-

compatible operating system back in 1984. One of its

primary design goals was to be a microkernel; that is, to

minimize the amount of code running in the kernel and

allow many typical kernel functions, such as file system,

networking, and I/O, to run as user-level Mach tasks. In

earlier Mach-based UNIX systems, the UNIX layer ran as a

server in a separate task. However, in Mac OS X, Mach

and the BSD code run in the same address space.

In XNU, Mach is responsible for many of the low-level

operations you expect from a kernel, such as processor

scheduling and multitasking and virtual-memory

management.

BSD

The kernel also involves a large chunk of code derived

from the FreeBSD code base. As mentioned earlier, this

code runs as part of the kernel along with Mach and uses

the same address space. The FreeBSD code within XNU

may differ significantly from the original FreeBSD code, as

changes had to be made for it to coexist with Mach.

FreeBSD provides many of the remaining operations the

kernel needs, including

Processes

Signals

Basic security, such as users and groups

System call infrastructure

TCP/IP stack and sockets



Firewall and packet filtering

To get an idea of just how complicated the interaction

between these two sets of code can be, consider the idea

of the fundamental executing unit. In BSD the

fundamental unit is the process. In Mach it is a Mach

thread. The disparity is settled by each BSD-style process

being associated with a Mach task consisting of exactly

one Mach thread. When the BSD fork() system call is

made, the BSD code in the kernel uses Mach calls to

create a task and thread structure. Also, it is important to

note that both the Mach and BSD layers have different

security models. The Mach security model is based on

port rights, and the BSD model is based on process

ownership. Disparities between these two models have

resulted in a number of local privilege-escalation

vulnerabilities. Additionally, besides typical system cells,

there are Mach traps that allow user-space programs to

communicate with the kernel.

I/O Kit

I/O Kit is the open-source, object-oriented, device-driver

framework in the XNU kernel and is responsible for the

addition and management of dynamically loaded device

drivers. These drivers allow for modular code to be added

to the kernel dynamically for use with different hardware,

for example. The available drivers are usually stored in

the /System/Library/Extensions/ directory or a

subdirectory. The command kextstat will list all the

currently loaded drivers,

$ kextstat

Index Refs Address    Size       Wired      Name (Version) <Linked Against>

    1    1 0x0        0x0        0x0        com.apple.kernel (9.3.0)

    2   55 0x0        0x0        0x0        com.apple.kpi.bsd (9.3.0)

    3    3 0x0        0x0        0x0        com.apple.kpi.dsep (9.3.0)

    4   74 0x0        0x0        0x0        com.apple.kpi.iokit (9.3.0)

    5   79 0x0        0x0        0x0        com.apple.kpi.libkern (9.3.0)

    6   72 0x0        0x0        0x0        com.apple.kpi.mach (9.3.0)

    7   39 0x0        0x0        0x0        com.apple.kpi.unsupported (9.3.0)



    8    1 0x0        0x0        0x0        com.apple.iokit.IONVRAMFamily (9.3.0

)

    9    1 0x0        0x0        0x0        com.apple.driver.AppleNMI (9.3.0)

   10    1 0x0        0x0        0x0        com.apple.iokit.IOSystemManagementFa

mily (9.3.0)

   11    1 0x0        0x0        0x0        com.apple.iokit.ApplePlatformFamily 

(9.3.0)

   12   31 0x0        0x0        0x0        com.apple.kernel.6.0 (7.9.9)

   13    1 0x0        0x0        0x0        com.apple.kernel.bsd (7.9.9)

   14    1 0x0        0x0        0x0        com.apple.kernel.iokit (7.9.9)

   15    1 0x0        0x0        0x0        com.apple.kernel.libkern (7.9.9)

   16    1 0x0        0x0        0x0        com.apple.kernel.mach (7.9.9)

   17   17 0x2e2bc000 0x10000    0xf000     com.apple.iokit.IOPCIFamily (2.4.1) 

<7 6 5 4>

   18   10 0x2e2d2000 0x4000     0x3000     com.apple.iokit.IOACPIFamily (1.2.0)

 <12>

   19    3 0x2e321000 0x3d000    0x3c000    com.apple.driver.AppleACPIPlatform (

1.2.1) <18 17 12 7 5 4>

…

Many of the entries in this list say they are loaded at

address zero. This just means they are part of the kernel

proper and aren’t really device drivers—i.e., they cannot

be unloaded. The first actual driver is number 17.

Besides kextstat, there are other functions you’ll need

to know for loading and unloading these drivers. Suppose

you wanted to find and load the driver associated with

the MS-DOS file system. First you can use the kextfind

tool to find the correct driver.

$ kextfind -bundle-id -substring 'msdos'

/System/Library/Extensions/msdosfs.kext

Now that you know the name of the kext bundle to load,

you can load it into the running kernel.

$ sudo kextload /System/Library/Extensions/msdosfs.kext

kextload: /System/Library/Extensions/msdosfs.kext loaded successfully

It seemed to load properly. You can verify this and see

where it was loaded.

$ kextstat | grep msdos

  126    0 0x346d5000 0xc000     0xb000     com.apple.filesystems.msdosfs (1.5.2

) <7 6 5 2>

It is the 126th driver currently loaded. There are zero

references to it (not surprising, since it wasn’t loaded

before we loaded it). It has been loaded at address

0x346d5000 and has size 0xc000. This driver occupies


