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Preface
The field of metal-organic frameworks, or MOFs, is

undergoing accelerated and sustained growth. I

personally became acquainted with MOFs, or more

generally coordination polymers, as an undergraduate

research student while at Saint Mary's University, Halifax,

Nova Scotia, Canada, from 1991 to 1994. The process of

mixing readily available metal precursors with organic

linkers—many of which fell under the heading of being

commercially available—to produce a wide array of

extended frameworks clearly then, and now, captured the

imagination of chemists and materials scientists

worldwide.

From a fundamental standpoint, there is an important

link between MOF chemistry and the field of inorganic

chemistry. In many ways, MOF chemistry enables

chemists to connect previously existing coordination

complexes so as to make a conceptual link into the field

of materials chemistry. This link has now evolved to

afford applications ranging from catalysis to energy

storage. Organic chemists are also able to contribute to

the mix by crafting ligands with properties that one

ultimately plans to express within the walls of MOFs.

Solid-state chemists and X-ray crystallographers provide

insights into the structures of MOFs so that the process of

designing and synthesizing MOFs can be refined so as to

ultimately control a targeted property and give rise to

function.

My personal draw to MOFs was, in retrospect, also

inspired by the field of supramolecular chemistry,

particularly as it relates to the rational design of solids, or

crystal engineering. The early 1990s witnessed

supramolecular chemistry envelop the process of self-

assembly, with a crystal being regarded as a

supermolecule par excellence. [1] Metal–ligand bonding is



reversible and, thus, fits within the realm of

supramolecular chemistry. Self-assembly involves

subunits of a larger superstructure being repeated in

zero-dimensional (0D), 1D, 2D, or 3D space, with the solid

state being a perfect resting place for intermolecular

forces to dominate. Today, many of the boundaries

between these areas have become increasingly more

difficult to distinguish, which can be expected as more is

being uncovered and as more emphasis is placed on

properties and function.

It is, thus, with great pleasure that I am able to

assemble a multi-author monograph that includes

authoritative contributions from leading research

laboratories in the field of MOF chemistry. My goal is to

provide insights into where the field of MOFs began to

take root and provide an account of the fundamentals

that define where the field has come and is able to go.

Indeed, MOFs provide chemists a means to think about

how to utilize coordination space to mimic the chemistry

of zeolites with an added degree of organic function.

These possibilities have become apparent in key

developments and important advances that are outlined

in the chapters that follow.

Fujita (Chapter 1) and Eddaoudi (Chapter 2), for

example, document the first reports of MOFs, or

coordination networks, particularly those that exhibit

catalysis, the emergence of heteroaromatic ligands, and

how carboxylates provided an important entry to

increasingly robust solids. Batten (Chapter 3)

demonstrates a role of symmetry in defining and

understanding the simple and complex frameworks that

result from the solid-state assembly process that affords

a MOF. Next, Schroder (Chapter 4) addresses the design

and synthesis of extended frameworks of increasingly

structural complexity in the form of highly connected



MOFs based on lanthanide ions. Kitagawa (Chapter 5)

then shows how the internal structures of coordination

networks can be rationally modified and tailored with

organic groups while Lin (Chapter 6) documents some of

the first systematic applications of MOFs as they relate to

the generation of nonlinear optic materials. A great

challenge facing mankind is making efficient use of

energy. MOFs have emerged as potentially useful

platforms for facing this challenge in the form of gas

storage, separation, and conversion. Thus, Kim (Chapter

7) and Zhou (Chapter 8) address how MOFs interact with

small gas molecules (e.g., H2) and how these materials

may be integrated into schemes for energy utilization. In

a related topic, Friscic (Chapter 9) tackles the emerging

issue of mechanochemical, or solvent-free, “green”

preparation of MOFs while work by our group

demonstrates how the walls of extended frameworks can

be designed to serve as platforms for light-induced

chemical reactions (Chapter 10). Finally, Snurr (Chapter

11) addresses how the field of computational chemistry

can be used to understand, and ultimately, aide the

design of MOFs, with targeted applications in separations,

gas uptake, and materials characterization. Carefully

chosen references serve to guide the reader through the

extensive literature, which makes the field accessible to a

wide and varied audience.

My initial interests in the chemistry of MOFs, and

supramolecular chemistry and solid-state chemistry in

general, stemmed from an experience as an

undergraduate researcher. It is for this reason that I

dedicate this monograph to the undergraduate research

experience and to all of those that support

undergraduate research.

Leonard R. MacGillivray
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Chapter 1

From Hofmann Complexes to

Organic Coordination

Networks

Makoto Fujita

Department of Applied Chemistry, School of

Engineering, University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-8656, Japan

1.1 Introduction

Recently, there has been a considerable upsurge in the

study of porous hybrid organic–inorganic materials

referred as organic coordination networks. Porous organic

coordination networks can be prepared via self-assembly

of a connector (a metal) and a link (a ligand) where

connectors and ligands are bound together through a

metal–ligand bond to form porous crystalline structures. It

is in the pores that a wide range of processes can be

carried out. One salient feature of coordination networks

is the possibility to design the pores. Now it is possible to

create pores with determined sizes just by selecting

ligands with determined shapes, and particular

environments through functionalization of the ligands.

Therefore, certain reactions that are not possible to be

carried out in solution are now being carried out within

the porous space.



Another feature of organic coordination networks is

their flexibility, which differentiates them from the robust

frameworks of zeolites. This flexibility enables a dynamic

behavior in porous coordination networks, which facilitate

structural modifications (guest exchange or chemical

reactions within the pores) without loss of its structural

integrity. Hence, chemical reactions that occur in the pore

can be monitored in situ in great detail by X-ray

crystallography and other spectroscopic techniques.

The growing interest in such materials both scientifically

and economically is not surprising due to the remarkable

physicochemical properties that have been reported

during the last two decades. Organic coordination

networks are useful in a wide range of applications. For

instance, these porous networks can be used in

processes such as selective separation, catalytic

reactions, guest exchange, and gas storage. Thus, due to

its importance, in this review we have summarized the

history of the coordination networks from the first

documented examples until the latest advances in this

field.

1.2 Discovery of a

Coordination Network

Initially porous and open-framework coordination

networks attracted considerable attention as post-zeolite

materials. Recent progresses of coordination networks

are remarkable in that many intriguing properties and

functions, for example robust and flexible framework,

framework transformation, pore post-modification,

selective molecular recognition, gas adsorption, and

catalysis, have been reported. This review follows the



history of coordination networks from the beginning,

namely, Hofmann complex.

1.2.1 Hofmann Complex

The first coordination network having a chemical formula

of Ni(CN)2(NH3)·C6H6 was discovered by Hofmann and

Küspert in 1897. [1] They obtained the complex as a

crystal by slow layering diffusion of C6H6 into an NH3

solution of Ni(CN)2. Pfeiffer in 1927 [2] and Feigl in 1944

[3] speculated that the structure of Hofmann complex

was a Ni monomer coordinated by benzene as a side-on

form, Ni(CN)2(NH3)(η6-C6H6) (Scheme 1.1).

Scheme 1.1

Finally in 1954 Powell and coworkers clarified the

structure of the Hofmann complex by X-ray analysis (unit

cell dimensions a = b = 7.242 Å; c = 8.277 Å3; α = β = γ

= 90). The crystal structure was a square network

bridged by CN groups encapsulating benzene in a

channel. [4] A partial structure of the Hofmann complex

is shown in Figure 1.1. Arrays of Ni covalently linked

through CN groups form two-dimensional layers that are

parallel to each other. From each layer two amine groups

protrude toward the adjacent layer, creating a series of

voids where benzene molecules are included.

Figure 1.1 A partial crystal structure of the Hoffman

complex showing benzene encapsulation within the



cavity.

1.2.2 Variation of the Hofmann

Complex

Thereafter various Hofmann type complexes have been

reported. Iwamoto and coworkers reported



M1M2(NH3)2(CN)4 × G (M1: Ni, Zn, Cd, Cu, Mn, Fe, Co;

M2: Ni, Pd, Pt; G: benzene, aniline, pyrrole, thiophene) in

1967–1968. [5, 6] They paid attention to the components

of Hofmann complex that can be divided into three parts:

[Ni(NH3)2]2+ + [Ni(CN)4]2− + 2C6H6. Therefore, they

prepared Hofmann type complexes according to the

following Scheme 1.2. The structures were identified by

powder X-ray diffraction analysis.

Scheme 1.2

Walker and Hawthorne proposed expanded n-alkylamine

Hofmann complexes in 1966 (Figure 1.2). [7] The

complexes were synthesized by addition of n-alkylamines

to a suspension to anhydrous nickel cyanide (Scheme

1.3). The crystalline samples were studied using the

powder X-ray diffraction technique.

Figure 1.2 Proposed structure of the expanded Hofmann

complexes using n-alkylamines.



Scheme 1.3

In 1968–1975, Iwamoto and coworkers also reported

expanded Hofmann complexes bridged by

ethylenediamine (en) [8] (Scheme 1.4). The structure was

determined by X-ray analysis (Figure 1.3). The

coordination network can encapsulate aromatic guests

such as aniline, benzene, thiophene, and pyrrole.

Scheme 1.4

Figure 1.3 Representation of [Cd(en)Ni(CN)4]·2C6H6.

In 1977, Mathey prepared aromatic diamine complexes

as shown in Scheme 1.5. [9] Depending on the length of

diamines, the length of the c-axis also varies (Figure 1.4).

The diamine complexes show selective encapsulation for

aromatic guests and solvents. For example, [Ni(4,4′-

bipyridyl)Ni(CN)4] encapsulate 0.8G (G: benzene,



naphthalene, anthracene, CHCl3, CH2Cl2, CH3OH, but

not phenanthrene, CCl4).

Scheme 1.5

Figure 1.4 Diamines and c-axis values (in parentheses,

Å).

Likewise Iwamoto and coworkers expanded from

Hofmann complex into 1,2-diaminopropane (pn) complex

in 1980, [10] dimethylamine complex in 1982–1984, [11]

and 1,ω-diaminoalkane complex (1,ω-diaminoalkane:

H2N(CH2)nNH2, n = 4–8) in 1984–1985. [12] Each

complex encapsulated specific aromatic compounds. In

addition, they prepared many related complexes by

combination of metal ions with bridging ligands. [13]

As a whole, Iwamoto and colleagues developed unique

chemistry of intriguing series of Hofmann complexes. He

is one of pioneers to show promising future visions of

designable coordination networks as a new class of

materials.



1.3 Organic Coordination

Network: Organic Modification

of the Hofmann Complex

Hofmann complex inspired scientists to develop

strategies aiming to find a new class of materials.

Worldwide the effort of many researchers paved the way

for finding a new route to synthesize materials having

larger cavities. For instance, if a -CN group could be

replaced with organic linkers, a variety of coordination

networks having finely tuned cavities could be prepared.

1.3.1 Organic Coordination

Network: The First Example

In 1989, Robson reported the first organic coordination

network by complexation of anions with tetrahedral

bridging ligands. [14] The aim of their work was to

prepare three-dimensional solid polymeric materials with

cavities by linking centers together with either a

tetrahedral or an octahedral array of valencies. They

prepared an infinite framework {CuI[C(C6H4·CN4)]}+ of

tetrahedral centers linked together by rod-like units. The

rod-like units were obtained by substitution of the

acetonitrile ligands in [CuI(CH3CN)4]+ by 4,4′,4″,4-

tetracyanotetraphenylmethane.

X-ray crystallographic analysis revealed a diamond-like

structure containing disordered nitrobenzene and BF4
−

ions in the cavities (Figure 1.5). The framework has

adamantane-like cavities with a volume of approximately

700 Å3. It was estimated that the framework represents



one third of the volume of the crystal while the remaining

two thirds correspond to the nitrobenzene and BF4
− ions.

Figure 1.5 Tetragonal unit cell with parts of adjacent unit

cells of {CuI[C(C6H4·CN4)]}+. Gray circles denote the Cu

atoms. The adamantane-like cavity is highlighted (black

sticks). Nitrobenzene molecules and BF4
− are omitted for

clarity.

With this work Robson and coworkers established a new

strategy capable of designing new solids containing large

cavities by linking organic molecules with determined

size and shape.



1.4 M-Bipyridine Square Grids:

Two-Way Link. Toward New

Functions and Applications of

Organic Coordination

Networks

The preparation of a macrocyclic polynuclear complex

[(en)Pd(4,4′-bpy)]4(NO3)8 (bpy = bipyridine) with the

ability to recognize organic molecules in aqueous

environment was an important step toward the

applicability of such organic coordination networks. [15]

Such applicability was demonstrated in 1994 with the

synthesis of a two-dimensional square network solid

[Cd(4,4′-bpy)2(NO3)2] containing large cavities with the

possibility of guest encapsulation (Scheme 1.6 a). [16]

Crucially, the first catalytic process within a porous

coordination network was demonstrated by treating

benzaldehyde and cyanotrimethylsilane with a CH2Cl2

suspension of powdered [Cd(4,4′-bpy)2(NO3)2] (40°C, 24

h), which gave 2-(trimethylsiloxy)phenylacetonitrile) in

77% yield (Scheme 1.6 b). Later on, we reported the

cyanosilylation of imines catalyzed by [Cd(4,4′-

bpy)2(H2O)2](NO3)2·4H2O (Scheme 1.6 c). [17]

Scheme 1.6



The ability to include guest molecules within the

cavities was observed by preparation of a clathrate with

o-dibromobenzene. The inclusion of the aromatic guest

was confirmed by single-crystal X-ray diffraction. The

structure was described as a graphite-like stacking of

two-dimensional layers on top of each other (i.e.,

interplanar distance ca. 6.30 Å). One layer consists of an

edge-sharing, perfectly planar square with a Cd(II) ion

and 4,4′-bpy at each corner and side, respectively. Two o-

dibromobenzene are included in each square void (Figure

1.6).

Figure 1.6 View of the complex [Cd(bpy)2]

(NO3)2(C6H4Br2)2 showing 50% probability ellipsoids.

Nitrate ions have been omitted for clarity.



At the almost same time, Zaworotko and Yaghi reported

organic coordination networks in 1995. [18, 19]

Zaworotko and coworkers reported the formation of a

coordination network [Zn(4,4′-bpy)2]SiF6 with large non-

interpenetrated channels (Figure 1.7). The effective pore

size (8 × 8 Å2) is comparable to the pore sizes of large

zeolites. The volume corresponding to the pores is about

the 50% of the total volume. Interestingly, the pores are

hydrophobic, which, in principle, should be able to include

hydrophobic molecules with dimensions in the order of

the pore size.

Figure 1.7 ORTEP representation of a square channel

viewed along the c crystallographic axis. The dimensions

of the channels are the same as the dimensions of the

unit cell ca. 11.396 × 11.396 Å2.


