


This page intentionally left blank



WATER WAVES 
The Mathematical Theory with Applications 



Waves about a liarbor 



WATER WAVES 
The Mathematical Theory 

with Applications 

j . j . STOKER 
INSTITUTE OF MATHEMATICAL SCIENCES 

NEW YORK UNIVERSITY, NEW YORK 

Wiley Classics Library Edition Published 1992 

A Wiley-Interscience Publication 
JOHN WILEY & SONS, INC. 

New York / Chichester / Brisbane / Toronto / Singapore 



In recognition of the importance of preserving what has been 
written, it is a policy of John Wiley & Sons, Inc., to have books 
of enduring value published in the United States printed on 
acid-free paper, and we exert our best efforts to that end. 

Copyright © 1958 by John Wiley & Sons, Inc. 

Wiley Classics Library Edition reprinted 1992. 

AU rights reserved. Published simultaneously in Canada. 

Reproduction or translation of any part of this work 
beyond that permitted by Section 107 or 108 of the 
1976 United States Copyright Act without the permission 
of the copyright owner is unlawful. Requests for 
permission or further information should be addressed to 
the Permissions Department, John Wiley & Sons, Inc. 

ISBN 0-471-57034-6 (pbk) 

10 9 8 7 6 5 4 3 2 1 



To 

NANCY 



This page intentionally left blank



Introduction 

1. Introduction 

The purpose of this book is to present a connected account of the 
mathematical theory of wave motion in liquids with a free surface 
and subjected to gravitational and other forces, together with ap-
plications to a wide variety of concrete physical problems. 

Surface wave problems have interested a considerable number of 
mathematicians beginning apparently with Lagrange, and con-
tinuing with Cauchy and Poisson in France.* Later the British school 
of mathematical physicists gave the problems a good deal of atten-
tion, and notable contributions were made by Airy, Stokes, Kelvin, 
Rayleigh, and Lamb, to mention only some of the better known. In 
the latter part of the nineteenth century the French once more took 
up the subject vigorously, and the work done by St. Venant and 
Boussinesq in this field has had a lasting effect: to this day the 
French have remained active and successful in the field, and par-
ticularly in that part of it which might be called mathematical 
hydraulics. Later, Poincaré made outstanding contributions par-
ticularly with regard to figures of equilibrium of rotating and gravi-
tating liquids (a subject which will not be discussed in this book); 
in this same field notable contributions were made even earlier 
by Liapounoff. One of the most outstanding accomplishments in the 
field from the purely mathematical point of view — the proof of the 
existence of progressing waves of finite amplitude — was made by 
Nekrassov [N.l], [N.la]f in 1921 and independently by a different 
means by Levi-Civita [L.7] in 1925. 

The literature concerning surface waves in water is very extensive. 
In addition to a host of memoirs and papers in the scientific journals, 
there are a number of books which deal with the subject at length. 
First and foremost, of course, is the book of Lamb [L.3], almost 
a third of which is concerned with gravity wave problems. There 
are books by Bouasse [B.15], Thorade [T.4], and Sverdrup [S.39] 

* This list would be considerably extended (to include Euler, the Bernoullis, 
and others) if hydrostatics were to be regarded as an essential part of our subject. 

t Numbers in square brackets refer to the bibliography at the end of the book. 
VII 



VIII INTRODUCTION 

devoted exclusively to the subject. The book by Thorade consists 
almost entirely of relatively brief reviews of the li terature up to 
1931 — an indication of the extent and volume of the li terature 
on the subject. The book by Sverdrup was writ ten with the special 
needs of oceanographers in mind. One of the main purposes of the 
present book is to t reat some of the more recent additions to our 
knowledge in the field of surface wave problems. In fact, a large part 
of the book deals with problems the solutions of which have been 
found during and since World War I I ; this material is not available 
in the books just now mentioned. 

The subject of surface gravity waves has great variety whether 
regarded from the point of view of the types of physical problems 
which occur, or from the point of view of the mathematical ideas 
and methods needed to a t tack them. The physical problems range 
from discussion of wave motion over sloping beaches to flood waves 
in rivers, the motion of ships in a sea-way, free oscillations of enclosed 
bodies of water such as lakes and harbors, and the propagation of 
frontal discontinuities in the atmosphere, to mention jus t a few. 
The mathematical tools employed comprise just about the whole of 
the tools developed in the classical linear mathematical physics 
concerned with partial differential equations, as well as a good par t 
of what has been learned about the nonlinear problems of mathe-
matical physics. Thus potential theory and the theory of the linear 
wave equation, together with such tools as conformai mapping and 
complex variable methods in general, the Laplace and Fourier 
transform techniques, methods employing a Green's function, integral 
equations, etc. are used. The nonlinear problems are of both elliptic 
and hyperbolic type. 

In spite of the diversity of the material, the book is not a collection 
of disconnected topics, writ ten for specialists, and lacking uni ty and 
coherence. Instead, considerable pains have been taken to supply 
the fundamental background in hydrodynamics — and also in some 
of the mathematics needed — and to plan the book in order tha t it 
should be as much as possible a self-contained and readable whole. 
Though the contents of the book are outlined in detail below, it has 
some point to indicate briefly here its general plan. There are four 
main par ts of the book: 

Pa r t I, comprising Chapters 1 and 2, presents the derivation of 
the basic hydrodynamic theory for non-viscous incompressible fluids, 
and also describes the two principal approximate theories which form 
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the basis upon which most of the remainder of the book is built. 
Part II, made up of Chapters 3 to 9 inclusive, is based on the ap-

proximate theory which results when the amplitude of the wave 
motions considered is small. The result is a linear theory which from 
the mathematical point of view is a highly interesting chapter in 
potential theory. On the physical side the problems treated include 
the propagation of waves from storms at sea, waves on sloping 
beaches, diffraction of waves around a breakwater, waves on a 
running stream, the motion of ships as floating rigid bodies in a sea-
way. Although this theory was known to Lagrange, it is often referred 
to as the Cauchy-Poisson theory, perhaps because these two mathe-
maticians were the first to solve interesting problems by using it. 

Part III , made up of Chapters 10 and 11, is concerned with problems 
involving waves in shallow water. The approximate theory which 
results from assuming the water to be shallow is not a linear theory, 
and wave motions with amplitudes which are not necessarily small 
can be studied by its aid. The theory is often attributed to Stokes 
and Airy, but was really known to Lagrange. If linearized by making 
the additional assumption that the wave amplitudes are small, the 
theory becomes the same as that employed as the mathematical 
basis for the theory of the tides in the oceans. In the lowest order 
of approximation the nonlinear shallow water theory results in a 
system of hyperbolic partial differential equations, which in im-
portant special cases can be treated in a most illuminating way with 
the aid of the method of characteristics. The mathematical methods 
are treated in detail in Chapter 10. The physical problems treated in 
Chapter 10 are quite varied; they include the propagation of unsteady 
waves due to local disturbances into still water, the breaking of 
waves, the solitary wave, floating breakwaters in shallow water. A 
lengthy section on the motions of frontal discontinuities in the 
atmosphere is included also in Chapter 10. In Chapter 11, entitled 
Mathematical Hydraulics, the shallow water theory is employed to 
study wave motions in rivers and other open channels which, unlike 
the problems of the preceding chapter, are largely conditioned by 
the necessity to consider resistances to the flow due to the rough 
sides and bottom of the channel. Steady flows, and steady progressing 
waves, including the problem of roll waves in steep channels, are 
first studied. This is followed by a treatment of numerical methods 
of solving problems concerning flood-waves in rivers, with the object 
of making flood predictions through the use of modern high speed 
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digital computers. That such methods can be used to furnish accurate 
predictions has been verified for a flood in a 400-mile stretch of the 
Ohio River, and for a flood coming down the Ohio River and passing 
through its junction with the Mississippi River. 

Part IV, consisting of Chapter 12, is concerned with problems 
solved in terms of the exact theory, in particular, with the use of the 
exact nonlinear free surface conditions. A proof of the existence of 
periodic waves of finite amplitude, following Levi-Civita in a general 
way, is included. 

The amount of mathematical knowledge needed to read the book 
varies in different parts. For considerable portions of Part II the 
elements of the theory of functions of a complex variable are assumed 
known, together with some of the standard facts in potential theory. 
On the other hand Part I I I requires much less in the way of specific 
knowledge, and, as was mentioned above, the basic theory of the 
hyperbolic differential equations used there is developed in all detail 
in the hope that this part would thus be made accessible to engineers, 
for example, who have an interest in the mathematical treatment of 
problems concerning flows and wave motions in open channels. 

In general, the author has made considerable efforts to try to 
achieve a reasonable balance between the mathematics and the 
mechanics of the problems treated. Usually a discussion of the physical 
factors and of the reasons for making simplified assumptions in each 
new type of concrete problem precedes the precise formulation of the 
mathematical problems. On the other hand, it is hoped that a clear 
distinction between physical assumptions and mathematical deduc-
tions — so often shadowy and vague in the literature concerned 
with the mechanics of continuous media — has always been main-
tained. Efforts also have been made to present important portions 
of the book in such a way that they can be read to a large extent 
independently of the rest of the book; this was done in some cases 
at the expense of a certain amount of repetition, but it seemed to 
the author more reasonable to save the time and efforts of the reader 
than to save paper. Thus the portion of Chapter 10 concerned with 
the dynamics of the motion of fronts in meteorology is largely 
self-contained. The same is true of Chapter 11 on mathematical 
hydraulics, and of Chapter 9 on the motion of ships. 

Originally this book had been planned as a brief general introduc-
tion to the subject, but in the course of writing it many gaps and 
inadequacies in the literature were noticed and some of them have 
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been filled in; thus a fair share of the material presented represents 
the result of researches carried out quite recently. A few topics which 
are even rather speculative have been dealt with at some length 
(the theory of the motion of fronts in dynamic meteorology, given 
in Chapter 10.12, for example); others (like the theory of waves on 
sloping beaches) have been treated at some length as much because 
the author had a special fondness for the material as for their intrinsic 
mathematical interest. Thus the author has written a book which is 
rather personal in character, and which contains a selection of 
material chosen, very often, simply because it interested him, and 
he has allowed his predilections and tastes free rein. In addition, 
the book has a personal flavor from still another point of view since 
a quite large proportion of the material presented is based on the work 
of individual members of the Institute of Mathematical Sciences of 
New York University, and on theses and reports written by students 
attending the Institute. No attempt at completeness in citing the 
literature, even the more recent literature, was made by the author; 
on the other hand, a glance at the Bibliography (which includes 
only works actually cited in the book) will indicate that the recent 
literature has not by any means been neglected. 

In early youth by good luck the author came upon the writings 
of scientists of the British school of the latter half of the nineteenth 
century. The works of Tyndall, Huxley, and Darwin, in particular, 
made a lasting impression on him. This could happen, of course, only 
because the books were written in an understandable way and also 
in such a way as to create interest and enthusiasm: — but this was 
one of the principal objects of this school of British scientists. 
Naturally it is easier to write books on biological subjects for non-
specialists than it is to write them on subjects concerned with the 
mathematical sciences — just because the time and effort needed to 
acquire a knowledge of modern mathematical tools is very great. 
That the task is not entirely hopeless, however, is indicated by John 
Tyndall's book on sound, which should be regarded as a great classic 
of scientific exposition. On the whole, the British school of popularizers 
of science wrote for people presumed to have little or no foreknow-
ledge of the subjects treated. Now-a-days there exists a quite large 
potential audience for books on subjects requiring some knowledge 
of mathematics and physics, since a large number of specialists of 
all kinds must have a basic training in these disciplines. The author 
hopes that this book, which deals with so many phenomena of every 
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day occurrence in nature, might perhaps be found interesting, and 
understandable in some parts at least, by readers who have some 
mathematical training but lack specific knowledge of hydro-
dynamics.* For example, the introductory discussion of waves on 
sloping beaches in Chapter 5, the purely geometrical discussion of 
the wave patterns created by moving ships in Chapter 8, great parts 
of Chapters 10 and 11 on waves in shallow water and flood waves in 
rivers, as well as the general discussion in Chapter 10 concerning 
the motion of fronts in the atmosphere, are in this category. 

2. Outline of contents 

It has already been stated that this book is planned as a coherent 
and unified whole in spite of the variety and diversity of its contents 
on both the mathematical and the physical sides. The possibility of 
achieving such a purpose lies in the fortunate fact that the material 
can be classified rather readily in terms of the types of mathematical 
problems which occur, and this classification also leads to a reasonably 
consistent ordering of the material with respect to the various types 
of physical problems. The book is divided into four main parts. 

Part I begins with a brief, but it is hoped adequate, development 
of the hydrodynamics of perfect incompressible fluids in irrotational 
flow without viscosity, with emphasis on those aspects of the subject 
relevant to flows with a free surface. Unfortunately, the basic general 
theory is unmanageable for the most part as a basis for the solution 
of concrete problems because the nonlinear free surface conditions 
make for insurmountable difficulties from the mathematical point 
of view. It is therefore necessary to make restrictive assumptions 
which have the effect of yielding more tractable mathematical 
formulations. Fortunately there are at least two possibilities in this 
respect which are not so restrictive as to limit too drastically the 
physical interest, while at the same time they are such as to lead to 
mathematical problems about which a great deal of knowledge is 
available. 

One of the two approximate theories results from the assumption 
that the wave amplitudes are small, the other from the assumption 

* The book by Rachel Carson [C.16] should be referred to here. This book is 
entirely nonmathematical, but it is highly recommended for supplementary 
reading. Parts of it are particularly relevant to some of the material in 
Chapter 6 of the present book. 
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that it is the depth of the liquid which is small — in both cases, of 
course, the relevant quantities are supposed small in relation to some 
other significant length, such as a wave length, for example. Both of 
these approximate theories are derived as the lowest order terms 
of formal developments with respect to an appropriate small dimen-
sionless parameter; by proceeding in this way, however, it can be 
seen how the approximations could be carried out to include higher 
order terms. The remainder of the book is largely devoted to the 
working out of consequences of these two theories, based on concrete 
physical problems: Part I I is based on the small amplitude theory, 
and Part I I I deals with applications of the shallow water theory. 
In addition, there is a final chapter (Chapter 12) which makes up 
Part IV, in which a few problems are solved in terms of the basic 
general theory and the nonlinear boundary conditions are satisfied 
exactly; this includes a proof along lines due to Levi-Civita, of the 
existence, from the rigorous mathematical point of view, of progressing 
waves of finite amplitude. 

Part II, which is concerned with the first of the possibilities, 
might be called the linearized exact theory, since it can be obtained 
from the basic exact theory simply by linearizing the free surface 
conditions on the assumption that the wave motions studied con-
stitute a small deviation from a constant flow with a horizontal free 
surface. Since we deal only with irrotational flows, the result is a 
theory based on the determination of a velocity potential in the space 
variables (containing the time as a parameter, however) as a solution 
of the Laplace equation satisfying certain linear boundary and initial 
conditions. This linear theory thus belongs, generally speaking, to 
potential theory. 

There is such a variety of material to be treated in Part II, which 
comprises Chapters 3 to 9, that a further division of it into sub-
divisions is useful, as follows: 1) subdivision A, dealing with wave 
motions that are simple harmonic oscillations in the time; 2) sub-
division B, dealing with unsteady, or transient, motions that arise 
from initial disturbances starting from rest; and 3) subdivision C, 
dealing with waves created in various ways on a running stream, 
in contrast with subdivisions A and B in which all motions are 
assumed to be small oscillations near the rest position of equilibrium 
of the fluid. 

Subdivision A is made up of Chapters 3, 4, and 5. In Chapter 3 
the basically important standing and progressing waves in liquids 
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of uniform depth and infinite lateral extent are treated; the important 
fact that these waves are subject to dispersion comes to light, and 
the notion of group velocity thus arises. The problem of the uniqueness 
of the solutions is considered — in fact, uniqueness questions are 
intentionally stressed throughout Part II because they are interesting 
mathematically and because they have been neglected for the most 
part until rather recently. I t might seem strange that there could be 
any interesting unresolved uniqueness questions left in potential 
theory at this late date; the reason for it is that the boundary con-
dition at a free surface is of the mixed type, i.e. it involves a linear 
combination of the potential function and its normal derivative, and 
this combination is such as to lead to the occurrence of non-trivial 
solutions of the homogeneous problems in cases which would in the 
more conventional problems of potential theory possess only iden-
tically constant solutions. In fact, it is this mixed boundary con-
dition at a free surface which makes Part I I a highly interesting 
chapter in potential theory — quite apart from the interest of the 
problems on the physical side. Chapter 4 goes on to treat certain 
simple harmonic forced oscillations, in contrast with the free oscil-
lations treated in Chapter 3. Chapter 5 is a long chapter which deals 
with simple harmonic waves in cases in which the depth of the water 
is not constant. A large part of the chapter concerns the propagation 
of progressing waves over a uniformly sloping beach; various methods 
of treating the problem are explained — in part with the object of 
illustrating recently developed techniques useful for solving boundary 
problems (both for harmonic functions and functions satisfying the 
reduced wave equation) in which mixed boundary conditions occur. 
Another problem treated (in Chapter 5.5) is the diffraction of waves 
around a vertical wedge. This leads to a problem identical with the 
classical diffraction problem first solved by Sommerfeld [S. 12] for 
the special case of a rigid half-plane barrier. Here again the uniqueness 
question comes to the fore, and, as in many of the problems of Part II, 
it involves consideration of so-called radiation conditions at infinity. A 
uniqueness theorem is derived and also a new, and quite simple and 
elementary, solution for Sommerfeld's diffraction problem is given. 
I t is a curious fact that these gravity wave problems, the solutions 
of which are given in terms of functions satisfying the Laplace 
equation, nevertheless require for the uniqueness of the solutions 
that conditions at infinity of the radiation type, just as in the more 
familiar problems based on the linear wave equation, be imposed; 
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ordinarily in potential theory it is sufficient to require only boundedness 
conditions at infinity to ensure uniqueness. 

In subdivision B of Part II, comprised of Chapter 6, a variety of 
problems involving transient motions is treated. Here initial con-
ditions at the time t = 0 are imposed. The technique of the Fourier 
transform is explained and used to obtain solutions in the form of 
integral representations. The important classical cases (treated first 
by Cauchy and Poisson) of the circular waves due to disturbances at 
a point of the free surface in an infinite ocean are studied in detail. 
For this purpose it is very useful to discuss the integral representations 
by using an asymptotic approximation due to Kelvin (and, indeed, 
developed by him for the purpose of discussing the solutions of just 
such surface wave problems) and called the principle, or method, of 
stationary phase. These results then can be interpreted in a striking 
way in terms of the notion of group velocity. Recently there have 
been important applications of these results in oceanography: one 
of them concerns the type of waves called tsunamis, which are 
destructive waves in the ocean caused by earthquakes, another 
concerns the location of storms at sea by analyzing wave records 
on shore in the light of the theory at present under discussion. The 
question of uniqueness of the transient solutions — again a problem 
solved only recently — is treated in the final section of Chapter 6. 
An opportunity is also afforded for a discussion of radiation con-
ditions (for simple harmonic waves) as limits as t -> oo in appropriate 
problems concerning transients, in which boundedness conditions at 
infinity suffice to ensure uniqueness. 

The final subdivision of Part II, subdivision C, deals with small 
disturbances created in a stream flowing initially with uniform 
velocity and with a horizontal free surface. Chapter 7 treats waves in 
streams having a uniform depth. Again, in the case of steady motions, 
the question of appropriate conditions of the radiation type arises; 
the matter is made especially interesting here because the circum-
stances with respect to radiation conditions depend radically on the 
parameter U2/gh, with U and h the velocity and depth at infinity, res-
pectively. Thus if U2/gh > 1, no radiation conditions need be im-
posed, if U2lgh < 1 they are needed, while if U2jgh = 1 something 
quite exceptional occurs. These matters are studied, and their physical 
interpretations are discussed in Chapter 7.3 and 7.4. In Chapter 8 
Kelvin's theory of ship waves for the idealized case of a ship regarded 
as a point disturbance moving over the surface of the water is treated 
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in considerable detail. The principle of stationary phase leads to a 
beautiful and elegant treatment of the nature of ship waves that is 
purely geometrical in character. The cases of curved as well as 
straight courses are considered, and photographs of ship waves taken 
from airplanes are reproduced to indicate the good accord with 
observations. Finally, in Chapter 9 a general theory (once more the 
result of quite recent investigations) for the motion of ships, regarded 
as floating rigid bodies, is presented. In this theory no restrictive 
assumptions — regarding, for example, the coupling (or lack of 
coupling, as in an old theory due to Krylov [K.20] between the 
motion of the sea and the motion of the ship, or between the various 
degrees of freedom of the ship — are made other than those needed to 
linearize the problem. This means essentially that the ship must be 
regarded as a thin disk so that it can slice its way through the water 
(or glide over the surface, perhaps) with a finite velocity and still 
create waves which do not have large amplitudes; in addition, it 
is necessary to suppose that the motion of the ship is a small oscil-
lation relative to a motion of translation with uniform velocity. The 
theory is obtained by making a formal development of all conditions 
of the complete nonlinear boundary problem with respect to a para-
meter which is a thickness-length ratio of the ship. The resulting 
theory contains the classical Michell-Havelock theory for the wave 
resistance of a ship in terms of the shape of its hull as the simplest 
special case. 

We turn next to Part III , which deals with applications of the 
approximate theory which results from the assumption that it is the 
depth of the liquid which is small, rather than the amplitude of the 
surface waves as in Part II. The theory, called here the shallow 
water theory, leads to a system of nonlinear partial differential 
equations which are analogous to the differential equations for the 
motion of compressible gases in certain cases. We proceed to outline 
the contents of Part III , which is composed of two long chapters. 

In Chapter 10 the mathematical methods based on the theory of 
characteristics are developed in detail since they furnish the basis 
for the discussion of practically all problems in Part III ; it is hoped 
that this preparatory discussion of the mathematical tools will make 
Part I I I of the book accessible to engineers and others who have not 
had advanced training in mathematical analysis and in the methods 
of mathematical physics. In preparing this part of the book the 
author's task was made relatively easy because of the existence of the 
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book by Courant and Friedrichs [C.9], which deals with gas dynamics; 
the presentation of the basic theory given here is largely modeled 
on the presentation given in that book. The concrete problems dealt 
with in Chapter 10 are quite varied in character, including the 
propagation of disturbances into still water, conditions for the 
occurrence of a bore and a hydraulic jump (phenomena analogous to 
the occurrence of shock waves in gas dynamics), the motion resulting 
from the breaking of a dam, steady two dimensional motions at 
supercritical velocity, and the breaking of waves in shallow water. 
The famous problem of the solitary wave is discussed along the lines 
used recently by Friedrichs and Hyers [F.13] to prove rigorously 
the existence of the solitary wave from the mathematical point of 
view; this problem requires carrying the perturbation series which 
formulate the shallow water theory to terms of higher order. The 
problem of the motion of frontal discontinuities in the atmosphere, 
which lead to the development of cyclonic disturbances in middle 
latitudes, is given a formulation — on the basis of hypotheses which 
simplify the physical situation — which brings it within the scope 
of a more general "shallow water theory". Admittedly (as has already 
been noted earlier) this theory is somewhat speculative, but it is 
nevertheless believed to have potentialities for clarifying some of 
the mysteries concerning the dynamical causes for the development 
and deepening of frontal disturbances in the atmosphere, especially 
if modern high speed digital computing machines are used as an aid 
in solving concrete problems numerically. 

Chapter 10 concludes with the discussion of a few applications of 
the linearized version of the shallow water theory. Such a linearization 
results from assuming that the amplitude of the waves is small. The 
most famous application of this theory is to the tides in the oceans 
(and also in the atmosphere, for that matter); strange though it 
seems at first sight, the oceans can be treated as shallow for this 
phenomenon since the wave lengths of the motions are very long 
because of the large periods of the disturbances caused by the moon 
and the sun. This theory, as applied to the tides, is dealt with only 
very summarily, since an extended treatment is given by Lamb 
[L.3]. Instead, some problems connected with the design of floating 
breakwaters in shallow water are discussed, together with brief 
treatments of the oscillations in certain lakes (the lake at Geneva 
in Switzerland, for example) called seiches, and oscillations in harbors. 

Finally, Part I I I concludes with Chapter 11 on the subject of 
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mathematical hydraulics, which is to be understood here as referring 
to flows and wave motions in rivers and other open channels with 
rough sides. The problems of this chapter are not essentially different, 
as far as mathematical formulations go, from the problems treated 
in the preceding Chapter 10. They differ, however, on the physical 
side because of the inclusion of a force which is just as important as 
gravity, namely a force of resistance caused by the rough sides and 
bottom of the channels. This force is dealt with empirically by 
adding a term to the equation expressing the law of conservation of 
momentum that is proportional to the square of the velocity and 
with a coefficient depending on the roughness and the so-called 
hydraulic radius of the channel. The differential equations remain of 
the same type as those dealt with in Chapter 10, and the same under-
lying theory based on the notion of the characteristics applies. 

Steady motions in inclined channels are first dealt with. In par-
ticular, a method of solving the problem of the occurrence of roll 
waves in steep channels is given; this is done by constructing a 
progressing wave by piecing together continuous solutions through 
bores spaced at periodic intervals. This is followed by the solution 
of a problem of steady motion which is typical for the propagation 
of a flood down a long river; in fact, data were chosen in such a way 
as to approximate the case of a flood in the Ohio River. A treatment 
is next given for a flood problem so formulated as to correspond 
approximately to the case of a flood wave moving down the Ohio 
to its junction with the Mississippi, and with the result that distur-
bances are propagated both upstream and downstream in the Missis-
sippi and a backwater effect is noticeable up the Ohio. In these 
problems it is necessary to solve the differential equations numerically 
(in contrast with most of the problems treated in Chapter 10, in 
which interesting explicit solutions could be given), and methods of 
doing so are explained in detail. In fact, a part of the elements of 
numerical analysis as applied to solving hyperbolic partial differential 
equations by the method of finite differences is developed. The results 
of a numerical prediction of a flood over a stretch of 400 miles in 
the Ohio River as it actually exists are given. The flood in question 
was the 1945 flood — one of the largest on record — and the predic-
tions made (starting with the initial state of the river and using the 
known flows into it from tributaries and local drainage) by numerical 
integration on a high speed digital computer (the Univac) check 
quite closely with the actually observed flood. Numerical predictions 
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were also made for the case of a flood (the 1947 flood in this case) 
coming down the Ohio and passing through its junction with the 
Mississippi; the accuracy of the prediction was good. This is a case 
in which the simplified methods of the civil engineers do not work 
well. These results, of course, have important implications for the 
practical applications. 

Finally Part IV, made up of Chapter 12, closes the book with a 
few solutions based on the exact nonlinear theory. One class of problems 
is solved by assuming a solution in the form of power series in the 
time, which implies that initial motions and motions for a short time 
only can be determined in general. Nevertheless, some interesting 
cases can be dealt with, even rather easily, by using the so-called 
Lagrange representation, rather than the Euler representation which 
is used otherwise throughout the book. The problem of the breaking 
of a dam, and, more generally, problems of the collapse of columns 
of a liquid resting on a rigid horizontal plane can be treated in this 
way. The book ends with an exposition of the theory due to Levi-
Civita concerning the problem of the existence of progressing waves of 
finite amplitude in water of infinite depth which satisfy exactly the 
nonlinear free surface conditions. 
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