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Preface 

This book consists of two parts. The first part, Chapter 1, is devoted to vector 
integration. The rest of the book, chapters 2-10, is devoted to stochastic 
integration in Banach spaces. 

Vector integration of various kinds has been presented in other books. We 
mention especially the books by N. Dunford and J. Schwartz [D-S], N. Din-
culeanu [D.l], J. Diestel and J. J. Uhl Jr. [D-U] and A. U. Kussmaul [Kus.l]. 
In the text, we refer the reader to these books for the proof of some important 
theorems that we do not want to repeat. 

The core of Chapter 1 is §5, devoted to integration of vector-valued func-
tions with respect to vector measures with finite semivariation. This kind 
of integration is not contained in any other book and was presented first in 
[B-D.2]. Kussmaul [Kus.l] considers a similar kind of integration but only for 
real-valued functions. 

Among the applications of the integral of §5 we quote: the Riesz represen-
tation theorem, the integral representation of continuous linear operators on 
Lp-spaces, the Stieltjes integral with respect to vector-valued functions with 
finite semivariation (which was not considered before) and, especially, the 
stochastic integration in Banach spaces. 

The reader interested in integration theory only, could use only chapter 1 
and the paragraphs 19, 21, 29 and 31. 

For the part devoted to stochastic integration we assume familiarity with 
the definitions and the results of the general theory of stochastic processes, as 
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presented, for example, in the book by C. Dellacherie and P. A. Meyer [D-M] 
and often we refer the reader to this book. 

The classical theory of stochastic integration for real-valued processes, re-
duces, essentially, to integration with respect to a square integrable martin-
gale. This is done by defining the stochastic integral first for simple processes 
and then extending it to a larger class of processes, by means of an isometry 
between certain L2-type spaces of processes. This method has been also used 
by Kunita [Ku] for processes with values in Hilbert spaces, by using the exis-
tence of the inner product to prove the above-mentioned isometry. But this 
approach cannot be used for Banach spaces, which lack an inner product. A 
new approach is needed for Banach-valued processes. 

On the other hand, the classical stochastic integral as described above is 
not a genuine integral, in the sense that it is not an integral with respect to 
a measure. 

It is desirable, as in classical Measure Theory, to have a space of "inte-
grable" processes with a norm on it, for which it is a Banach space, and to 
have an integral for integrable processes, which would be the stochastic inte-
gral. Also desirable would be to have Vitali- and Lebesgue-type convergence 
theorems. Such a goal is legitimate and many attempts have been made to 
fulfill it. 

Any measure-theoretic approach to stochastic integration has to use an in-
tegration theory with respect to a vector measure. Pellaumail [P] was the first 
to attempt such an approach, but due to the lack of a satisfactory integration 
theory, this goal was not achieved. Kussmaul [Kus.l] used the idea of Pellau-
mail and was able to define a consistent, measure theoretic stochastic integral, 
but only for real-valued processes. He used in [Kus.2] the same method for 
Hilbert-valued processes, but the goal was only partially fulfilled, again due 
to the lack of a satisfactory general integration theory. The integration theory 
presented here in §5 seems to be tailor-made for application to the stochastic 
integral. It was presented for the first time in [B-D.2]. 

In order to apply the integration theory to define a stochastic integral with 
respect to a Banach-valued process X, we associate to it a measure Ιχ on 
the ring 11 generated by the predictable rectangular sets. The process X is 
called summable, if Ιχ can be extended to a σ-additive measure with finite 
semivariation on the σ-algebra V of predictable sets. Roughly speaking, the 
stochastic integral HX is the process (/,0 f, HdIx)t>o of integrals with respect 
to Ix. 

The summable processes play, in this theory, the role played by the square 
integrable martingales in the classical theory. It turns out that every Hilbert-
valued, square integrable martingale is summable and the processes with in-
tegrable variation are also summable. In addition, a new class of summable 
processes emerges: the processes with integrable semivariation. Moreover, the 
stochastic integral with respect to such a process can be computed pathwise, 
as a Stieltjes integral (itself a Stieltjes integral with respect to a function of 
finite semivariation, rather than finite variation). This new class of summable 
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processes could not be made evident in the classical case of scalar processes, 
since for these processes, the variation and the semivariation are equal. It is 
only for processes with values in an infinite dimensional Banach space that 
the semivariation is different from the variation. 

Our space of integrable processes with respect to a summable process is a 
Lebesgue-type space, endowed with a seminorm, for which it is complete and 
in which the Vitali and the Lebesgue convergence theorems are valid. The 
legitimate goal mentioned above is thus fulfilled. 

It is worth mentioning the following summability criterion: X is summable 
iff Ιχ is bounded and has finite semivariation on the ring 72.. It is quite 
unexpected that the mere boundedness of Ιχ on Ti. implies not only that Ιχ 
is σ—additive on Ti, but that Ιχ can be extended to a σ—additive measure 
on V. 

Using the same measure-theoretic approach, we extend the theory of 
Stochastic integration for vector valued, two-parameter processes, in Chapters 
7-10. 

The same measure-theoretic approach can be used to extend the theory 
of stochastic integration for process measures and martingale measures in 
Banach spaces ([D.9], [D.10], [Di-Mu]). This extension, which is not included 
in this book, has applications in the theory of stochastic partial differential 
equations [W.3]. 

Each chapter is divided into paragraphs, numbered in continuation from 
one chapter to the last one, from 1 to 32. Each paragraph is divided into 
several sections indicated anew, in each paragraph, by capital letters. The 
numbering of definitions and theorems starts anew in each paragraph. The 
quotation, in the text, of definitions and theorems, is done in the following 
way: if we refer in a paragraph to a theorem from the same paragraph, then 
we quote it by its number in that paragraph; if we refer to a theorem from 
a different paragraph, then we quote it by a pair of numbers, in the form 
Theorem a.6, the first number a indicating the paragraph, and the second 
number 6 indicating the number of the theorem in paragraph o. 

Gainesville, Florida 
February 26, 1999 

N. Dinculeanu 
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Chapter 
Vector Integration 

§1. PRELIMINARIES 

In this paragraph we establish the notations used in the book and present the 
immediate integral, the classical integral, and the Bochner integral. Special 
attention is given to measurability of vector-valued functions. 

A. Banach spaces 

1. Throughout the book, E,F,G,D will denote Banach spaces. All Banach 
spaces are over the real field R. 

Numbers a > 0 are called positive (rather than nonnegative). A sequence 
(a n ) of numbers such that an < an+\ for every n is called increasing (rather 
than nondecreasing). 

For any Banach space M, the norm of an element x € M is denoted by \x\ 
or \X\M\ the dual of M is denoted by M* and the unit ball of M by M\. The 
duality between M and M* is denoted by (x,x*) or x*x, (x*,x) or even xx*. 

If M is a Hubert space, the inner product of two elements x,y € M is 
denoted by (x,y), or (x,y)\{ or even xy. 

The space of bounded linear operators from F into G is denoted by L(F, G). 
We write E C L(F, G) to mean that E is continuously embedded into L(F, G), 
that is, |xy| < |x| \y\, for x 6 E and y € F. Special mention will be made in 
case the embedding is an isometry. 

Examples of such isometries are: E - L(R,E); E C L{E*,R) = £**; 
L c L{F,E®VF)\ E c L{F,F®nE); if E is a Hubert space, E = L{E,R)\ 

1 
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2 Ch.l VECTOR INTEGRATION 

if E and F are Hubert spaces, E C L(F,E<S>HSP), where HS denotes the 
Hilbert-Schmidt norm. 

We write Co <£ M to mean that M does not contain a copy of CQ, that is, 
M does not contain a subspace which is isomorphic to the Banach space CQ. 

If M is a Banach space, a subspace Z C M* is said to be a norming space 
for M, if for every x € M we have 

| i |= sup{ | ( a f ,2> | :«GZi} . 

Obviously, M* is norming for M and if we consider M C M**, then M is 
norming for M*. 

A useful example of a norming space, which will be used in the sequel, is 
the following one: 

Let (Ω, T, P) be a probability space and 1 < p < +00. Denote 
LP

E = LP
E(P), the space of Bochner-integrable functions / : Ω —> E with 

respect to P (see Section J on the Bochner integral). If £ + £ = 1, then LE. 
is isometrically contained in {LP

E)*. If E* has the Radon-Nikodym Property 
(RNP) and if p < 00, then (LE)* = Lq

E,. But even if E* does not have the 
R.NP and even if p = 00, Lq

E. is a norming space for LE. Moreover, if 72. is a 
ring generating the σ-algebra T, the subspace 5β·(7?.) of ¿J*-valued, 72-step 
functions is a norming space for VE. 

B. Classes of sets 

2. Throughout the first chapter, 5 is a set and V,1l,A,T>,S,E are respec-
tively a semiring, a ring, an algebra, a ¿-ring, a σ-ring and a σ-algebra of 
subsets of 5. 

A semiring V is a class of subsets of S, closed under intersection ΑίΊ Β 
and satisfying the following condition: for any pair (A, B) of sets from V such 
that Ac B, there is a finite family (Cj)o<t<n of sets from P with 

A = Co C Ci C . . . C Cn = B 

and 

Ci-d-i e P , f o r i = l , 2 , . . . , n . 

An important example of semiring is the class of the intervals of the form 
(a, b}. 

A ring is a class of subsets of S closed under union A\J B and difference 
A-B. 

Any ring is a semiring. 
An algebra is a ring containing S. 
A δ-ring is a ring closed under countable intersections. 
A σ-ñng is a ring closed under countable unions. 
A σ-algebra is a σ-ring containing S. 
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For any class C of subsets of S we denote by r(C), a(C), 6r(C), ar(C), aa{C) 
respectively the ring, the algebra, the ¿-ring, the σ-ring, and the σ-algebra 
generated by C. 

If V is a semiring, the ring r(V) generated by V consists of all the finite, 
disjoint unions of sets from V. 

The σ-ring ar{V) generated by a ¿-ring V consists of all countable unions 
of disjoint sets from V. 

For any class C of subsets of S we denote by C\oc the class of sets i 4 c S 
that are "locally" in C, that is, such that A ΓΊ B € C for every B € C. 

If 7?. is a ring, then Τί\οα is an algebra; if V is a ¿-ring and S is a σ-ring, 
then V\oc and S\oc are σ-algebras. 

For any class C of subsets of S and any set A C S we denote 

CDA = {BnA:BeC}. 

If C is a ring, ¿-ring, σ-ring, then so is C Π A. 
The characteristic function of a set A C S is denoted by ψΑ, 1 A or I A ■ 
If TZ is a ring (or any other class), we denote by SF(1Z), the set of TZ-step 

functions (or 7^-simple functions) / : 5 —► F of the form 

l < t < n 

with Ai € TZ and x¿ £ F. If 7£ is a ring, the sets Ai can be taken mutually 
disjoint. In this case 

ι / ι= Σ ¥>*·ΐχ*ι· 
l < t < n 

If V is a semiring and 72. = ^(P), then Sp(V) = Sp(TZ). 

C. Measurable functions 

Measurability will be defined with respect to a σ-algebra. 
Let Σ be a σ-algebra of subsets of S. 
We start with the usual definition of measurability of numerical functions. 

3. Definition. A function f : S —> R is Σ-measurable if f~x{B) € Σ for 
every Borel set B c R . 

The Σ-step functions are Σ-measurable. 
We state the following characterization of measurability in terms of step 

functions: 

4. Theorem, a) A function f : S —> R is Σ -measurable iff there is a se-
quence (fn) of finite, real-valued, Σ- step functions such that fn —» / pointwise. 

b) If f : S —*R is Σ-measurable there is a sequence (/„) of finite, real-valued, 
Σ-step functions such that fn—*f pointwise and \fn\ < \f\, for each n. 



4 Ch.l VECTOR INTEGRATION 

If f > 0, the sequence (/„) can be chosen to be increasing and fn > 0. 
If f is bounded, one can choose the sequence (fn) to converge uniformly to 

/ · 

For vector-valued functions we take the statement in Theorem 4 a) as a 
definition of measurability: 

5. Definition. A function f : S —» F is said to be Σ-measurable if there is a 
sequence (/„) of F'-valued, Έ-step functions such that / n —► / pointwise. 

In particular, the Σ-step functions are Σ-measurable. It follows that if 
/ : S —» F is Σ-measurable, then | / | is also Σ-measurable. 

Since the range of a step function is finite, it follows that the range of a 
Σ-measurable function is separable. 

Assertion b) in Theorem 4 remains valid for vector-valued, measurable 
functions: 

6. Theorem. / / / : S —► F is Σ-measurable, then there is a sequence (/„) 
of F-valued, Σ-step functions, such that fn-^f pointwise and \fn\ < \f\ for 
every n. 

Proof. Let (gn) be a sequence of F-valued, Σ-step functions such that gn —» / 
pointwise. Then \gn\ —» | / | pointwise. Since \gn\ are positive Σ-step functions, 
by Theorem 4 a), the function | / | is Σ-measurable. By Theorem 4 b), there 
is an increasing sequence (hn) of positive, finite, Σ-step functions such that 
hn —* I/I pointwise. Then \gn\ — hn —» 0 pointwise. 

For each n, we can represent gn and hn using the same sets of Σ: 

9n = Σ VA<XÍ a n d ft" = Σ VA>ai 

i6 / (n) iel(n) 

with (j4i)iei(n) a finite family of mutually disjoint sets from Σ, x¿ € F and 
cti > 0. For each n we define 

fn= ¿2 V/l.^tl^r1«!! 
i6 / (n) 

where we set x¿|x¿|-1a¿ = 0 if Xi = 0. Then 

|/n| < 5Z VA*Qi = hn< l/l 
i6 / (n) 

and 

\fn-9n\= 5 Z (PAl\xi\Xi\~1ai -Xi\ < 

i£l(n) 

^ Σ ^ . I a ¿ ~ lX«l| = \kn~ \9n\\ ->0. 
i6 / (n) 
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As gn —» / pointwise, we deduce that fn—>f pointwise. ■ 

The property used in Definition 3 is preserved under pointwise limits for 
real-valued functions, as well as for vector-valued functions. 

7. Proposition. Let (fn) be a sequence of functions fn : S —> F (or R) 
converging pointwise to a function f : S —» F (or R). 

Assume that for each n and each Borel set B C F (or R) we have 
f~1(B) € Σ. Then f~1(B) € Σ for each Borel set B C F (orR). 

Proof. Let G c F be an open set and for each fc € N let Gk be the set of 
all points x € F with distance d(x, Gc) > £. Then Gk is open, Gk C G and 
UfcgN Gk=G and we have 

/ _ 1 (G)=U U Π f~lP{Gk) e Σ. 
fc>ln>lp>l 

It follows that f~x(B) 6 Σ for every Borel set BcF. _ 
The above proof remains valid for functions with values in R, if we take a 

distance d on R compatible with its topology. ■ 

The property in Definition 3 can now be used to characterize Σ-
measurability of vector-valued functions (cf. [N.l], p. 101): 

8. Theorem. A function f : S —* F is Σ-measurable iff it has separable 
range and f~1(B) € Σ for every Borel set B C F. 

Proof. Assume first that / is Σ-measurable and let (/„) be a sequence of 
F-valued, Σ-step functions such that fn—*f pointwise. 

For each step function / „ we have f~l(B) € Σ for every Borel set B C F. 
By Proposition 7, we have also f~l(B) G Σ for every Borel set B C F. We 
already mentioned above that a Σ-measurable function has separable range. 
The first implication is proved. 

To prove the converse implication, assume that / has separable range and 
f~l(B) € Σ for every Borel set B C F. Let Fo be a separable subspace of F 
containing the range of / . 

Let (yn)n>o be a sequence dense in Fo with yo = 0. For each n € N define 
ψη '■ F0 —♦ {j/0)l/i, ■ ■ · i J/n} for each x e Fo as the first yk with 0 < fc < n for 
which the minimum mino<m<n \x — ym\ is attained; that is, for fc < n we have 
<p(x) = Vk if\x-yic\ < \x-ym\, form = 0 , 1 , . . . , A - 1 and \x-yk\ < \x~ym\, 
for m = fc+1,..., n. Then φη : FQ —> F is a Borel function, since the mapping 
x —> \x — ym\ from FQ into R+ is continuous and for each i < n we have 

tñl{Vi} = ix e Fo;<Pn{x) = Vi} 

= P | {X € Fo : |x - ym\ < \x - y¿|} Π f] {x 6 F0 : |x - ym\ < |x - j/¿|}, 
m<i m>i 

which is a finite intersection of open or closed sets. 
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On the other hand, limn ψη{χ) = x for x € Fo, since 

|x - ψ„(χ)\ = min |x — ym\ J. 0 as n —» co, for each x 6 F0 , 
0<ra<n 

because (yn) is dense in F0. For each n set /„ = ψη o / : S —» F0. For each 
i < n, the set VñHl/t} is a Borel set, hence fñx{yi) - ί~1(φηΗνί)) e Σ> 
hence the function /„ is a Σ-step function and we have / n —♦ / pointwise. ■ 

For functions with values in a separable space, the property in Definition 
3 is a complete characterization of measurability. 

9. Corollary. / / F is separable, then a function f : S —> F is Σ-measurable 
iff f~l(B) e Σ for every Borel set B C F. 

From Proposition 7 and Theorem 8 we deduce that Σ-measurability is 
preserved under pointwise convergence: 

10. Theorem. / / (/n) is a sequence of F (or R) -valued, Σ -measurable func-
tions, converging pointwise to a function f, then the limit f is also Σ-
measurable. 

As stated in Theorem 4 b), a real-valued, bounded, Σ-measurable function 
is the uniform limit of a sequence of Σ-step functions. This is still true for 
vector-valued functions / : S —* F with relatively compact range, but not nec-
essarily for bounded functions. However, an arbitrary Σ-measurable function 
/ : S —> F is the uniform limit of a sequence of Σ-measurable functions with 
countable range. 

A Σ-measurable function g : S —► F with countable range is called a Σ-
measurable, σ-step function, or simply, a σ-step function, if the σ-algebra Σ 
is understood. It is of the form 

9= 5Z ΨΑηΧη 
1<η<οο 

with An € Σ mutually disjoint and xn € F. 

11. Proposition. If f : S —> F is Σ-measurable, then there is a sequence 
ifn) of F-valued, Σ-measurable, σ-step functions, converging to f uniformly 
on S. 

Proof. Let ε > 0 and let (x*) be a sequence dense in the range of / . For each 
k let Bk = f~l{Se(xk)) € Σ, where Se(xk) is the ball centered at x* with 
radius ε. We have U i o t « » &k — S. Denote A\ = B\ and Ah — Bk-U¿<fc^ 
for k > 1. The sets Äk are mutually disjoint, belong to Σ and their union is 
S. Define the function ge : S —+ F by 

l<fe<oo 
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Then ge is a Σ-measurable, σ-step function and 

\/(χ)-9ε(3)\<ε, hTseS. 

Taking ε = ~ and fn = g±, we obtain the desired sequence (/n)- H 
71 n 

D. Simple measurability of operator-valued functions 

12. Definition. A function U : S —> E C L(F,G) is said to be simply Σ-
measurable, if for every x € F, the function Ux : S —► G is Σ-measurable. 

It is clear that if U is measurable, then it is simply measurable. We state 
below a few useful properties of simply measurable functions. 

13. Proposition. / / U : S —► E C L(F,G) is simply Σ-measurable and 
f : S —> F is Σ-measurable, then the function Uf : S —► G is Σ,-measurable. 

Proof. The proposition is true first, for Σ-step functions / and then, by taking 
limits, for any Σ-measurable function / . ■ 

A simply measurable function U is not necessarily measurable; and even 
\U\ is not necessarily measurable. We give below sufficient condition for \U\ 
or U to be measurable. 

14. Proposition. IfU:S^>Ec L(F,G) is such that \Ux\ is Σ-measurable 
for every x G F and if F is separable, then the function \U\ is Έ-measurable. 

Proof. Let (xn) be a sequence dense in F with xn φ 0. For each n, the 
functions | ί /χη | and ' ,χ

χ,ϊ < are Σ-measurable. Since 

i r r / M \U(s)xn\ , -, 

\U(s)\ = sup ' , , , for s € S, 
n l^nl 

we deduce that \U\ is Σ-measurable. ■ 

15. Proposition. Assume the embedding E C L(F,G) is an isometry. If 
U : S —► E C L(F, G) is simply Σ,-measurable and separably valued, then U is 
Σ -measurable. 

Proof. Assume U is simply Σ-measurable with separable range. Let B be a 
closed sphere in E with center a and radius r and show that U~1(B) € Σ. 

Let (an) be a sequence dense in the range of U, with a\ = a. Since 
E C L(F,G) isometrically, for each n there is an Xjim 

€ F with \xnm\ = 1 
and | a n x n m | > \an\ - i . Then 

\an\ = sup |a„xn m | , for each n. 
m 

Let V be the closed vector space in E generated by the sequence (an). For 
each v € V we have 

\v\ =sup | t ;x n m | . 
η , τ η 
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For each n and m, the function Uxnm — axnm is Σ-measurable, hence 
\Uxnm — a,xnm\ is Σ-measurable; therefore 

Anm = {s : \U(s)xnm - axnm\ < r} € Σ. 

Since 
\U(s) - a\ = sup \{U(s) - a )x n m | , for s € S, 

nm 

we deduce that 
i/-1(fl) = f | i 4 n m € E 1 

um 

hence f/ is Σ-measurable. ■ 

E. Weak measurability 

Particular cases of simple measurability are weak measurability and weak star 
measurability. 

16. Definition. We say that a function f : S —» F is weakly Σ-measurable, 
if for every x* e F*, the real function (/, x*) is Σ-measurable. 

A function g : S —> F* is said to be weak star Σ-measurable, if for every 
x € F, the real function (x, g) is Σ-measurable. 

Weak star measurable functions are also called weak * measurable. 
If we want to emphasize the difference between different kinds of mea-

surability, the functions that are Σ-measurable in the usual sense are called 
strongly Σ-measurable. 

There is a more general weak measurability, with respect to a space Z C F*, 
norming for F. 

17. Definition. Let Z C F* be a space norming for F. We say that a 
function f : S —> F is Z-weakly Σ -measurable, if for every z € Z, the real 
function (/, z) is Σ-measurable. 

Taking Z — F*, the F*-weak measurability is the weak measurability of 
Definition 16. If g : S —► F* is a function, considering F C (F*)* and taking 
Z = F, the F-weak measurability is the weak star measurability of Definition 
16. 

Z-weak measurability is itself a particular case of simple measurability if 
we consider the isometric embedding F C L(Z,R). 

From the properties of simple measurability we deduce then the properties 
of Z-weak measurability, where Z C F* is a space norming for F. 

18. Proposition. If f : S —* F is Z-weakly Σ-measurable and g : S —> Z is 
Σ-measurable, then the real function (/, g) is Σ-measurable. 

19. Proposition. / / / : S —» F is Z-weakly Σ-measurable and Z is separable, 
then l/l is Σ-measurable. 
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20. Proposition. If f : S —* F is Z-weakly Σ-measurable and has separable 
range, then f is Σ-measurable. 

In particular, the above properties are valid for weakly measurable and for 
weak* measurable functions. 

21. Proposition. If f : S —> F is weakly Σ-measurable and has separable 
range, then f is strongly Σ-measurable. 

If F is separable, then for functions f : S —> F weak measurability and 
strong measurability are equivalent. 

22. Proposition. Ifg : S —» F* is weak star Σ-measurable and has separable 
range, then g is strongly Σ-measurable. 

If F* is separable, then for functions g : S —» F*, weak measurability, weak 
star measurability, and strong measurability are equivalent. 

F. Integral of step functions 

23. A set function m : TZ —> E defined on a ring TZ is called an additive 
measure, if, for every pair (A, B) of disjoint sets from TZ we have 

m(A UB) = m(A) + m{B). 

An additive measure is finitely additive, that is, 

™( U Λ«)= Σ m^«) 
l < t < n l < i < n 

for any finite family (j4¿)i<¿<n of mutually disjoint sets from ~R. 
A set function m : TZ —► E is called a σ- additive measure, if, for any 

sequence (An) of mutually disjoint sets from TZ with union in TZ, we have 

m ( | J y l n ) = '*Γπι(Αη)· 
n n 

If m : TZ —> E C L(F,G) is an additive measure and / = Σ ΨΑ,^ί is an 
1 6 / 

7£-step function from SF(TZ), the integral f fdm is an element of G defined 
by the equality 

/ fdm = y^m(Ai)xj. 

Since m is additive, the integral / fdm, is independent of the particular rep-
resentation of / as an 7^-step function. 

If we want to define the integral for a larger class of functions, we should 
impose additional conditions on TZ and m. 
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G. Totally measurable functions and the immediate integral 

An immediate extension of the integral f fdm is for totally measurable func-
tions / , provided that the measure m has finite semivariation. This immediate 
integral is used in the Riesz representation theorem. 

Let TZ be a ring of subsets of S. 

24. Definition. A function f : S —► F is said to be totally TZ-measurable, if 
it vanishes outside a set A € TZ and if it is the uniform limit of a sequence 
(fn) of F-valued, TZ-step functions. 

The set of totally TZ-measurable functions f : S —> E is denoted by 
TMF{TZ). 

If F = R we write TM(7Z) instead of TMR(TZ). Any totally measurable 
function is bounded. We consider on TMF(TZ) the topology of uniform con-
vergence, defined by the sup norm: 

| |/ | | = sup | / (e) | . 
s&S 

Then the set SF(TZ) is dense in TMF(1Z). 
According to Theorem 4, if Σ is a σ-algebra, then a real-valued, measurable 

function / is totally Σ-measurable iff / is bounded. But a vector-valued, 
bounded, Σ-measurable function need not be totally measurable. 

We remark also that a totally Σ-measurable function is Σ-measurable. 
If 5 is a locally compact, Hausdorff space and B is the ¿-ring of the rela-

tively compact, Borel subsets of S, then TMF(B) contains the space K.F(S) 
of continuous functions / : S —> F with compact support. 

25. Definition. Let m : TZ —* E C L(F, G) be an additive measure defined 
on a ring TZ. The semivariation of m on a set A € TZ, relative to the pair 
(F, G), is a number denoted by rhFtc(A) and defined by the following equality: 

mF,G(A) = sup{\ffdm\ : f € SF(TZ), | / | < ψΑ). 

We say m has finite semivariation relative to {F,G) if πΐρ,α(Α) < oo for 
every A G TZ. 

The semivariation will be studied in detail in §4. 

26. Proposition. Let m : TZ —* E C L(F,G) be an additive measure with 
finite semivariation rhp^G- Then for every TZ-simple function f € SF(TZ) with 
support A € TZ we have 

' / 
fdm\ < \\f\\rhFiG(A). 

Proof. The inequality is evident, if | |/ | | = 0. If | |/ | | φ 0, then irW/ < ψΑ and 

the inequality follows from the definition of the integral of step functions. ■ 
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27. It follows that the linear mapping / —► J fdm is continuous on SF(TZ) 
for the sup norm. Since SF(TZ) is dense in TMF(TZ), this linear mapping can 
be extended by continuity to the whole space TMF(TZ). The value of the 
extension for a function / e TMF(TZ) is still denoted by J fdm and is called 
the immediate integral of / with respect to m. We still have 

\Jfdm\<\\f\\mF,a(A), 

for / € TMF(fl) with support in A. 

H. The Riesz representation theorem 

The immediate integral is easily defined, but it does not have too many prop-
erties. For example, the Lebesgue convergence theorem cannot be proved in 
this context. But it is good enough to represent continuous linear operators: 

28. Theorem. Let A be an algebra of subsets of S and U: TMF(A) —» G 
a continuous linear operator. Then there is an additive measure 
m : A —» L(F, G) with finite semivariation mFja(S) such that 

U{f) = Í fdm, for f 6 TMF(A) 

and 
\\U\\ = mFiG(S). 

The proof of this theorem is immediate. 
The measure m is defined by m(A) = UÍJPA), for A £ A. For more details 

see [D.l]. 
But not so immediate is the proof of the following Riesz-type representation 

theorem. 

29. Theorem. Let K be a compact Hausdorff space and CF{K) the space of 
continuous functions f : K —> F, endowed with the sup norm. 

Let U : CF(K) —■» G be a continuous linear operation. 
Then there is an additive Borel measure m : B(K) —> L(F,G**) with finite 

semivariation rhp^c·' such that 

U(f) = j fdm, forfeCF(K) 

and 
\\U\\ = mF,G..(K). 

Moreover, for each z € G*, the measure mz : B{K) —> F* defined by 

(x,mz(A)) = (m(A)x, z), for x 6 F and A € B(K), 
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is regular, σ-additive and with finite variation. 

For the proof see [D.l] and [D-U]. 

30. An additive measure m : B(K) —► L(F,G**) with finite semivariation 
rhp^c and such that mz is regular, σ-additive, and with finite variation for 
every 2: € G*, is sometimes called a representing measure. 

3 1 . There are cases when the measure m in the above theorem is neither 
σ-additive, nor regular, nor with values in L(F,G). 

It is an open problem to give a characterization of the operations U for 
which the corresponding measure m has one or more of the above-mentioned 
properties. 

There are partial answers to this problem: 
a) IfU : CR(K) —* G is weakly compact, then the corresponding measure m 
is σ-additive, regular, and has values in G. 

For a complete presentation of this case see [D-U]. 
b) An operation U : Cp{K) —► G is said to be dominated if there is a positive, 
regular Borel measure μ such that 

\U(f)\ < I \/\άμ, {orfeCF(K). 

If U : Cp(K) —» G is dominated, then the corresponding measure m is σ-
additive, regular, with values in L(F,G), and with finite variation \m\. 

For a complete presentation of this case see [D.l]. 
A continuous linear functional U : CF(K) ·—► R is dominated; therefore the 

corresponding measure m : B(K) —» F* is σ-additive, regular, and with finite 
variation. 

We give one more case which answers the above problem. 
c) If G — D" is a dual of a Banach space and U : CF{K) —* D* is a 
continuous linear operation, then the corresponding measure m has values in 
L{F,D*), is σ-additive, and regular. 

32. If an additive measure m : TZ —» E C L(F, G) defined on a ring 1Z has 
finite semivariation πΐρ,σ, it might not be possible to extend the integral 
J fdm beyond the space ΤΜρ{ΤΖ) of totally measurable functions. 

In order to define the integral for a larger class of functions we need an 
additive measure m : V —► E C L(F,G) defined on a 6-ring, with finite 
semivariation m^G such that the measures m2 : V —» F* are σ-additive for 
every z in a subspace Z C G* norming for G. This integral will be presented in 
§5 and is an extension of the immediate integral. It follows that this integral 
can be used in the Riesz representation theorem instead of the immediate 
integral. 

33. There are 4 stages in the development of the integral / fdm: 
I) The classical integral, with m > 0 and / real-valued ; 
II) The Bochner integral, with m > 0 and / vector-valued ; 


