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Preface 

As in the first edition of this book, the purpose of this revision is the collection and 
unified presentation of statistical models and methods for the analysis of failure 
time data. The motivation for this effort continues to derive primarily from biome-
dical contexts and, to a lesser extent, industrial life-testing purposes. 

A voluminous literature on failure time analysis and the closely related event 
history analysis has developed in the more than 20 years since the publication in 
1980 of the first edition of this book. The theoretical underpinnings of the methods 
described previously have been strengthened in the interim, and many important 
generalizations and related developments have taken place. Counting process methods 
and related martingale convergence results have led to precise and general asymp-
totic results for tests and estimators under key classes of failure time models and 
important censoring and truncation mechanisms. These developments have also 
contributed to the formulation of broader classes of models and methods. 

An important challenge in developing this revision was to preserve the feature of 
a fairly elementary and classical likelihood-based presentation of failure time models 
and methods while integrating the counting process notation and related theory. 
This we have done by using classical notation and descriptions throughout the first 
four chapters of the revision while introducing the reader to key estimating func-
tions and estimators in notation involving counting processes and stochastic inte-
gration. These chapters deal with survivor function estimation and comparison of 
survival curves (Chapter 1); statistical models for failure time distributions, including 
parametric and semiparametric regression models (Chapter 2); testing and estima-
tion in parametric regression models under right censoring and other selected cen-
soring schemes (Chapter 3); and testing and estimation under the semiparametric 
Cox regression model (Chapter 4). These chapters, along with parts of Chapters 6 
to 8, can form the basis for an introductory graduate-level biostatistics or statistics 
course. We have tried to keep a solid contact with the first edition in many places 
and, for example, have retained illustrations from that edition where they still 
seemed to make the relevant points well. 

A new Chapter 5 provides a more systematic introduction to counting processes 
and martingale convergence results and describes how they can be applied to yield 

xi 
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asymptotic results for many of the statistical methods discussed in the first four 
chapters. The treatment is somewhat less formal than in some more specialized 
books, but presents the reader with a development and summary of the main ideas 
and a good basis for further investigation and study. 

The remainder of the book uses the notation from counting processes and stochastic 
integrals where it is helpful, but continues to emphasize the likelihood basis for 
testing and estimation procedures. Like Chapter 5 in the first edition, Chapter 6 
is devoted to general concepts of likelihood and partial likelihood construction, 
especially in relation to time-dependent and evolving covariate histories. We also 
provide an example in which martingale methods do not allow the development of 
asymptotic results because the conditioning events are not nested in time. Like our 
previous Chapter 6, Chapter 7 is devoted to the semiparametric log-linear or accel-
erated failure time model. Over the past two decades much effort has been devoted 
to regression estimation under this model, to the point where it can provide a prac-
tical alternative to the Cox model. Like our previous Chapter 7, Chapters 8 through 
10 are devoted to aspects of multivariate failure time data analysis, including com-
peting risk and multistate failure time modeling and estimation (Chapter 8), recur-
rent event modeling and estimation (Chapter 9), and correlated failure time methods 
(Chapter 10). Aside from a part of Chapter 8, most of the material in these 
chapters reflects developments since the first edition was published. Martingale 
convergence results are applicable to some of the estimating functions considered 
in these chapters, but others rely on empirical process methods. The latter methods 
can largely subsume the martingale methods, but we have not attempted compre-
hensive coverage here. Chapter 11 is devoted to more specialized topics. We have 
retained some of the material from our original Chapter 8 while providing a 
description of methods for such topics as risk set sampling, missing covariate 
data, mismeasured covariate data, sequential testing and estimation, and Bayesian 
methods, mostly in the context of the Cox model. The revision as a whole can serve 
as the textbook for a more advanced graduate course in biostatistics or statistics. 

With the vast literature that has developed on failure time analysis, we have had 
to be selective in both the scope and depth of our coverage. We have chosen not to 
provide in-depth coverage of probability theory that is relevant to the asymptotic 
methods and results discussed, nor, except for some general comments in Appendix B, 
have we attempted to include a description of how available statistical software 
packages can or cannot be used to implement the various methods. We have chosen 
to emphasize some statistical models and approaches that seem to us to be of partic-
ular importance, to stress the ideas behind their development and application, and to 
provide some worked examples that illustrate their use. 

To augment the usefulness of this revision as a graduate text, we have included a 
set of exercises at the end of each chapter. A number of these problems introduce 
the reader to additional pertinent failure time literature. As before, we have used 
references sparingly, especially in the early chapters, and bibliographic notes are 
provided at the close of each chapter. For historical reasons we have retained 
most of bibliographic notes from the original version, but we have augmented 
them with important recent references for each failure time topic. 
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There are a number of books on failure time methods that nicely complement 
this work and provide more comprehensive coverage of specific topics. For 
example, Lawless (1982) provides extensive coverage of parametric failure time 
models and estimation procedures; Cox and Oakes (1984) provide a concise and 
readable account of a range of failure time data topics; Fleming and Harrington 
(1991) provide a rigorous presentation of Cox regression methods and selected 
other failure time topics with considerable attention to model checking procedures; 
Andersen et al. (1993) give a comprehensive compendium of failure time and event 
history analysis methods with emphasis on counting processes. Andersen et al. 
(1993) provide additional material on a number of the topics discussed here. Books 
by Collett (1994) and Klein and Moeschberger (1997) provide relatively less tech-
nical accounts of the methods for key failure time topics. Collett includes a presen-
tation of computer software options. Therneau and Grambsch (2000) discuss the 
implementation of failure time methods using SAS and S-Plus and provide a num-
ber of detailed illustrations with particular attention to model building and testing. 
Hougaard (2000) presents the first book dedicated to multivariate failure time 
methods. His book nicely complements our Chapters 8 through 10, with a greater 
emphasis on random effects or frailty models. 

We would like to express our thanks to colleagues and to former and current stu-
dents who have helped to shape our understanding of failure time analysis issues 
and methods. Their ideas and efforts have helped to inform this presentation. 

JOHN D . KALBFLEISCH 

Ross L. PRENTICE 

February 2002 
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C H A P T E R 1 

Introduction 

1.1 FAILURE TIME DATA 

We consider methods for the analysis of data when the response of interest is the 
time until some event occurs. Such events are generically referred to as failures, 
although the event may, for instance, be the performance of a certain task in a learn-
ing experiment in psychology or a change of residence in a demographic study. 
Major areas of application, however, are biomedical studies and industrial life 
testing. 

We assume that observations are available on the failure time of η individuals 
usually taken to be independent. A principal problem examined is that of develop-
ing methods for assessing the dependence of failure time on explanatory variables. 
Typically, such explanatory variables will describe prestudy heterogeneity in the 
experimental material or differential allocations of treatments resulting from the 
study design. A secondary problem involves the estimation and specification of 
models for the underlying failure time distribution. 

Additional problems arise in the analysis of multivariate failure times and failure 
types. These problems entail assessing the frequency of recurrent failures and esti-
mating the correlation among failure times and types. There are a number of rea-
sons why special methods and special treatment is required for failure time data, 
and it is convenient to illustrate some of the distinguishing features through the 
following examples. 

1.1.1 Carcinogenesis 

Table 1.1 gives the times from insult with the carcinogen DMBA to mortality from 
vaginal cancer in rats. Two groups were distinguished by a pretreatment regimen. 
We might consider comparing the two regimes using the ί-test (presumably to 
transformed data) or one of several nonparametric tests. Such procedures cannot 
be applied immediately, however, because of a feature very prevalent in failure 
time studies. Specifically, four failure times in Table 1.1 are censored. For these 
four rats, we can see that the failure times exceed 216, 244, 204, and 344 days, 

1 



2 INTRODUCTION 

Table 1.1 Days to Vaginal Cancer Mortality in Rats 

Group 1 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220 
227, 230, 234, 246, 265, 304, 216', 244* 

Group 2 142, 156, 163, 198, 205, 232, 232, 233, 233, 233, 233 
239, 240, 261, 280, 280, 296, 296, 323, 204*, 344* 

Source: Pike (1966). 

' These four items are right censored. 

respectively, but we do not know the failure times exactly. In this example, the 
(right) censoring may have arisen because these four rats died of causes unrelated 
to application of the carcinogen and were free of tumor at death, or they may simply 
not have died by the time of data analysis. The necessity of obtaining methods of 
analysis that accommodate censoring has been a principal motivating factor for the 
development of specialized models and procedures for failure time data. 

A larger set of animal carcinogenesis data is given in Appendix A (data set V). 
Two groups of male mice were given 300 rads of radiation and followed for cancer 
incidence. One group was maintained in a germ-free environment. The new feature 
of these data is that more than one failure mode occurs. It is of interest, for example, 
to evaluate the effect of a germ-free environment on the incidence rate of reticulum 
cell sarcoma while accommodating the competing risks of developing thymic lym-
phoma or other causes of failure. 

1.1.2 Randomized Clinical Trial 

Table 1.2 gives some data from a randomized clinical trial on 64 patients with 
severe aplastic anemia. Prior to the trial, all the patients were treated with high-
dose cyclophosphamide followed by an infusion of bone marrow from an HLA-
identical family member. Patients were then assigned to each of two treatment 
groups: cyclosporine and methotrexate (CSP-fMTX) or methotrexate alone 
(MTX). One endpoint of interest was the time from assignment until the diagnosis 
of a life-threatening stage (>2) of acute graft versus host disease (AGVHD). The 
times are given in days. Also included are two covariates measured at the outset: 
the patient's age in years at the time of transplant and an indicator of whether or 
not the patient was assigned to a laminar airflow (LAF) isolation room. Storb et al. 
(1986) report on the subset of 46 patients who were randomly assigned to treatment, 
with stratification by age group and LAF. For purposes of illustration, we shall treat 
the data as though all 64 patients had been randomly assigned. In this trial, only 20 
of the 64 patients actually reached the endpoint; the remaining 44 patients were 
right censored. 

Appendix A (data set II) gives a part of the data from a much larger clinical trial 
carried out by the Radiation Therapy Oncology Group. The full study included 
patients with squamous cell carcinoma of 15 sites in the mouth and throat, with 
16 participating institutions, although only the data on three sites in the oropharynx 
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Table 1.2 Time in Days to Severe (Stage > 2) Acute Graft Versus Host Disease 
(AGVHD), Death, or Last Contact for Bone Marrow Transplant Patients Treated 
with Cyclosporin and Methotrexate (CSP + MTX) or with MTX Only" 

CSP 4- M T X M T X 

Time L A F A g e Time L A F A g e Time L A F A g e Time L A F A g e 

3* 0 40 324* 0 23 9 1 35 104* 1 27 
8 1 21 356* 1 13 11 1 27 106* 1 19 

10 1 18 378* 1 34 12 0 22 156* 1 15 
12* 0 42 408* 1 27 20 1 21 218* 1 26 
16 0 23 411* I 5 20 1 30 230* 0 11 
17 0 21 420* 1 23 22 0 7 231* 1 14 
22 1 13 449* 1 37 25 1 36 316* 1 15 
64* 0 20 490* 1 37 25 1 38 393* 1 27 
65* 1 15 528* 1 32 25* 0 20 395* 0 2 
77* 1 34 547* 1 32 28 0 25 428* 0 3 
82* 1 14 691* 1 38 28 0 28 469* 1 14 
98* 1 10 769* 0 18 31 1 17 602* 1 18 

155* 0 27 1111* 0 20 35 1 21 681* 0 23 
189* 1 9 1173* 0 12 35 1 25 690* 1 9 
199* 1 19 1213* 0 12 46 1 35 1112* 1 11 
247* 1 14 1357* 0 29 49 0 19 1180* 0 11 

" Asterisks indicate that time to severe AGVHD is right censored; that is, the patient died without severe 

AGVHD or was without severe AGVHD at last contact. 

reported by the six largest institutions are given. Patients entering the study were 
randomly assigned to one of two treatment groups: radiation therapy alone or radia-
tion therapy together with a chemotherapeutic agent. One objective of the study was 
to compare the two treatment policies with respect to patient survival. 

Approximately 30% of the survival times are censored, owing primarily to 
patients surviving to the time of analysis. Some patients were lost to follow up 
because the patient moved and was unable to continue, but these cases were 
relatively rare. From a statistical point of view, a key feature of these data is the 
considerable lack of homogeneity between individuals being studied. Of course, 
as a part of the study design, certain criteria for patient eligibility had to be met 
which eliminated extremes in the extent of disease, but still many factors are not 
controlled. This study included measurements of many covariates that would be 
expected to relate to survival experience. Six such variables are given in the data 
of Appendix A (sex, Τ staging, Ν staging, age, general condition, and grade). The 
site of the primary tumor and possible differences between participating institutions 
require consideration as well. 

The 77V staging classification gives a measure of the extent of the tumor at the 
primary site and at regional lymph nodes. T\ refers to a small primary tumor, 2 cm 
or less in largest diameter, whereas T4 is a massive tumor with extension to adjoin-
ing tissue. T2 and Γ3 refer to intermediate cases. ΛΌ refers to the absence of clinical 
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evidence of a lymph node metastasis and Ni,/V2, and N3 indicate, in increasing 
magnitude, the extent of existing lymph/node involvement. Patients with classifica-
tions ΤιΝο,ΤιΝχ,ΤζΝο, or Γ2ΛΊ or with distant metastasis were excluded from 
study. 

The variable "general condition" gives a measure of the functional capacity of 
the patient at the time of diagnosis (1 refers to no disability, whereas 4 denotes bed 
confinement; 2 and 3 refer to intermediate levels). The variable grade is a measure 
of the degree of differentiation of the tumor (the degree to which the tumor cell 
resembles the host cell) from 1 (well differentiated) to 3 (poorly differentiated). 

In addition to the primary question of whether the combined treatment mode is 
preferable to the conventional radiation therapy, it is of considerable interest to 
determine the extent to which the several covariates are related to subsequent sur-
vival. In answering the primary question, it may also be important to adjust the sur-
vival times for possible imbalance that may be present in the study with regard to 
the other covariates. Such problems are similar to those encountered in the classical 
theory of regression and the analysis of covariance. Again, the need to accommo-
date censoring is an important distinguishing point. In many situations, nonpara-
metric and robust procedures are desirable since there is frequently little empirical 
or theoretical work to support a particular family of failure time distributions. 

1.1.3 Heart Transplant Data 

Crowley and Hu (1977) give survival times of potential heart transplant recipients 
from their date of acceptance into the Stanford heart transplant program. These data 
are reproduced in Appendix A, data set IV. One problem of considerable interest is 
to evaluate the effect of heart transplantation on subsequent survival. 

For each study subject the explanatory variables "age" and "prior surgery" 
were recorded. There were also donor-recipient variables that may be predictive 
of post-transplant survival time. The main new feature here is that patients 
change treatment status during the course of the study. Specifically, a patient 
is part of the control group until a suitable donor is located and transplantation takes 
place, at which time he or she joins the treatment group. Correspondingly, some 
explanatory variables, such as waiting time for transplant, are observed during 
the course of the study and depend on the time elapsed to transplant. This study 
is examined in some detail in Chapter 6 using the ideas of time-dependent covari-
ates and time-dependent stratification. 

The existence of covariates that change over time is yet another unusual feature 
of failure time data that requires special methods and attention to model character-
istics and implications. Transplant studies, such as the heart transplant study, pro-
vide a class of examples where such covariates arise because of the very nature of 
the treatment. Alternatively, we can imagine a system operating under stress where 
the stress factor is varied as time elapses. In such a situation, it would be common to 
examine the relationship between the stress applied now and the current risk of 
failure. Other examples arise in clinical studies, such as, for example, measures 
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of immune function taken at regular intervals for leukemia patients in remission. One 
may wish, in this instance, to study the relationship between changes in immune func-
tion and corresponding propensity to relapse. Such examples are also discussed in 
Chapter 6. In comparative trials, time-dependent covariates such as measures of 
immune function can be responsive; that is, they can be affected by the treatments 
under investigation. Responsive covariates have the potential to be useful in examin-
ing the mechanism of a treatment effect (does the treatment work by improving 
immune function?) or even in serving as a surrogate for the primary failure time 
outcome. If, however, they are treated as ordinary covariates in a regression model 
to investigate the effect of treatments, they can mask a treatment effect. 

1.1.4 Accelerated Life Test 

Nelson and Hahn (1972) present data on the number of hours to failure of motor-
ettes operating under various temperatures. The name accelerated life test for this 
type of study derives from the use of a stress factor, in this case temperature, to 
increase the rate of failure over that which would be observed under normal oper-
ating conditions. The data are presented in Table 1.3 and exhibit severe censoring, 
with only 17 of 40 motorettes failing. Note that the stress (temperature) is constant 
for any particular motorette over time. The principal interest in such a study 
involves determination of the relationship between failure time and temperature 
for the purpose of extrapolating to usual running temperatures. Of course, the valid-
ity of such an extrapolation depends on the constancy of certain relationships over a 
very wide range of temperatures. For this study, the failure time distribution at the 
regular operating temperature of 130°C was of interest. 

As in earlier examples, the censoring here is type I or time censoring. That is, 
censored survival times were observed only if failure had not occurred prior to a 
predetermined time at which the study was to be terminated. Experiments of this 
type, where considerable control is available to the experimenter, offer the possibi-
lity of other censoring schemes. For instance, in the study above it might have been 
decided in advance to continue the study until specified numbers of motorettes had 
failed at each of the temperatures (e.g., until one, three, five, and seven motorettes 
had failed at 150°C, 170°C, 190°C, and 220°C, respectively). Such censoring 
is usually referred to as type II or order statistic censoring, in that the study termi-
nates as soon as certain order statistics are observed. With certain models, some 

Table 1.3 Hours to Failure of Motorettes 

150°C 

170°C 1764, 2 7 7 2 , 3444 , 3 5 4 2 , 3780 , 4 8 6 0 , 5 1 9 6 

3 motorettes without failure at 5 4 4 8 hours 

4 0 8 , 4 0 8 , 1344, 1344, 1440 

All 10 motorettes without failure at 8 0 6 4 hours 

190°C 

220°C 

5 motorettes without failure at 1680 hours 

4 0 8 , 408 , 504 , 5 0 4 , 5 0 4 

5 motorettes without failure at 5 2 8 hours 
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inferential procedures (e.g., exact significance tests) are simpler for type II than for 
type I censoring. It should be noted, however, that type II censoring usually does 
not allow an upper bound to be placed on the total duration of the study and is 
generally not a feasible study design if there is staggered entry to the study. 

Some of the examples above are considered further throughout the book. We 
turn now, however, to mathematical representations of failure times and consider 
the very simplest case of an independent sample from a homogeneous population 
(no explanatory variables) with a single failure mode. 

1.2 FAILURE TIME DISTRIBUTIONS 

Let Γ be a nonnegative random variable representing the failure time of an indivi-
dual from a homogeneous population. The probability distribution of Τ can be spe-
cified in many ways, three of which are particularly useful in survival applications: 
the survivor function, the probability density function, and the hazard function. 
Interrelations among these three representations are given below for discrete and 
continuous distributions. 

The survivor function is defined for discrete and continuous distributions by the 
probability that Τ exceeds a value t in its range; that is, 

Note that F in some settings refers to the cumulative distribution function, 
P(T ^ Ο· a n i * therefore gives the probabilities in the left tail rather than in the right 
tail of the distribution. The right tail, however, is the important component for the 
incorporation of right censoring, so it is more convenient to concentrate on the sur-
vivor function in dealing with failure time distributions. Clearly, F(t) is a non-
increasing right-continuous function of / with F(0) = 1 and l im,_ O 0 F(t) = 0. 

1.2.1 Τ (Absolutely) Continuous 

The probability density function (PDF) of Τ is 

The range of Τ is [0, oo), and this should be understood as the domain of definition 
for functions of t. It is convenient to remember that /(f) gives the density of prob-
ability at t and for h small has the interpretation 

provided that f(t) is continuous at t. We note also that/(f) > 0, £°f{t) dt = 1, and 

F(t) = P(T > /), 0 < t < oo. 

/ ( f ) = -dF(t)/dt. 

f(t)h ~P{t<T<t + h) = F(t) - F(t + h), 
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The hazard function is defined as 

A(f) = lim Pit < Τ < t + h Ι Τ > t)lh (1.1) 

and specifies the instantaneous rate at which failures occur for items that are surviv-
ing at time t. The hazard function fully specifies the distribution of t and so deter-
mines both the density and the survivor functions. From (1.1) and using the 
definition of the density function, it follows that 

λ(0 =f{t)/F{t) 

= -d\ogF{t)/dt. 

Now integrating with respect to t and using F(0) = 1, we obtain 

F(t) = e x p j - | X(s)ds 

= exp[-A(0], (1-2) 

where A(t) = JJJ \(s) ds is called the cumulative hazard function. The PDF of Τ can 
be obtained by differentiating (1.2) to find that 

f(t) = A(i)exp[-A(0]. (1.3) 

Examination of (1.2) indicates that any nonnegative function A( / ) that satisfies 

ί λ(ί) ds < oo 
ο 

for some / > 0 and 

f°° 
I A ( J ) ds = oo 
Jo 

can be the hazard function of a continuous random variable. 
Other representations of the failure time distribution are occasionally useful. An 

example is the expected residual life at time t, 

r(t) =E(T-t\T>t), 

which uniquely determines a continuous survival distribution with finite mean. To 
see this, note that 

r ( ! ) sr(s-t)As)ds 
^ ' F(t) 
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and integrate by parts to obtain 

*>= j Li4r' ( L 4 ) 

where we have used the fact that E(T) < oo implies that l i m , ^ tF(t) = 0. Substi-
tuting / = 0 in (1.4) gives the useful result 

E(T) = r(0) Γ ^ ) ώ · (1-5) 
Jo 

Taking the reciprocal of both sides of (1.4), we obtain 

1 _ d 

so that 

F(s) ds, 

(' ds Γ°° 
— = - l o g F{s)ds + log r(0). 

Jo r W h 

This leads finally to the expression 

„ , . r(0) Γ Γ du' 

r{t) [ Jo *-(«). 

for the survivor function. 

1.2.2 Τ Discrete 

If Γ is a discrete random variable taking values a\ < a2 < • · • with associated 
probability function 

f(ai) = P(T = ai), 1 = 1 , 2 , . . . , 

the survivor function is 

Fit) = Σ Μ ) · 

Μι >' 

The hazard at a, is defined as the conditional probability of failure at a, given that 
the individual has survived to a,, 

Xl=P(T = ai\T>ai)={^, i= 1 ,2 , . . . , 
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where F(a ) = l im,_ a - F(t). Corresponding to (1.2) and (1.3), the survivor func-

tion and the probability function are given by 

Mi <' 

and 

f(al) = Xif[(l-XJ). (1.7) 

As in the continuous case, the discrete hazard function (λ,·,ι = 1,2, . . .) uniquely 
determines the distribution of the failure time variable T. 

The results in (1.6) and (1.7) are quite easily deduced by considering the failure 
time process unfolding over time and a sequence of trials, each of which may or 
may not result in a failure. For example, the result in (1.7) follows from noting 
that an individual fails at time a, if and only if: 

• The individual survives in sequence each of the preceding discrete failure times 

α ι , . . . , α , _ ι with corresponding (conditional) probabilities ( 1 — λ | ) , . . . , 

( i - V . ) -
• Having survived to a,, the individual fails at a, with (conditional) prob-

ability λ,. 

1.2.3 Τ has Discrete and Continuous Components 

More generally, the distribution of Τ may have both discrete and continuous com-
ponents. In this case, the hazard function can be defined to have the continuous 
component Xc(t) and discrete components λ ι , λ 2 , · . - at the discrete times 
α ι < 02 < • · · The overall survivor function can then be written 

[ Xc{u)du H ( F ( / ) = e x p - Xc{u)du\ II ( 1 - A,-) 

The discrete, mixed, and continuous cases can be combined. The cumulative 
hazard function, 

Λ ( / ) = ( Xc(")du+ Σ λ". 

is a right-continuous nondecreasing function. From Λ(/) we define the differential 
increment 

d\{t) = \(r +dt)-A{r) 

P{T€[t,t + dt)\T>t] 

λ,·, t = ah i= 1 ,2, . . . 

Xc(t)dt, otherwise. • { : 

which specifies the hazard of failure over the infinitesimal interval [r, / + dt). 
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The survivor function in the discrete, continuous, or mixed cases can then be 
written as 

F{t) = <P0[\ - dA(u)], (1.8) 

where the product integral 2? is defined by 

Γ 

^ 0 [ 1 - £/Λ(«)] = lim JJ{1 - [Λ(«*) - Λ(κ*_,)]}. 
* = ι 

Here 0 = wo < u\ < • · • < ur = t and the limit is taken as r —> oo and 
max(M, - M,_I) —• 0. In the continuous case (λ, = 0 for all /), it can be shown 
that this reduces to 

F(t) = &'0[\ -dA{u)] = &'0\l - \c(u)du] = e x p | - | \c{u)du . 

In the discrete case [Ar(/) = 0 for all / ] , it is easily seen that 

Μ < > 

This unification shows that failure time data can be considered to arise in essen-
tially the same way in both the discrete and continuous cases. The product repre-
sentation in (1.8) can be thought of as describing a coin-tossing experiment in 
which the probability of heads varies over time. The coin is tossed repeatedly 
and failure corresponds to the first occurrence of a tail. Thus, in general, the survi-
val probability at time t is obtained by taking the product of the conditional survival 
probabilities 1 — dA(u) over infinitesimal intervals up to time t. This way of view-
ing a failure mechanism has led to many developments in the area and is crucial in 
understanding many of the ideas and techniques. In effect, it is possible to examine 
survival experience by looking at the survival experience over each interval condi-
tional upon the experience to that point. Simple arguments for estimating the sur-
vivor function (Section 1.4) or for constructing censored data tests (Section 1.5) 
depend on this idea. It also underlies failure time analysis by counting processes 
and martingales (Chapter 5), the construction of the likelihood under independent 
censoring (Section 6.2), the construction of partial likelihood in the Cox model 
(Section 4.3), and the analysis of multivariate failure times and life-history pro-
cesses (Chapter 9). 

Note that f(t) and F{t) [or more usually, the cumulative distribution function 
F(t) = 1 - F(t)] are common representations of the distribution of a random vari-
able. The hazard function X(t) is a more specialized characterization but is particu-
larly useful in modeling survival time data. In many instances, information is 
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(a) 

AW 

(t>) (c) 

Figure 1.1 Examples of hazard functions: (a) hazard for human mortality; (b) positive aging; 
(c) negative aging. 

available as to how failure rates change with the amount of time on test. This infor-
mation can be used to model A(f) and easily translated into implications for F(t) 
and f(t) using the formulas above. For example, in modeling age at death of human 
populations, it is clear that initially, \{t) is elevated, owing to infant mortality and 
childhood diseases. This is followed by a period of relatively low mortality, after 
which the mortality rate increases very rapidly (see Figure 1.1a). In other applica-
tions, monotone increasing hazards (positive aging) or decreasing hazards (negative 
aging) may be suggested (Figure 1.1 b and c). Such qualitative information on λ(ί) 
can be useful in selecting a family of probability models for T. In Chapter 2 
we discuss and examine some commonly used models for failure time and their 
associated hazard functions. 

In the discussion above, we have specified models for a homogeneous popula-
tion in which all individuals independently experience the same probability laws 
governing their failure. As noted earlier, there are many applications where we 
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wish to incorporate measured covariates into the model. With covariates χ measured 
at the time origin of the study, we can then think of models for the corresponding 
hazard function 

\(t;x) = lim P{T € [t, t + h)\T > t,x}/h, 
h—»0 

which applies to those individuals with covariate value x. Corresponding to this, 
there are density and survivor functions, written f{t;x) and F(t;x), respectively. 

1.3 TIME ORIGINS, CENSORING, AND TRUNCATION 

In considering failure time data, it is important to have a clear and unambiguous 
definition of the time origin from which survival is measured. In some instances, 
time may represent age, with the time origin the birth of the individual. In other 
instances, the natural time origin may be the occurrence of some event, such as ran-
domization or entry into a study or diagnosis of a particular disease. In like manner, 
one must have a clear definition of what constitutes failure. For example, in a trial 
to compare treatments of heart disease, one might take previous documented occur-
rence of a heart attack as providing eligibility for study. The time origin might be 
admission and randomization to the study, and failure may correspond to the recur-
rence of a heart attack. One would need to define carefully the clinical medical con-
ditions that correspond to failure (and eligibility for the study). We will not talk 
about this further, but the clear identification of an origin and an endpoint are cru-
cial applied aspects of failure time studies. 

As noted earlier, failure time data often include some individuals who do not fail 
during their observation period; the data on these individuals are said to be right 
censored. In some situations, right censoring arises simply because some indivi-
duals are still surviving at the time that the study is terminated and the analysis 
is done. In other instances, individuals may move away from the study area for rea-
sons unconnected with the failure time endpoint, so contact is lost. In yet other 
instances, individuals may be withdrawn or decide to withdraw from the study 
because of a worsening or improving prognosis. As is intuitively apparent, some 
censoring mechanisms have the potential to introduce bias into the estimation of 
survival probabilities or into treatment comparisons. 

A right-censoring mechanism is said to be independent if the failure rates that 
apply to individuals on trial at each time f > 0 are the same as those that would 
have applied had there been no censoring. We discuss this idea more thoroughly 
in Chapter 6, but a brief discussion here is useful to set the stage. Suppose that 
the failure rate at time t that applies in the absence of censoring for an individual 
selected at random from a group with covariate value χ is A(f; x). Here, as before, χ 
consists of measurements taken on the individual at the time that he or she enters 
the study, such as age, sex, measures of physical condition, and so on. Suppose that 
within this group, individuals are to be censored according to a specific mechanism. 
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Consider the subset of individuals who are at risk of failure (neither failed nor cen-
sored) at some time t > 0. The censoring mechanism or scheme is independent if 
for an individual selected at random from this subset, the failure rate is X(i;x). Thus 
we require that at each time /, 

H M P{T G[t,t + h)\x, T>t}^ H m P{T e[t,t + h)\x, T>t, Y(t) = 1} 

A^O h A - o h ' 

where Y{t) = 1 indicates that the individual has neither failed nor been censored 
prior to time t (is at risk of failure at time t). If the censoring scheme is independent, 
it can be shown that an individual who is censored at time t contributes the term 
P(T > t;x) = F(t;x) to the likelihood. Thus the information that the individual is 
censored at time t tells us only that the time to failure exceeds t. 

As mentioned, independent censoring is examined more fully in Chapter 6. It is 
interesting to note, however, that some standard censoring schemes are indepen-
dent. Consider, for example, a random censorship model where the z'th individual 
has a time TT to failure and a time C, to censoring. Given the covariate value we 
suppose that C, and TT are independent random variables. Further, conditional on 
the Xi's, (7j,C;) are independent, / = l,...,n, where η is the number of subjects 
in the study. The time Γ, to failure is observed if T, < CT. Otherwise, the individual 
is censored at C,. For this case, it is easy to see that 

.. /»{?•€ [f,f + A)|x,-,ft > r } P {r e [ f , r + A ) | s f , 7 - > f , C , - > r } 
hm : = urn : , 
A^O h A - 0 h 

which is equivalent to the condition (1.9). Type II censoring, in which individuals 
are put on trial until the ifcth item fails, for some fixed k, was discussed briefly Sec-
tion 1.1.4. This censoring scheme is also independent. 

In general, a censoring scheme is independent if the probability of censoring at 
each time t depends only on the covariate JC, the observed pattern of failures and 
censoring up to time / in the trial, or on random processes that are independent 
of the failure times in the trial. Mechanisms in which the failure times of indivi-
duals are censored because the individuals appear to be at unusually high (or 
low) risk of failure are not independent. For these mechanisms, the condition 
(1.9) is violated, and the basic methods of survival analysis are not valid. Because 
of this, it is very important to follow the individuals entered into a study as com-
pletely as possible, so that the possibility of dependent censoring is minimized. 

In some studies, individuals are not identified for observation at their respective 
time origin, but rather, at the occurrence of a subsequent event. Thus, there is a 
larger group of individuals who could have been observed, but the study is com-
prised of a subset of those in the cohort who experience some intermediate event. 
For these individuals, we observe the time origin and the follow-up time until they 
fail or are censored. For example, suppose that is the chosen time variable, so that 
time of birth is the time origin. Interest centers on the group of individuals who 



14 INTRODUCTION 

were exposed to some environmental risk, and individuals are identified for study at 
the time they respond to an advertisement. Any individuals who died prior to the 
advertisement are not observed, and in fact may not even be known to exist. Those 
who are observed are subject to delayed entry or left truncation. There is a condi-
tion similar to (1.9) for independent left truncation which requires that the failure 
rates of individuals under observation at time t are representative of those in the 
study population. Many of the methods and analyses that we discuss extend easily 
to allow for independent left truncation as well as independent right censoring. 

Individuals can also be subject to left censoring, which occurs if the individual is 
observed to fail prior to some time /, but the actual time of failure is otherwise 
unknown. In this case, we observe that Τ e [0,fj, which is analogous to right cen-
soring, where we observe that Γ 6 (f, oo). Left censoring should not be confused 
with left truncation, as discussed in the preceding paragraph. With left censoring, 
we know the individual exists and failed prior to the time t. With left truncation, the 
existence of an individual who fails before the beginning of observation is hidden 
from us. 

Other types of censoring also arise. For example, in some situations individuals 
are interval censored, so we observe only that the failure time falls within some 
interval Τ £ (a, b). One might also have situations in which individuals are subject 
to right truncation. That is, an individual is observed if and only if its failure time is 
less than some given time t. Exercise 1.13 gives an example. We discuss these more 
general censoring schemes in Chapter 3 in the context of parametric analyses. Most 
of our attention, however, is focused on independent right censoring and extensions 
to allow independent delayed entry or left truncation. 

1.4 ESTIMATION OF THE SURVIVOR FUNCTION 

1.4.1 Kaplan-Meier or Product Limit Estimator 

The empirical distribution function, 

- no. sample values < χ 

is a simple estimate of the distribution function F(x) = P(X < x) and is a familiar 
and convenient way to summarize and display data. A plot of F„(x) versus χ 
visually represents the sample and provides full information on the percentile 
points, the dispersion, and the general features of the sample distribution. Besides 
these obvious descriptive uses, it is an indispensable aid in studying the distribu-
tional shape of the population from which the sample arose; in fact, the empirical 
distribution function can serve as a basic tool in constructing formal tests of good-
ness of fit of the data to hypothesized probability models (see, e.g., Cox and 
Hinkley, 1974, pp. 69ff.). 

In the analysis of survival data, it is very often useful to summarize the survival 
experience of particular groups of patients in terms of the empirical survivor 


