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Preface 

Experimental design is concerned with the arrangement of one's ex-
perimental units and the assignment to them of treatments in such a 
way that the comparisons among the treatments are unbiased and as 
precise and powerful as possible. A score or more of books on the design 
of experiments are still in print but none, to my knowledge, is devoted to 
those principles and techniques that are especially relevant in biomedical 
experiments involving human subjects. In my teaching and consulting, 
I have referred students and colleagues to the two texts I cite most 
frequently in this book: Experimental designs (second edition) (Cochran 
and Cox, 1957) and Planning of experiments (Cox, 1958), both published 
by Wiley. The former was often criticized as not being sufficiently 
applicable to clinical studies and the latter as not providing sufficient 
guidance with respect to the analysis of the data. I hope that my book 
will prove more useful in clinical applications than Cochran and Cox's 
and more helpful statistically than D. R. Cox's. 

I have restricted attention to bona fide experimental comparisons of 
treatments, that is, to studies in which treatments are assigned to subjects 
at random. I therefore do not consider the challenging problems posed 
by those nonexperimental studies in which the assignment of treatments 
to subjects was out of the investigator's control (e.g., by being left to the 
individual clinician). Anderson, Auquier, Hauck, et al.(Statistical methods 
for comparative studies: Techniques for bias reduction. New York: Wiley, 
1980); Campbell and Cook (Quasi-experimentation: Design and analysis 
for field settings. Chicago: Rand McNally, 1979) and Cochran (Planning 
and analysis of observational studies. New York: Wiley, 1983) are useful 
references to the design and analysis of nonexperimental studies. 

This book complements the several monographs on clinical trials that 
have appeared since 1980. Some slight overlap necessarily exists with 
them, such as in the discussion of methods for carrying out random-
ization, of problems with multicenter trials, and of the validity of the 
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crossover design. Overall, however, they tend to be more concerned with 
issues such as improving patient compliance, satisfying regulatory re-
quirements, methods for assuring double-blindedness, quality control, 
and ethical constraints in conducting experiments on patients. This book 
concentrates more on the technical aspects of design and statistical 
analysis. 

The book is aimed primarily at clinical investigators and biostatisti-
cians in biomedical research centers and the pharmaceutical industry 
who are responsible for designing clinical experiments and for analyzing 
the resulting data. With rare exceptions, real examples from such speci-
alties as cardiology, dentistry, gerontology, neurology, pediatrics, and 
psychiatry are used to illustrate the designs and their analyses. The book 
is also intended to serve as the text for a second-year, graduate-level 
course on the design of experiments. Each chapter concludes with a set 
of problems. Some are numerical; others, algebraic. Copious hints and 
signposts are provided. Mathematical and statistical derivations that 
involve more than simple algebra also appear as problems (they have 
been relegated to the end of each chapter so the text can concentrate, 
with a minimum of digression, on more practical matters). 

There are several other features of the book that should make it useful 
to its intended readers: 

1. There is a discussion of the untoward consequences of imprecise 
measurement, including bias, and a presentation of methods for improv-
ing precision. 

2. Methods for carrying out a randomized assignment of treatments 
to subjects are illustrated using tables of random permutations. 

3. A distinction is made between blocking and stratification as 
methods to control for prognostic factors, and the rare occasions when 
the former is superior to the latter are identified. 

4. Techniques that are appropriate for ordered categorical response 
variables (e.g., poor, fair, or good response) are given prominence. 

5. Data analyses are usually illustrated first for the general case of 
unequal sample sizes and only secondarily for the special case of equal 
sample sizes. 

6. The three most popular methods for analyzing the data from a 
multicenter study are reviewed, and criteria are proposed for deciding 
which is appropriate. 

7. Problems that may arise in the study of change, and some possible 
solutions, are discussed. 



P R E F A C E 

8. Some recent suggestions for analyzing the data from a two-period 
crossover study are reviewed and shown capable of producing biased 
results. 

9. In the chapters on factorial studies, the emphasis is more on the 
estimation and interpretation of factorial effects than on the tests for 
their statistical significance. 

10. For those occasions when the data must be analyzed by com-
puter, criteria are suggested for choosing the appropriate package and 
the appropriate set of options from that package. 

1 1 . The appendix is devoted to easily programmed methods for 
determining the sample sizes needed to assure specified power. 

A knowledge of statistics at the level of Armitage's Statistical methods 
in medical research (New York: Wiley, 1971) or Snedecor and Cochran's 
Statistical methods, seventh edition (Ames, Iowa: Iowa State University 
Press, 1980) is assumed. Familiarity with matrix algebra will help the 
reader understand a few sections of the book, especially Sections 3.4, 6.4, 
and 8.2, and part of 7.2. A knowledge of calculus will help the reader 
solve some of the more mathematical problems at the ends of some 
chapters. Otherwise, a good knowledge of high school algebra is the only 
mathematical prerequisite. 

I am pleased to acknowledge the help, advice, encouragement, and 
criticism I received from several people. J. Thomas Bigger, Jr., Albert 
Kingman, and Linda Rolnitzky kindly provided me with some of their 
unpublished data; others also did so, but asked to remain anonymous. 
Charles Dunnett graciously gave me permission to reproduce some new 
and as yet unpublished critical values for his multiple comparison cri-
terion. Students in my course on experimental design at Columbia 
University saw draft copies of the manuscript and pointed out several 
typographical errors. John Fertig, Rupert Miller, and Sylvan Wallenstein 
read the penultimate draft and made suggestions that I always took 
seriously but sometimes chose not to follow. The influence of John 
Fertig, my predecessor as professor and head of biostatistics at Columbia 
University, was more profound than that of a critical reader. I learned 
the design of experiments and the analysis of experimental data from him 
as my professor, and I learned the practice of biostatistics from him as a 
role model par excellence. He died while I was putting the finishing 
touches on the book. I shall miss him. 

Molly Park and Michael Parides carried out the computer analyses 
that are reported in Sections 5.4 and 6.4. The typing of the initial drafts 
was ably performed by Alice Arana and Anntrene Wilson. Gerda Burian 
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Cordova and my son Art helped with the editing and indexes. My editor 
at Wiley-Interscience, Bea Shube, was constantly supportive, en-
couraging, and a morale booster. My wife, Isabel, was all of these but 
also ever patient and a source of inspiration. 

JOSEPH L . FLEISS 

New York, New York 

September 1985 
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C H A P T E R 1 

Reliability 
of Measurement 

The most elegant design of a clinical study will not overcome the damage 
caused by unreliable or imprecise measurement. The requirement that 
one's data be of high quality is at least as important a component of 
proper study design as the requirement for randomization, double blind-
ing, controlling when necessary for prognostic factors, and so on. Larger 
sample sizes than otherwise necessary, biased estimates, and even biased 
samples are some of the untoward consequences of unreliable measure-
ment that will be demonstrated. 

Investigators in the mental disorders traditionally, have been more 
concerned with the reliability of their measures, and with the design of 
informative reliability studies (Grove, Andreasen, McDonald-Scott, et 
al., 1981) than have their colleagues in other medical specialties. All 
clinical investigators should be as concerned: as shown by Koran (1975), 
reliability appears to be equally good (or equally poor) in all the special-
ties in which reliability data have been collected and published. 

Attention is restricted in this chapter to the reliability of quantitative 
data. In many clinical studies, the response variable will be qualitative: a 
familiar example is improved—no change—worse. Cohen's kappa statis-
tic (Cohen, 1960) is the appropriate measure of reliability for such data. 
The reader is referred to Davies and Fleiss (1982), Fleiss (1981, Chapter 
13), and Landis and Koch (1977) for applications and generalizations of 
Cohen's kappa. 

In Section 1.1, a statistical framework is provided for the formal 
definition and measurement of reliability. Some of the consequences of 
unreliability are described in Section 1.2. In Section 1.3, methods for 
making inferences about reliability are presented when one's reliability 
study calls for independent replicate measurements to be made on each 
of a sample of subjects. Section 1.4 is devoted to replication as a method 

ι 



2 RELIABILITY O F M E A S U R E M E N T 

for improving reliability and indicates how the cost of measurement may 
be taken into account. In Section 1.5, methods for estimating and 
improving reliability are presented when the measurements are made by 
each of the same set of examiners. 

Some of the statistical concepts alluded to in this chapter (e.g., the 
Scheffe and Bonferroni criteria for multiple comparisons) are not defined 
until later. Therefore, it might seem more appropriate to have placed this 
chapter later in the book after all the concepts discussed in it had been 
introduced. The idea that good measurement is fundamental to good 
design is so important, though, that it seemed preferable to begin the 
book with a development of this theme even at the risk of some readers' 
having to check on some ideas in later chapters. 

1.1. A STATISTICAL MODEL FOR RELIABILITY 

Let X represent the observed value for an individual on some vari-
able. No matter what the variable and no matter how it is obtained (by 
physical examination or by interview or by laboratory assay), it is 
measured unreliably in the sense that, were the individual to be measured 
again under similar conditions, the second value would differ to some 
extent from the first. Imagine a subject's being repeatedly measured on 
the variable of interest under as close to uniform conditions as possible, 
and let Τ denote the mean of the many hypothetical replicate measure-
ments on him. Τ is referred to in psychometrics as the subject's "true 
score" (Lord and Novick, 1968), but less image-laden expressions are 
"error-free score," "steady-state value," and "signal." A single mea-
surement X will differ from Τ for any number of reasons: random coding 
errors, misunderstanding by the subject of the interviewer's questions or 
by the interviewer of the subject's responses, inherent lability of the 
characteristic, or imperfect calibration of a measuring device. If e 
represents the difference between a single observation on a subject, X, 
and its underlying mean value, T, the classical linear model for an 
observed score is obtained, 

X=T + e. (1.1) 

In a population of subjects, the error-free score Τ will vary about 
some mean value μ with a variance of σ\. For a single subject, the 
random error e will vary about a mean of zero. Under the assumption 
that the distribution of the errors is independent of the value of T, e has 
a variance of σ\ no matter what the value of T, and therefore the 
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variance of X is 

σχ=σ2

τ + σΙ (1.2) 

In words, (1.2) expresses the phenomenon that there are two components 
to the variability among a series of measurements on different subjects, 
variability among their steady-state values plus the variability of the 
random errors. 

A single quantity that usefully expresses the relative magnitude of the 
two components of the variance of X is the intraclass correlation 
coefficient of reliability (the reliability, for short), 

R =~TT~2 (1-3) σ τ + σ ; 

(Bartko, 1966; Ebel, 1951; Fisher, 1921; Shrout and Fleiss, 1979). As 
σΐ/στ decreases, error constitutes a decreasing portion of what is 
observed, reliability therefore increases, and R approaches its maximum 
value of unity. As σ\ΐσ\ increases, error constitutes an increasing 
portion of what is observed, reliability therefore decreases, and R ap-
proaches its minimum value of zero. Problem 1.1 calls for a proof that R 
is a bona fide correlation coefficient. Notice that R , unlike the traditional 
product-moment correlation coefficient, is directly interpretable as a 
proportion of variance. It is the proportion of the variance of an 
observation due to subject-to-subject variability in error-free scores. 

1.2. SOME CONSEQUENCES OF UNRELIABILITY 

What makes the parameter R so important is that most of the 
untoward effects of unreliability are expressible as functions of it. 

1.2.1. Attenuated Correlations 

Suppose that a study is designed to estimate the correlation between 
two variables Τ and U, but that what are measurable are 

X = T + e 

and 

Y=U + f, 

with e and / being random measurement errors uncorrected with each 
other and uncorrected with Τ and U. Finally, suppose that the cor-
relation between Τ and U is pru- The correlation between the two 
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observable quantities is then 

Ρχγ = Ρτυ^ RXRY, (1.4) 

where R X and R Y are the reliabilities of X and Y (see Problem 1.2). 
Because y/RXRY is always less than unity, pXY will always be closer to 
zero than pru is. The effect of unreliability, therefore, is to attenuate 
correlations. 

Suppose, for example, that pru = 0.50 but that R X = 0.7 and R Y = 
0.6. The observable correlation is then only pXY = 0.50V0.7 x 0.6 = 0.32. 
One consequence of attenuation is that a sample estimate of the observ-
able correlation may fail to reach statistical significance, whereas a 
sample estimate of the correlation between the error-free scores might be 
significant. A more serious substantive consequence is that the propor-
tion of shared variance between the two variables may be seriously 
underestimated. Instead of its being found to be 0.502 = 0.25 in the 
present example, it would be calculated as only 0.322 = 0.10. 

The phenomenon of attenuated correlations is often cited as an 
example of the limitation on "validity" imposed by unreliability (Lord 
and Novick, 1968, p. 72). There is no gainsaying this limitation, but there 
are other equally or more serious consequences of unreliability that are 
less widely appreciated. 

1.2.2. Increased Sample Sizes 

Consider designing a simple comparative study involving two groups 
of patients, and suppose that a mean difference on the response variable 
of δ = μ] — μ2 is considered on clinical grounds to be so important that, 
if δ is the true underlying mean difference, the investigator wants the 
chances to be high that a significant difference between the groups 
will be declared. The required sample sizes in the two groups may be 
determined as follows. 

Suppose the significance level of the test comparing the two means is 
a, and assume for simplicity that the sample sizes are large enough for 
the t ratio to be referable to the standard normal distribution. Assuming 
that a two-tailed test is employed, significance will be declared if the 
absolute value of the t ratio exceeds za/2, the standard normal curve 
value cutting off the proportion a/2 in the upper tail. For example, 
zai2 = 1.96 for a = 0.05. When the true difference between the means is 
δ, suppose the desired power (i.e., the chance of finding a significant 
difference) is 1- /3 . Let ζβ denote the standard normal curve value 
cutting off the proportion β in the upper tail. For example, if 95% power 
is demanded, 1 - β = 0.95 so that β = 0.05 and zp = 1.645. Finally, 
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assume that the variances of the responses in the two groups are equal. If 
the responses were measured without error, the common variance would 
be σ2

τ. The required sample size in each group is then given by 

_2στ(ζα/2 + ζβ)
2 

δ 2 η Τ2 (1.5) 

(see the Appendix or Armitage, 1971, p. 186). If, however, random error 
intrudes into the measurements, the required sample size becomes 

55 - ΊΓ> (1-6) 
2(ο·2Γ + σ 2 ) ( ζ „ / 2 + 2 ρ ) 2 _ η 

δ 2 R' 

which is always larger than n*. 
Suppose, for example, that change in diastolic blood pressure is to be 

used in the comparison of two independent treatment groups, that a 
two-tailed significance level of 0.05 is to be employed, and that a power 
of 80% is demanded if the difference in mean change between the 
groups is as large as 5 millimeters of mercury. Suppose finally that the 
standard deviation of error-free changes is 8 millimeters of mercury. 
Then, 

Za/2 — Zo .025 = 1.96, 

Zp = 2o.2o = 0.842, 

δ = 5, 

σ\ = 8 2 = 64, 

and 

„ 2(64)(1.96+ 0.842)2

 Λ η η = -2 = 40 

patients are required in each group for a total sample size of 80. 
Suppose, however, that the reliability with which change in diastolic 

blood pressure is measured is R = 0.67. The required number of patients 
per group becomes η = 40/0.67 = 60 for a total sample size of 120, a 
50% increase over the earlier total. If the reliability were as high as 
R = 0.80, η = 40/0.80 = 50 for a total sample size of 100, a 25% in-
crease. Thus unreliable measurement of the response variable increases 
the sample size necessary to detect an important treatment difference 
with a specified probability and therefore adds to the cost of the study. 

1.2.3. Biased Sample Selection for Clinical Studies 

A popular and valid strategy for selecting patients for comparative 
clinical trials and other kinds of studies is to recruit into the study only 
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patients who, inter alia, score above a minimum value at baseline on a 
given variable. One of the many good reasons for such a requirement is 
that the patients who enter the study should be sufficiently ill for the 
treatment to exhibit an effect. Let A denote the value of the threshold 
criterion, μ the mean value of the variable in the population of patients 
from which the sample will be drawn, and σ τ the standard deviation of 
error-free scores. The intent is to admit only those patients whose 
error-free score, T, exceeds A, but in actuality patients will be admitted 
if their observed score, X = T + e, exceeds A; some of these patients will 
have an error-free score less than A, and will exceed the threshold 
because of random error. 

Therefore, the resulting sample will contain some patients who tech-
nically should not have been included. If there is random assignment of 
patients to treatment, no bias will be introduced into the comparison of 
treatments by these so-called false positives. Rather, the precision of 
treatment comparisons will be adversely affected by the bias in the 
sample as a whole because some patients will have been treated who 
were not severely ill enough to exhibit much response (Goldman, 1976). 
The biased nature of the sample is a special case of regression to the 
mean, the tendency for subjects whose observed values on some variable 
are above or below the mean of their population to have error-free 
values closer to the mean than the observed values (Davis, 1976). 

The false-positive rate is the proportion of all patients, among those 
whose observed score exceeds A, whose error-free score is actually less 
than A. Define C = (A - μ)Ιστ, the number of standard deviation units 
that the threshold criterion is away from the population mean. Table 1.1 
tabulates the false-positive rate as a function of C and of R under the 
assumption that Τ and e are normally distributed. (The reader is asked in 
Problem 1.3 to derive the equation for the false-positive rate. The 
equation was solved to produce Table 1.1 using the tables of the 
bivariate normal distribution published by the National Bureau of Stan-
dards, 1959.) 

For a fixed reliability R, the false-positive rate is seen in Table 1.1 to 
increase as C increases. This makes intuitive sense when it is realized 
that C is an indicator of where the threshold criterion A lies relative to 
the mean of the population from which the sample will be drawn. When 
C is negative, the threshold lies below the mean and only a minority of 
all patients will have error-free scores below A and will therefore be 
subject to being erroneously scored above A. When C is positive, the 
threshold lies above the mean and a majority of all patients will have 
error-free scores below A and therefore will be subject to being 
erroneously scored above A. In summary, the rarer the extreme group 
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Table 1.1. False-positive rate for the selection of a 
sample on the basis of a score's exceeding a specified 

value A 

Reliability (R) 

c .50 .75 .85 .90 .95 

- 2 . 0 .01 .01 .01 0 0 
- 1 . 5 .03 .02 .02 .01 .01 

- 1 . 0 .07 .05 .04 .03 .02 
- 0 . 5 .14 .09 .07 .06 .04 

0 .25 .17 .12 .10 .07 

0.5 .40 .26 .20 .16 .11 

1.0 .55 .37 .28 .22 .15 
1.5 .70 .49 .39 .30 .21 
2.0 .82 .61 .47 .38 .26 

"C = (A - μ)Ιστ, where μ and στ are the mean and standard 
deviation of the error-free scores. 

one intends to draw from the population, the larger the false-positive 
rate. 

For a fixed value of C, on the other hand, the false-positive rate 
decreases as the reliability increases. This, too, makes intuitive sense, but 
what is distressing is how slowly the false-positive rate approaches zero as 
a function of R. Consider, for example, the value C = 1.0, corresponding 
to the intended selection of patients in the upper 16% of the distribution. 
When the reliability is 0.90, over a fifth of the patients included in the 
sample should not have been. Even for a reliability as high as 0.95, the 
false-positive rate is 15%. 

It is clear from the preceding examples that no universally applicable 
standards are possible for what constitutes poor, fair, or good reliability. 
In general, values of R below 0.4 or so may be taken to represent poor 
reliability, values above 0.75 or so may be taken to represent excellent 
reliability, and values between 0.4 and 0.75 may be taken to represent 
fair to good reliability. 

Several other untoward consequences of unreliability have been 
documented (Cochran, 1968; Fleiss and Shrout, 1977; Shrout and Fleiss 
1981; see also Sections 2.1 and 7.1 in this book), all presupposing 
knowledge of the value of the reliability coefficient R. Sections 1.3 and 
1.5 describe the two most important kinds of reliability studies that 
permit one to estimate R. The appropriate time to conduct a reliability 
study is before one's major research study is undertaken, not during or 
after it. As shown in Sections 1.3-1.5, the results of the former may and 
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should be used in the design of the latter. The reliability study need not 
involve a large number of subjects. Usually 15-20 will be enough for a 
quantitative variable, but more will be required for estimating the reli-
ability of a categorical variable. No matter how reliable a measure has 
been found to be in the past, reliability should be assessed again prior to 
a new study. There is no guarantee, after all, that reliability will continue 
to be high for a new group of examiners obtaining measurements on a 
new sample of patients. 

1.3. THE SIMPLE REPLICATION RELIABILITY STUDY 

Suppose that each of a sample of Ν subjects in a reliability study is 
measured several times on the variable under investigation. For example, 
several blood samples may be drawn from a patient and each sample 
subjected to a laboratory assay for the activity of a certain enzyme. Or, a 
patient may be evaluated on a rating scale by a few nurses selected at 
random from a larger pool of available nurses. Or, a 24-hour recording 
of the electrical functioning of a patient's heart may be obtained and 
subjected to several independent computer analyses. In each of these 
examples it is arbitrary which measurement on a patient is designated the 
first, which the second, and so on. There is no structure to the replicate 
measurements in the sense that nothing ties the first or second measure-
ment on one patient to the first or second on another. In the terminology 
of the analysis of variance, the study conforms to a one-way random 
effects model (Armitage, 1971, p. 198). 

The results of this simple kind of reliability or reproducibility study 
may be summarized as in Table 1.2. For a typical subject, say the z'th, fc, 

Table 1.2. Layout of data from a simple 
replication reliability study 

Subject 
Number of 

Measurements Mean Variance 

1 k, *f 

i Κ »? 

Ν kN 

Total κ X s 2 
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is the number of replicate measurements on him or her, X ( is the mean of 
the ki measurements, and s2 is their variance. Thus, if Xn, Xi2,..., X*, 
represent the fc, measurements on Subject i, 

1 

* Ι = γ Σ * « (1-7) 

and 

1 
sl = -r—:Σ(Χ«-Χι)2- (1.8) 

Ki — l y_i 
In the final row of Table 1.2, Κ is the total number of measurements, 

K=tki-, (1.9) 
i = l 

X is the overall mean, 

Χ = ^ΣΣΧα = ^Σ^Χί; (1.10) 

and S2 is the overall variance, 

ε^γ-^ΣΣ^-χ)2. d . i i ) 

Table 1.3 presents the results for a random sample of 10 patients out 

Table 1.3. Results of a simple 
replication reliability study 

(it = 2 measurements per 
patient) 

Patient Mean Variance 

1 0 .235 0.0265 
2 0.115 0.0005 
3 0 .140 0 .0008 
4 0 0 
5 0 .385 0.0061 
6 2.655 0 .0005 
7 0.065 0 .0013 
8 0.375 0 .0085 
9 0 .580 0 .0002 

10 3 .900 0 .0338 

Total 0.845 1.6711 
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of a total of 63 whose 24-hour Holter tape recordings of the heart's 
electrical functioning were read and analyzed two independent times by 
computer (Clark, Rolnitzky, Miller, et al., 1981). The variable being 
analyzed in Table 1.3 is ln(VPD + 1), the natural logarithm of one plus 
the computer-calculated number of ventricular premature depolariza-
tions (VPDs) per hour. The fact that only one patient had a variance of 
zero means that for only that patient's tape were the two computer 
analyses in agreement. 

The variability among the means appears to be appreciably greater 
than the average of the several within-patient variances, suggesting that 
within-patient variability (which estimates tr2.) is much smaller than 
between-patient variability (which is informative about <rT). The analysis 
of variance provides a quantitative rather than qualitative description of 
the two components of variability. 

The general analysis of variance table for data arrayed as in Table 1.2 
appears in the left-hand portion of Table 1.4, and the quantities obtained 
by applying the formulas to the data in Table 1.3 appear in the right-
hand portion. The column headings are abbreviations of degrees of 
freedom, sum of squares, mean square (the ratio of the sum of squares to 
the corresponding number of degrees of freedom), and expected mean 
square (the underlying statistical quantity that the mean square esti-
mates). The constant ko that appears in the expected value of the 
between-patient mean square is equal to 

*o=*-4 (1-12) 

where k and s\ are the mean and variance of the numbers of replicate 

Table 1.4. Analysis of variance for the results of a simple replication 
reliability study 

Source of 
Variation 

In General For the Data in Table 1.3 

Source of 
Variation df SS MS E(MS) df SS MS 

Between patients N - l Σ kAX, - X ) 2 BMS 9 31 .6726 3.5192 

Within patients Σ to"1)'? WMS 10 0 .0782 0.0078 

Total K - l ( A T - l ) S 2 19 31 .7508 
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measurements, 

fc = £ (1.13) 

and 

sl = TT-7l(ki-V2 (1-14) N - l ,· 

(see Problem 1.4). If, as in Table 1.3, these numbers are constant (i.e., if 
ki = . . . = kN = k, say;, then k = k, si = 0, and ko = k; otherwise, ko will 
be slightly less than k. (Problem 1.5 calls for analyzing a set of data in 
which the fcj's vary.) 

The within-subject mean square (WMS) is seen to be an unbiased 
estimator of σ\, the component of variance due to random error. It is 
therefore convenient for current purposes to let s\ designate WMS. The 
quantity 

2 B M S - W M S 
s\ = (1.15) 

ko 

is seen to be an unbiased estimator of σ\, the component of variance due 
to error-free variability among subjects. An estimator of the intraclass 
correlation coefficient is then 

sT ^ B M S - W M S 

sT+s2

e~ BMS + (feo- 1) WMS* " ~ „2 , „2 = D W C I I t . 1 \ \\ΓΚ ϊ ο ' (I-16) 

Even though R is the ratio of two unbiased estimators, it itself is a 
slightly biased estimator of the parameter R (Olkin and Pratt, 1958). The 
bias becomes negligible as Ν increases. 

For the data at hand, the estimated component of variance due to 
random measurement error is 

s2. = WMS = 0.0078. (1.17) 

Because the constant number of replicate readings per patient is k = 2, 
therefore ko = 2 and the estimated component of variance due to the 
variability of error-free scores is 

^ . M B - W M ^ J I W - M W . , ^ ( M 8 ) 

The square root of WMS, se, is referred to as the standard error of 
measurement. One of its most important uses follows. For a single 
subject, the error-free score Τ may be considered an unknown 
parameter. If a single observed measurement X were available on that 
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subject, an approximate 95% confidence interval for his or her underly-
ing Τ is X±2se. For the current example, st = V0.0078 = 0.09. If, for 
example, a subject has an observed value of X = 1.54 (i.e., the calculated 
number of ventricular premature depolarizations per hour is VPD = 3.67, 
so X = ln(3.67 +1) = 1.54), an approximate 95% confidence interval for 
that subject's error-free value Τ is 1 .54±2x0.09, or the interval from 
1.36 to 1.72. The corresponding limits for the associated error-free value 
of VDP are exp(1.36) - 1 =2.90 and exp(1.72)- 1 =4.58. If the subject 
is measured m times and the mean of the replicate measurements X is 
taken, an approximate 95% confidence interval for Τ is X±2se/\fm. 
The value of m may be less than or greater than any of the fc,-*s, which 
are particular to the reliability study. For example, if a subject has a 
mean of X = 2.05 based on m = 3 replicate readings, an approximate 
95% confidence interval for that subject's error-free value is 2.05 ± 2 x 
0.09/N/3, or the interval from 1.95 to 2.15. The limits for the error-free 
value of VPD are exp(1.95) - 1 = 6.03 and exp(2.15) - 1 = 7.58. 

The estimated intraclass correlation coefficient for the variable being 
analyzed is 

s T _ 1.7557 

sl+sl 1.7557 + 0.0078 
R = = , ^ = 0.996, (1.19) 

a value indicating nearly perfect reliability. If the random quantities Τ 
and e are normally distributed, an approximate one-sided 100(1 - a ) % 
confidence interval for R is 

BMS 

W M S _ F N - , K - N Q 

* " B M S ,„ 1 W 7 · ( L 2 0 ) 

+ (fco - 1 ) F N _ I , K - N . « 

where F „ , , „ 2 , p denotes the tabulated value of the F distribution with vx 

and i>2 degrees of freedom cutting off the proportion ρ in the upper tail. 
When the k,'s are equal, the interval in (1.20) is exact (Wald, 1940). For 
a 95% confidence interval in the current example, F 9 j i o . o . o 5 = 3.02 and 

^ - 3 02 

The confidence interval for R serves at least two purposes. One, 
which is usually the less important, is to provide a test of the hypothesis 
that the underlying value of R is zero (i.e., that the measurements are so 
unreliable that differences between subjects are due exclusively to ran-


