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Preface 

Putting data in order is an intellectual activity that is perhaps one of the oldest prob-
lems of applied mathematics. The wall of the corridor of Abydos Temple in Egypt 
is padded with a chronologically ordered list (Gallery of the List of Kings). Dating 
back to around 1250 B.c., this display allegedly lists the Pharaohs who had preceded 
Siti I (modern research proves that the list makes some false historical claims; a few 
rulers of Egypt before Siti I are omitted from that list!) The Inakibit-Anu Babylonian 
tablets, dating back to 200 B.c., contain a sorted list of what seems to be several 
hundred records, of which only a little over 100 records are preserved. Alphabetical 
ordering of words dates at least as far back as Western dictionaries. Over the mil-
lennia people have been yearning to find fast efficient sorting algorithms. With the 
appearance of computers in the twentieth century, sorting occupied a central position 
among computing problems for its numerous business and administrative potentials. 

This is a book about sorting methods with a general focus on their analysis. We 
concentrate on well-known algorithms that are widely used in practice. Of course, 
to the basic skeleton of any such algorithm small improvements have been pro-
posed. We present these algorithms in their simplest form, even when a modifica-
tion is known to improve them. This choice is motivated by a desire to make the 
material lucid. While they may affect lower-order terms, the modifications usually 
do not change the dominant asymptotic behavior. The analysis techniques are as 
varied as the sorting algorithms themselves, giving rise to a fascinating variety of 
methods, ranging from standard treatment such as elementary probability theory, 
combinatorial counting, and graph-theoretic methods, to instances of more modern 
techniques such as martingales, Poissonization, Wasserstein's metric space, and the 
Mellin transform. 

We discuss a variety of standard sorting methods that can be readily implemented 
on a conventional computer. The book takes the following algorithmic view. When a 
deterministic algorithm runs on a set of data of size n, certain computing resources 
are committed. Among standard resources are the running time and the amount of 
memory needed to support the algorithm. A suitable combination of these computing 
resources may be referred to as the cost. Running the deterministic algorithm on the 
same data set will always give the same results. However, running the determinis-
tic algorithm on a different data set of size n may result in different cost. Putting a 
reasonable probability measure on the set of inputs of size n renders the cost a ran-
dom variable. Interpreting costs as random variables provides some understanding 

xi 
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of the behavior of the algorithm over the variety of data sets the algorithm may face. 
Probabilistic analysis addresses the natural questions one usually asks about random 
variables. What are the average, variance, higher moments, and exact distributions? 
In many cases it may be prohibitive to get exact answers. Even when such answers 
are obtained they may give little insight into the algorithm's behavior. Exact answers 
often take the form of multifolded sums of products or similar complicated forms. 
Insight is gained by simplifying such expressions asymptotically, that is, finding a 
simple representation of the leading terms in the form of elementary functions of n, 
when n gets large. Asymptotics then provide quick ways of estimating how the mean 
and other moments grow with n, and how probabilities change. Limiting distribu-
tions give ways to approximate probabilities from standard distributions that may 
be well known and tabulated. A question of interest to the practitioner is how large 
n should be before one can consider limit distributions as reliable approximations. 
This is a question of finding rates of convergence. We give a few examples of rates 
of convergence in the book. It is fascinating to find that some phenomena in sorting 
algorithms may have essential periodic fluctuations in leading asymptotic terms or 
in rates of convergence to such terms. 

The issue we consider is how a deterministic algorithm may behave when it is 
presented with random data. This is to be distinguished from an area of algorith-
mics that deals with randomized algorithms, where the algorithm itself may follow 
different paths to obtain the same result, or even produce different results when it 
is run repeatedly on the same data set. Such variability is intrinsic to a random-
ized algorithm as the algorithm makes its decisions based on random outcomes (like 
generating random numbers or flipping coins). We touch in passing on the area of 
randomized algorithms in a few exercises, but it is not the main focus of this book. 

The book is intended to be used as a reference by computer professionals, scien-
tists, mathematicians, and engineers. The book may also be used for teaching. The 
material is accessible to first-year graduate students in fields like computer science, 
operations research, or mathematics. At least a portion of each chapter is accessible 
to advanced undergraduates. A reading course or a special topics seminar may be 
based on the book. If used in this fashion, a one-year course in probability and a 
one-year course in algorithms are recommended. 

The developments that led to this book are numerous. Many research contribu-
tions were made toward a distribution theory of sorting algorithms over the past 
quarter century. These contributions are mostly published in highly specialized re-
search outlets such as scientific journals and conference proceedings. The aim of 
the book is to organize this massive and esoteric body of research that is accessi-
ble only to a few specialized researchers into a coherent, well-founded distribution 
theory and make it accessible to a wider audience by clarifying and unifying the 
research and bringing it down a notch to be understood by students and other less-
specialized interested readership. This is accomplished via the slower-paced presen-
tation of a textbook, the patient construction of a logical framework for sorting, and 
careful explanation that appeals to intuition as closely as possible. It is hoped that 
the manuscript is written in a lively style, starting at the basic principles and building 
from the ground up, integrating in the process some of the most modern techniques 
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that have succeeded in cracking some long-standing open problems in sorting, like 
the distributions associated with QUICK SORT. 

The book is organized as follows. It opens with a chapter on the general area of 
complete and partial sorting (identification of order statistics). The opening chapter 
sets the tone for the entire monograph: broad meaning, motivation, and applications. 
The opening sends a message to the reader about the level of complexity of the 
material and what is expected as background. The opening chapter outlines general 
methodology (analytic, probabilistic, and combinatorial methods used in later chap-
ters of the book). 

The rest of the book dedicates one chapter for every standard sorting algorithm 
with a careful explanation of the mechanics of the algorithm both as code, for the 
specialized computer science audience, and verbal description, for the broader read-
ership of scientists, mathematicians, and engineers. A typical chapter delves into the 
domain of analysis. A broad array of classical and modern techniques converge hand 
in hand to substantiate a distribution theory of sorting. 

Each chapter provides exercises. Chapter 1 is a collection of peripheral topics 
that are somewhat disparate; the exercises on each topic of this chapter come at 
the end of the topic. Each of the remaining chapters has exercises at the end of the 
chapter. The exercises touch on peripheral concepts and even instill new material in 
small doses. The exercises vary in complexity from the elementary, only reinforcing 
the basic definitions, to the very challenging, bordering on the threshold of recently 
understood problems. 

H O S A M M. M A H M O U D 
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1 
Sorting and Associated Concepts 

1.1 SORTING 

Sorting a list of items is a very mundane task. The term generally refers to arranging 
the items of the list in ascending or descending order according to some ordering 
relation. Sometimes this activity is desired for its own sake such as the case in rank-
ing Olympic contenders by sorting their scores in an event, or the scores of a class 
to determine letter grades. Sorting is often intended to facilitate searching, another 
fundamental activity in data processing. Imagine how difficult it would be to consult 
a dictionary on the meaning of a word, if the dictionary is not organized in some 
order to guide our search. With relative ease we can find a word in a dictionary or 
a person's phone number in a directory when its entries are kept in the standard 
alphabetical order. 

Sorting is a more convoluted task than searching. Generally it is more expensive 
and time consuming. Nonetheless, we view it as a long-term investment—we take 
the time and effort to sort a file once to repeatedly search quickly in it for items. 

The general problem of sorting can be stated as follows. Say we have a list of 
items 

Xi, X2, ■ · · , X« 

that we intend to rearrange in increasing order. Our goal is to design efficient algo-
rithms to create a permutation 

X(1),X(2), . . . ,X(„) 

where X(,) is the ith smallest (or ith order statistic) among the items on our list. 
The term smallest refers to relative smallness according to an ordering relation often 
denoted by <. For example, Xi, Χ2, ■ ■ ■, Xn

 m a y be real numbers and < is the usual 
arithmetic comparison. The final sorted list in this case will be X(\), X(2), · · · > ^(n)> 
with X(i) < X(2) < . . . < X(n), that is, the numbers arranged in increasing order. 

Another way to view the situation is the following. Note that X(i) may turn out 
to be any of the n numbers—there is an index i\ so that X(i) = X,,. Generally, the 
same is true for any other order statistic: X(;) = X,·., for some index ij. We can 
think of sorting as an attempt to come up with a map 

1 
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Π„ : {1,2,...,«}-»■ {1 ,2 , . . . ,«} , (1.1) 

where Π„(1) = π\, Π„(2) = 7Γ2,..., Π„(η) = jr„, with the integers π\,...,ηη 

being all distinct, and 

^ , 5 ^ 2 < . . . < ^ „ . (1.2) 

In other words, π\,..., πη is a permutation of the integers {1, 2 , . . . , n}, with Χπ. 
being the yth smallest item. We shall use the notation Π„ = (π\,..., πη) to rep-
resent such a permutation. Permutations can be represented in a number of ways. 
A standard two-line representation helps in visualizing where the numbers go. This 
representation consists of a top row of indexes and a bottom row of correspond-
ing values; under each index i, we list jr,·. For example, the permutation Π8 = 
( 7 6 8 3 1 2 5 4 ) can also be represented as 

(I 1 2 3 4 5 6 7 8> 
6 8 3 1 2 5 4> 

Producing the sorted list is an act of actual rearrangement. The task of sorting 
n elements may effectively be accomplished without moving any elements (if so 
desired) by specifying the permutation Un of the construction (1.2) as a separate list. 
For in this case the knowledge of π\,..., πη can effectively be used to obtain any 
order statistic. For example, we can print the still-unsorted list X\,..., Xn in sorted 
order by printing 

EXERCISES 

1.1.1 Sort each of the following lists in "ascending" order: 
(i) 2.6 1.3 7.1 4.4 3.4 2.9. 

(ii) 60 33 17 84 47 29 71 56. 
(iii) Jim Beatrice Philip Alice Johnny Elizabeth. 

1.1.2 For each list in the previous exercise, construct a permutation to effectively 
sort the list without changing its composition. 

1.1.3 Interpret the mapping (1.1) when the list contains repeated elements. 

1.2 SELECTION 

Another problem of practical interest is that of the selection of some order statistics 
either ordered by rank or as a set known to have some predesignated ranks but not 
necessarily in order. An example of finding an ordered group of ranked order statis-
tics is common in competitive sports. It is often the case that from the scores obtained 
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by the competing athletes the top three contenders with the highest three scores (in 
order) are to be selected for medals. 

To emphasize the distinction between sorting and selection, sorting is sometimes 
referred to as complete sorting, whereby all the elements are moved to their correct 
positions (or indexes are created to indicate these positions). By contrast, selection is 
referred to as partial sorting, as the selection process imparts only partial information 
on the correct position of some elements. 

Statistics based on a few order statistics (with known orders) abound in the litera-
ture of statistical inference. For example, weighted averages of tertiles and quartiles1 

of a sample X\, Χ2, ■ ■ ■, Xn, are in common use in estimating the center of the dis-
tribution from which the sample was gathered. Two such statistics with different 
weights are Gastwirth's estimator 

3 2 3 
" = IÖX(L3J + I) + 5X(LfJ) + T5X("-Lf J)' 

and Tukey's tri-mean 

T — 
1n — » 

i) 5 ( Χ Φ + Χ ( 1 + 1 ) ) + 5 Χ ( | ) 

(̂ (3zL) + ^(3n + n)> if« is a multiple of 4; 

(r¥i)· 

1 
4 

3X(LfJ) + 2X<L?J) + l X ( [ ¥ l ) ' o t h e r w i s e · 

The book by Andrews, Bickel, Hampel, Huber, Rogers, and Tukey (1972) gives 
many other statistical applications involving only a few order statistics. Efficient al-
gorithms for finding quantiles are needed for quick computation of these statistics. 
Many other applications in statistics need such algorithms to find few order statistics, 
typically less than six, for a statistical design. 

Another flavor of the problem of finding order statistics may request finding a 
group of unranked order statistics without necessarily knowing the relative ranks in 
the group. For example, a university that intends to admit 1000 students may want 
to find the 1000 students with the top 1000 scores (not necessarily in order) among 
the applicants whose number typically exceeds 10000 each academic season. An 
example from statistics where an unordered group of order statistics is required is 
the α-trimmed mean. The a-trimmed mean is a statistic that throws out the upper 
and lower a proportion of the (sorted) data deeming them unreliable outliers, with 
0 < a < 1. The a-trimmed mean is given by 

. n — [an\ 

n-2\an\ . , ^ - j , . X ( 0 ' L J ( = LanJ + l 

1 An a-quantile of a sample having no duplicates is a real number so that proportion a of the data is 
less than it; the rest are greater. When n is an exact multiple of 3, the 5- and | -quantiles are called tertiles. 
The proportions 5 and | of the data are interpreted respectively as LfJ and [~] of the points when n is 
not a multiple of 3. With a similar interpretation of "fourth," "half," and "three-fourths," the | -quantiles 
are called quartiles, for k — 1, 2, 3 and the j-quantile is called the sample median. 
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We may design an algorithm to identify the two bounding order statistics X[an] 
and XM_|a„j_|_i and in the process place all intermediate order statistics in the list 
between positions (|_a«J + 1 ) , . . . , (n — [anj) in any order, not necessarily sorted. 
For the computation of the a-trimmed mean we need not sort these intermediate 
order statistics since we are only seeking their average. 

Algorithms for finding a predesignated number of order statistics (ordered or un-
ordered) are generally called selection algorithms. Sorting itself is the special case 
of a selection algorithm, when the selection algorithm finds all order statistics. 

One can find order statistics by sorting a data file. The item at position i is then the 
ith order statistic. This may be much more work than necessary; it is often the case 
that a more efficient algorithm can be designed for the direct selection of specified 
order statistics as we shall see. Several sorting algorithms discussed in this book can 
be adapted for general purpose selection. 

EXERCISES 

1.2.1 Write an algorithm to find the maximum element in a list. How many com-
parisons does your algorithm make to pick the largest number in a list of n 
numbers? 

1.2.2 Write an algorithm to simultaneously find the maximum and minimum ele-
ments in a list of n elements using no more than 3n/2 comparisons. 

1.3 JARGON 

A sorting algorithm is comparison based if it sorts an input (a collection of data 
items called keys) by making a series of decisions relying on comparing pairs of the 
input data. (Many algorithms in this book are comparison based.) Nonetheless, there 
are sorting algorithms that are not comparison based. For instance, RADIX SORT, 
an algorithm discussed in a later chapter, bases its decisions on another operation 
different from comparing pairs of data—this operation is the extraction of digits of 
the input keys; RADIX SORT makes decisions according to these digits. RADIX 
SORT is a digital non-comparison-based sorting method. 

Broadly speaking, sorting algorithms fall in two categories. The class of naive 
sorting algorithms, the ones that occur first in a natural way to most people, is a class 
of algorithms with Θ (n2) running time2 when they sort most inputs of size n and that 
tend to have an average running time of order Θ(η2). On close examination we re-
alize that naive algorithms do not effectively use information gained from the earlier 
stages of the algorithm and may tend to perform redundant or repetitious tasks. Care-
ful parsimonious design that avoids redundancy can introduce a substantial reduction 
in the order of magnitude of the running time of an algorithm, leading to an algo-

2For definition of the asymptotic symbols Θ, O, o, ~, and Ω see the appendix. 
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rithm in the second class of parsimonious algorithms. We shall see shortly that the 
best comparison-based algorithm must take at least Ω(η Inn) time3 on some input 
of size n. That is, the best comparison-based sorting algorithm must take Ω(η Inn) 
time on its worst case of size n, or comparison-based sorting is inherently bounded 
from below by Ω(η Inn) for some input. There are practical algorithms that do take 
0(n In n) time on all inputs. A parsimonious sorting algorithm is one that possesses 
an average running time that is of the order θ(η\ηη). A parsimonious algorithm 
performs on most inputs as the best comparison-based sorting algorithm would on 
its worst-case instance. 

Parsimonious algorithms are often recursive and use the paradigm of divide-and-
conquer, whereupon the list to be sorted is split into two or more segments according 
to some splitting criterion, then the parts which are typically smaller than the input 
list itself are recursively attacked individually. The process continues until very small 
lists are considered (typically of size 1 or 0) for which the sorting task is trivial or 
has a directly obvious answer. The solution to the original sorting problem is then 
assembled by combining the solutions of the parts. 

A sorting algorithm is called stable if equal elements in the raw data maintain their 
relative position in the final sorted list. For example, if X$ — X22 = -̂ 47 are the only 
keys equal to 18 in an unsorted list of integers, a stable sorting algorithm may move 
X5 to position 3, X22 to position 4, and X47 to position 5. Stability is desired when 
satellite information is present alongside the primary keys. For example, suppose 
we have an alphabetically sorted list of passengers out of an international airport on 
some day. When a stable sorting algorithm is applied to the flight number field of 
the records, the alphabetical order is not disturbed within one flight; we get the day's 
activity sorted by flight numbers, and within each flight the passenger names will be 
sorted alphabetically. 

A desirable feature of a sorting algorithm is the capability to finish the job with-
out creating large secondary data structures to hold copies of the data at some stage. 
Several algorithms discussed in this book are capable of sorting using only a chief 
host container of data, such as an array. When performing on n data items, the sort-
ing task is accomplished by moving data around within the container, that is, making 
swaps via a few additional intermediate swap variables (typically 0(1) extra space). 
Recursive sorting algorithms may set up a hidden stack of small size, typically aver-
aging to O(lnn) additional space. An algorithm that sorts a list of n items "in place" 
without allocating data structures of size comparable to the list it is sorting—that is, 
the secondary storage is no more than o(n) on average, is said to sort in situ. 

EXERCISES 

1.3.1 Study the algorithm of Figure 1.6 first. Is this algorithm comparison based? 
Is it stable? Does it operate in situ? 

3 See the appendix for the convention for the base of the logarithm. 
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1.4 ALGORITHMIC CONVENTIONS 

We specify many algorithms in this book in pseudocode. It is essentially similar to 
standard conventions of a pedagogical programming language, except that we occa-
sionally take the liberty of relaxing the syntax when convenient or more readable. 
For example, exponential expressions like 2k are easier to read than the usual repre-
sentation by double asterisks or computation via logarithms. Most of such algebraic 
symbolism is represented within pseudocode in standard mathematical notation. For 
example, ceils and floors are inserted in our pseudocode and division in the form of 
a two-level fraction, as in 

a+b 

c + d' 

is preferred to the parenthesized expression (a + b)/(c + d), because the former is 
more readable and uses fewer symbols. 

We also give a brief verbal explanation for each algorithm to make the material 
accessible to nonprogramming readership of scientists, mathematicians, and engi-
neers. 

The reader is assumed to be familiar, at least conceptually, with basic data struc-
tures such as arrays and linked lists. Data to be sorted will most of the time be as-
sumed to be already loaded in a typical array structure like the following: 

global A: array [1.. n] of real; 

As an algorithm progresses with its tasks we shall often need to specify a partic-
ular stretch (subarray) on which the algorithm operates next. Such a subarray will 
typically extend from a lower index t, to an upper index u. The convenient notation 
A[i .. u] will refer to this subarray (and to its content). 

Arrays and subarrays will be depicted as vertical columns with lower indexes 
near the top. Sometimes it is more convenient for the typography to depict an array 
horizontally. In horizontal representation the lower indexes will be on the left. 

Many sorting algorithms perform by swapping array elements. In the background 
of sorting algorithms that need to swap data we shall assume the presence of a pro-
cedure 

swap(x, y) 

that interchanges the contents of the two variables x and y. A typical call in the 
context of array sorting will be 

call swap(A[i], A[j]) 

to interchange the data at positions i and j . Generally, the background swap proce-
dure will be assumed to be capable of handling whatever data type is being sorted. 
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EXERCISES 

1.4.1 Implement the sorting algorithm discussed in Section 1.7 on a computer. 

1.4.2 Implement a swap procedure on a computer to interchange the content of two 
variables. 

1.5 ORDER 

Central to the analysis of sorting and selection is the notion of partial order. We shall 
briefly review the basic concepts of order. Let A and B be two sets. The Cartesian 
product Ax B is the set of all pairs {(a, b) \ a e A and B e B}; an element of A x B 
is an ordered pair. A relation R from A to B is a subset of A x B. A relation from 
A to A is simply called a relation on A and is thus a subset of A x A. Let i ?bea 
relation on A. If (x, y) e fiwe say that x and y are related by R and in infix notation 
we writex Ry. 

A relation < (commonly called less than or equal to) on a set A is a partial order 
if the relation is: 

(i) Reflexive, that is, a < a, for all a e A. 

(ii) Antisymmetric, that is, a < b and b < a imply a = b, for all a,b e A. 

(iii) Transitive, that is, a < è and & < c imply a < c, for all a,b,c e A. 

Two related elements a and fr are said to be comparable (either a < b, or b < a). 
The notation a < b is called a ίπ/e comparison when a < 6 is in the partial order. 
For the comparable pair a < b, we use expressions like a is less than or equal to 
b, a has a rank lower than b, a is below b, or a precedes b in the partial order, and 
so on. Similarly, we often use expressions like b is larger or has rank higher than 
a, b is above a, or follows a in the partial order. When two elements a and b are 
not comparable, that is, neither a < b nor b < a is in the partial order, we say a 
and b are incomparable. The set A and the ordering relation < together are called 
a partially ordered set denoted by (A, <), also called aposet. A true comparison is 
equivalent to an ordered pair and the partial order may be represented as a set of true 
comparisons. 

A partial order on the universe A is a total order, when every pair of the elements 
of the universe are comparable. For example, the set of integers and the usual < 
arithmetic comparison is a total order. 

The following example illustrates several definitions discussed in the preceding 
paragraphs. Suppose we have the universe {X\,..., X$). The set of true comparisons 

Q = {Xi < Xi I i = h ■ ■ ■, 8} u {X, < X2, X\ < X3, X\ < X4. * i < * 5 , 

Xl < * 3 , Xl < X4, Xl < * 5 . *3 < X5. *6 < *?} (1.3) 
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is a partial order on the universe and is a subset of the total order induced by indexing, 
that is, the ordering relation X, < Xj whenever / < j . If it is not known whether a 
total indexing order exists, the partial order Q gives only partial information on the 
relative ranking of some elements. 

The goal of a comparison-based sorting algorithm on a finite totally ordered set 
is to discover the total order. The algorithm does that by asking questions in steps. 
Every step reveals more information and a larger partial order is attained. The sorting 
process starts with the empty partial order, as there is no prior information available, 
then goes on to build nested posets. The algorithm terminates when enough informa-
tion is gathered to construct the total order. 

The set of minima in a poset V = (A, <) is the set 

{a e A | the only element in A that is < a is a}; 

a member in the set of minima is a minimum or minimal element. We similarly define 
the set of maxima of V as 

{b e A | the only element x e A satisfying b < x is b}; 

a member in the set of maxima is a maximum or maximal element. 
Often a poset is very conveniently represented pictorially by a diagram of the 

objects of the poset with an arrow going from a to b for any true comparison a < b 
between two different elements a φ b. (The self-loops corresponding to reflexivity 
are usually not shown but implicitly understood.) As a visual aid to the essence of the 
relation, the minima are drawn at the bottom of the diagram. Higher-ranked elements 
usually appear in the drawing above lower-ranked elements of the poset. Figure 1.1 
shows the partial order Q of display (1.3). 

With every minimal element of a poset (A, <) there are associated chains of the 
partial order, where each chain is formed by the following procedure. If a\ e A is 
a minimum, the chains starting at a\ are formed by first formally writing the string 
a\. Whenever ak is at the rightmost end of a string ai < a2 < ■ ■ ■ < a^, and a^ is 
below b\, ...,bj in the partial order, the string is cloned into j strings; the symbol 
< is added at the right end of each clone followed by one of the elements b\,... ,bj; 

XA / X'i / 

x2 / / Xi 

\// t 
X\ X(> X?, 

Figure 1.1. A poset. 

X 
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this step in the process yields 

a\ <ai< 

a\ < a2 < 

a\ <a2 < . . . < ak < bj. 

The rules apply recursively to every clone until it is no longer possible to add any 
elements. Strings that are obtained by removing symbols from longer strings are then 
discarded. Each remaining formal string is a chain that starts at a minimal element 
and ends at a maximal element of the partial order. Together, the chains reflect how 
much order is known. A total order has only one chain. 

Finally, suppose A is a subset of some universal set S. The set A is said to be 
compatible with a partial order (S, <), if whenever a < b, and a e A then b e A. 
Informally, if a is a member of a chain and a e A, then all the elements of the chain 
higher than a all the way up to the maximal element of that chain are in A. None of 
the elements of A is known to be below an element from the complement set S — A. 

To fix the ideas, let us consider again the partial order Q of display (1.3). The 
set of minima of Q is {X\, X(„ X%}. The set of maxima is {X4, X5, Xj, Xg). The 
elements Xj and X$ are comparable; but X\ and Xj are incomparable. The chains 
of Q are Χχ < X2 < X3 < X5, X\ < X2 < X4, Xe < Xi, and X8. The set 
[X2, X3, X4, X5, X$] is compatible with Q, but the set {X2, X5, Xöl is not. 

The following lemma is important in deriving lower bounds on sorting and selec-
tion. 

Lemma 1.1 A comparison-based algorithm for finding the jth order statistic must 
implicitly determine the set of j — 1 items of lower ranks. Consequently the set of 
n — j items of higher ranks is also determined. 

Proof. We prove the lemma by contradiction. Suppose we have an algorithm that 
finds the y'th smallest in the data set {X\,..., Xn} of distinct elements, without 
determining the sets {^(i), ■. ·, X(j-\)} of smallest j — 1 order statistics and 
{X(;_l_l),..., X(n)} of largest n — j order statistics. There are indexes k, I, and 
m such that the algorithm does not know whether X^ = Xi < X(j) = Xm, or vice 
versa. No chain of the partial order discovered by the algorithm contains both Xi 
and Xm ; the existence of such a chain would make Xi and Xm comparable. We can 
then construct an ordering of the input, starting with a chain containing Xm. In this 
chain let a < Xm be the last element that is known to be below Xi, and let b be the 
first element known to be above Xi such that Xm < b; one or both of the elements a 
or b may not exist. In a manner consistent with the partial order, we can complete a 
linear order by first inserting Xi anywhere between a and b. (If a does not exist and 
b does, we can place X( anywhere below b. Similarly, if b does not exist and a does, 
we can place Xi anywhere above a. If both do not exist we are at liberty to put Xg 

... < ak < b], 

... <ak <b2, 
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anywhere as we completely lack any information on its relative rank in the chain.) 
Specifically, we insert Xi next to Xm, which is presumed to be at position j . The rest 
of the elements not already in the chain are then added in any way consistent with 
the partial order. Transposing X( and Xm changes the position of Xm in the listing, 
but remains to be an ordering consistent with the partial order. This uncertainty of 
the position of Xm, supposedly the 7'th smallest in the final linear order, contradicts 
the assumption that the algorithm has identified the 7'th order statistic. ■ 

EXERCISES 

1.5.1 Let the set A = {2, 3,4, . . .} be partially ordered by divisibility—for x, y e 
A, the ordered pair (x, y) is in the partial order if x divides y. What are the 
minima of A? What are the maxima of A? What are the chains of the poset? 
Is the set of odd numbers in A compatible with the partial order? 

1.6 BINARY TREES 

The binary tree is a hierarchical structure of nodes (also called vertices) that underlies 
many sorting and other combinatorial algorithms. The nodes of the structure are 
arranged in levels. The level count begins at 0. The only node at level 0 is called the 
root node. A node may have up to two nodes above it (viewed as children) that are 
put on the next level—a node (also viewed as a parent) may have no children, one 
left child, one right child, or two children (one left and one right). The children of a 
node are joined to their parent by links called edges or branches. It is customary to 
represent the tree by a drawing in which nodes are black bullets or circles of various 
sizes to illustrate different purposes, and edges are straight lines. The depth of a node 
in the tree is the node's distance from the root, that is, its level. 

Historically trees are drawn upside down with the root at the top of the drawing. 
We adopt this convention in this book. If a tree has n nodes we say it is of size or 
order n. Figure 1.2 shows an example of a binary tree of size 8. We shall continue 
to use this historical convention; nevertheless, the language of the text will more 

Figure 1.2. A binary tree on 8 nodes. 
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closely comport with the growth direction of natural trees—the root is at the bottom 
and tracing a path starting from the root is a process of moving "up" in the tree or 
climbing it, etc. 

It is sometimes useful to think of the binary tree structure in terms of the following 
inductive definition. A binary tree is either empty, or has two substructures (called 
subtrees) distinguished as a left subtree and a right subtree, with the left and right 
subtrees both being binary trees. The collection of nodes in the subtree rooted at 
a node (excluding the node itself) is referred to as its descendants. By a parallel 
terminology, the collection of nodes encountered by climbing down a path from a 
node to the root of the whole tree is the node's ancestors or predecessors. 

Often the parent-child links in a binary tree are given an orientation with sense 
leading from parent to child. Thus each node has only one link leading to it, or the so-
called indegree is 1 for each node (except the root, whose indegree is 0). Each node 
may have up to two edges emanating out of it leading to its children. The number of 
edges coming out of a node is called the outdegree of the node. The outdegree of any 
node in a binary tree is at most 2. Level 1 can have up to two nodes; level 2 can have 
up to 4 nodes, and so forth. The maximum number of nodes that can appear on level 
i is 2'. If level I has 2l nodes, we say that this level is saturated. The root is at the 
lowest level (level 0). As we climb up the branches of the tree moving away from the 
root we move toward higher levels (further down in the inverted drawing). 

It is very helpful in many analyses to consider an extension of a binary tree. The 
extended binary tree is obtained by adding to each original node, 0, 1, or 2 children 
of a new distinct type (called external nodes or leaves) to make the outdegree of 
all the original nodes (now called internal) exactly equal to 2. Figure 1.3 shows the 
extension of the tree of Figure 1.2, with internal nodes shown as bullets and leaves 
as squares. 

The extended tree has a number of properties that will be of great use in the 
analysis of sorting algorithms and will be frequently encountered later in this book. 
These are invariant properties that are true for all trees of a given size regardless of 
their shape. We discuss these properties in the following definitions and propositions. 

Figure 1.3. An extended binary tree on 8 internal nodes. 
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Figure 1.4. A complete binary tree on 8 nodes. 

When all the levels of a tree, except possibly the highest level, are saturated, we 
say the tree is complete. The tree of Figure 1.2 is not complete, whereas that in 
Figure 1.4 is. Furthermore, when all the leaves appear on the same level the tree 
is said to be perfect. The complete tree is so termed because its extension has no 
"holes" in the levels containing only internal nodes; all these levels are saturated. 

The height of a binary tree is the length of the longest root-to-leaf path in the tree. 
So, the height is also the level of the highest leaf. The height of a binary tree Tn on 
n nodes is denoted by h(Tn) or simply hn when it is understood which tree is being 
considered. 

Proposition 1.1 The height hn of a binary tree on n nodes satisfies: 

|"lg(n + l)] <hn<n. 

Proof. The upper bound is trivial. The given tree is at least as high as a complete tree 
on n nodes; see Exercise 1.6.3. The complete tree is an instance of the lower bound. 
Letting h* be the height of the complete tree, we have just argued that h* < hn. In 
a complete binary tree of height h*, levels 0, 1 , . . . , h* — 2 are saturated, and there 
are internal nodes on level h* — 1, and no internal nodes on any higher levels: 

1 + 2 + · · · + 2h"-2 <n < 1 + 2 + · · · + 2 Α « - 1 , 

or 

2*;-1 <n + \ <2h». 

Taking base-two logarithms: 

h* - 1 < lg(« + 1) < h*. 

However, h* must be an integer. So, h* — [lg(n + 1)~|. ■ 

Proposition 1.2 An extended binary tree on n internal vertices has n + 1 leaves. 


