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Preface 

The theory of random graphs originated in a series of papers published in the 
period 1959-1968 by two outstanding Hungarian mathematicians, Paul Erdös 
and Alfred Rényi. Over the forty years that have passed since then, the 
theory has developed into an independent and fast-growing branch of discrete 
mathematics, located at the intersection of graph theory, combinatorics and 
probability theory, with applications to theoretical computer science, reliabi-
lity of transportation and communication networks, natural and social sciences 
and to discrete mathematics itself. Aside from applications, random graphs 
continue to serve as nontrivial, but simple enough models for other, more 
complex random structures, paving the road for more advanced theories. 

In the early days, the literature on the subject was scattered around se-
veral probabilistic, combinatorial and general mathematics journals. In the 
late seventies, Béla Bollobas became the leading scientist in the field and 
contributed dozens of papers, which gradually made up a framework for his 
excellent, deep and extensive monograph Random Graphs, printed in 1985. 
The appearance of that book stimulated the research even further, shaping 
up a new theory. 

Two other ingredients that added to this trend were the ongoing series 
of international conferences on random graphs and probabilistic methods in 
combinatorics held biennially in Poznan, Poland, since 1983, and the journal, 
Random Structures and Algorithms, launched by Wiley in 1990. Both have 
established a forum for the exchange of ideas and cooperation in the theory 
of random graphs and related fields. 

v 
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It is not accidental then that tremendous progress has been made since 
1985. Over the last decade several new, beautiful results have been proved and 
numerous fine techniques and methods have been introduced. Our goal is to 
present many of these new developments, including results on threshold func-
tions (Ch. 1), small subgraphs (Ch. 3), generalized matchings (Ch. 4), phase 
transition (Ch. 5), limit distributions (Ch. 6), chromatic number (Ch. 7), par-
tition and extremal properties (Ch. 8), Hamiltonian cycles in random regular 
graphs (Ch. 9), and zero-one laws (Ch. 10). We emphasize new techniques and 
tools such as the martingale, Talagrand and correlation inequalities (Ch. 2), 
the orthogonal decomposition (Ch. 6), the Regularity Lemma of Szemerédi 
(Ch. 8), the Contiguity Theorem (Ch. 9), and the analysis of variance (Ch. 9). 

In a sense, our book can be viewed as an update on Bollobás's 1985 book. 
However, the topics selected for the book reflect the interest of its authors and 
do not pretend to exhaust the entire field. In fact, in order not to duplicate 
Bollobás's work, we do not include subjects which are covered there, on which 
only a little progress has been made. In particular, we have no sections on 
degree sequences, long paths and cycles, automorphisms, and the diameter. 
Moreover, we restrict ourselves to the main core of the theory and focus 
on the basic models of random graphs, making no attempt to present such 
rapidly developing areas as random walks on graphs, randomized algorithms or 
complexity of Boolean functions. Likewise, we exclude random cubes, directed 
graphs and percolation. 

It has been our goal to make the book accessible to graduate students in 
mathematics and computer science. This has led to simplifications of some 
statements and proofs, which, we hope, result in better clarity of exposi-
tion. The book may be used as a textbook for a graduate course or an 
honors course for undergraduate senior mathematics and computer science 
majors. Although we do not provide problems and exercises separately, we 
often leave to the reader to complete parts of proofs or to provide proofs of re-
sults analogous to those proven. These instances, marked by the parenthetic 
phrase "(Exercise!)", can easily be picked up by the instructor and turned 
into homework assignments. The prerequisites are limited to basic courses 
in graph theory or combinatorics, elementary probability and calculus. We 
believe that the book will also be used by scientists working in the broad 
area of discrete mathematics and theoretical computer science. It is both an 
introduction for newcomers and a source of the most recent developments for 
those working in the field for many years. 

We would like to thank several friends and colleagues, without whom this 
book would be a.a.s. worse than it is. Among those whose insightful remarks 
and suggestions led to improvements of earlier drafts are: Andrzej Czygrinow, 
Dwight Duffus, Ehud Friedgut, Johan Jonasson, Michal Karonski, Yoshiharu 
Kohayakawa, Michael Krivelevich, Justyna Kurkowiak, Jifi Matousek, Bren-
dan Nagle, Yuejian Peng, Joanna Polcyn, Vojtéch Rödl, Jozef Skokan, Joel 
Spencer, Edyta Szymanska, Michelle Wagner, and Julie White. 
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1 
Preliminaries 

1.1 MODELS OF RANDOM GRAPHS 

The notion of a random graph originated in a paper of Erdös (1947), which 
is considered by some as the first conscious application of the probabilistic 
method. It was used there to prove the existence of a graph with a specific 
Ramsey property. 

The model introduced by Erdös is very natural and can be described as 
choosing a graph at random, with equal probabilities, from the set of all 2(3) 
graphs whose vertex set is [n] = { 1 , 2 , . . . , n } . In other words, it can be 
described as the probability space (Ω, T, P), where Ω is the set of all graphs 
with vertex set [n], T is the family of all subsets of Ω, and for every ω 6 Ω 

P(w) = 2-(S). 

This probability space can also be viewed as the product of (£) binary 
spaces. In simple words, it is a result of (£) independent tosses of a fair coin, 
where "turning up heads" means "drawing an edge". 

Generally speaking, a random graph is a graph constructed by a random 
procedure. In accordance with standard definitions in probability theory, this 
is formalized by representing the "random procedure" by a probability space 
(Ω, T,V) and the "construction" by a function from the probability space into 
a suitable family of graphs. The distribution of a random graph is the induced 
probability distribution on the family of graphs; for many purposes this is the 
only relevant feature of the construction and we usually do not distinguish 
between different random graphs with the same distribution. Indeed, it is 

I 



2 PRELIMINARIES 

often convenient to define a random graph by specifying its distribution; that 
is, we specify a family of graphs and a probability distribution on it. Note, 
however, that it is not sufficient to formally define a random graph as a prob-
ability distribution only, as is sometimes done in the literature; an important 
case in which this would not do is when several random graphs are considered 
at once, for example, in the two-round exposure described at the end of this 
section. 

The word "model" is used rather loosely in the theory of random graphs. 
It may refer to a specific class of random graphs, defined as above, or perhaps 
to a specific distribution. Usually, however, there is also a parameter involved 
which measures the size of the graphs and typically it tends to infinity; there 
may also be other parameters. Needless to say, the whole theory of random 
graphs is thus asymptotic in its nature. 

Two basic models 

Nowadays, among several models of random graphs, there are two basic ones, 
the binomial model and the uniform model, both originating in the simple 
model introduced by Erdös (1947). In this book we will mainly restrict our-
selves to studying these two models. 

Given a real number p, 0 < p < 1, the binomial random graph, denoted by 
G(n,p), is defined by taking as Ω the set of all graphs on vertex set [n] and 
setting 

P ( G ) = p e c ( l - p ) ( S ) - e ° , 

where eo = |£(G) | stands for the number of edges of G. It can be viewed as a 
result of (!J) independent coin flippings, one for each pair of vertices, with the 
probability of success (i.e., drawing an edge) equal to p. For p = 1/2 this is 
the model of 1947. However, most of the random graph literature is devoted 
to cases in which p — p(n) - f O a s n - » o o . 

The binomial model is a special case of a reliability network. In this more 
general model, Ω is the family of all spanning subgraphs of a given graph F 
and P(G) = p e ° ( l - p)eF~ea. By a spanning subgraph we mean a graph G 
such that V(G) = V(F) and E(G) C E(F). Thus, in a reliability network, 
the edges of a given graph (network) are independently destroyed, each with 
failure probability 1 — p. One can generalize this model even further, by 
allowing different probabilities of failure at different edges. (Binomial models 
are sometimes called Bernoulli.) 

Taking F = Kn, the complete graph on n vertices, we obtain the model 
G(n,p). Taking F = Km,n, the complete bipartite graph (here either m 
is a function of n, or they are two independent parameters, typically both 
tending to infinity), we obtain the bipartite random graph G(m,n,p). Other 
popular models, not discussed here, are those in which the initial graph F 
is the hypercube or the n x n square lattice. The reliability network based 



MODELS OF RANDOM GRAPHS 3 

on the infinite square lattice belongs to percolation theory (Grimmett 1992a) 
which too, as all infinite models, is beyond the scope of this book. 

The main advantage of the binomial model G(n,p) is the independence 
of presence of edges, but the drawback is that the number of edges is not 
fixed; it varies according to a binomial distribution with expectation (")p. If 
one conditions on the event that \E(G{n,p))\ = M, then a uniform space is 
obtained. This space can be defined directly. 

Given an integer M, 0 < M < (!?), the uniform random graph, denoted by 
G(n, M), is defined by taking as Ω the family of all graphs on the vertex set 
[n] with exactly M edges, and as P the uniform probability on Ω, 

P(G) = ( $ ) · G e Ω · 

This model, closely related to enumerative combinatorics, was apparently 
considered already in 1939 in an unpublished work of Erdos and Whitney on 
the connectedness of almost all graphs with n vertices and about M = | n log n 
edges. This was the model used throughout by Erdös and Rényi in their series 
of papers between 1959 and 1968, which gave rise to the theory of random 
graphs. (For an account of the contents of these eight fundamental papers, 
see Karonski and Rucinski (1997).) 

The two basic models are in many cases asymptotically equivalent, provided 
(™)p is close to M (see Section 1.4). 

The uniform random graph G(n, M) belongs to a broad family of uniform 
random graphs defined by taking the uniform distribution over a family of 
graphs T. The pioneering model from Erdos (1947) belongs here too, with 
T being the family of all graphs on a given set of vertices. Other popular 
models of this type are random trees (not studied in this book), where T 
is the family of all nn~2 trees on n labeled vertices, and random r-regular 
graphs (see Chapter 9), where T is the family of all graphs on n vertices of 
equal degree r, provided nr is even. We will use G(n, r) to denote a uniform 
random r-regular graph. It may look dangerous to use the notation G(n,p), 
G(n,M) and G(n,r) for three different things: What is G(n, 1)? In practice, 
however, the correct meaning is always clear from the context. (As for the 
three models: G(n,p) with p = 1, G(n,M) with M = 1, and G(n,r) with 
r = 1, each one is rather dull.) 

Both the binomial and the uniform model have their counterparts for di-
rected graphs. Besides these, there are interesting, natural random directed 
graphs which do not have analogues in the undirected case. Let us mention 
the ¿-out model, in which every vertex independently chooses k out-neighbors 
(including or excluding itself); the case of random mappings (i.e., k = 1) is 
well studied (Kolchin 1986, Aldous and Pitman 1994). Random tournaments, 
in which every edge of a complete graph assumes randomly one of the two pos-
sible orientations, have a broad literature too (Moon 1968, Gruszka, Luczak 
and Rucinski 1996, Andersson 1998). 
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There are still other random graphs which do not fall into either category 
(binomial or uniform). For instance, in some reliability networks the vertices 
but not the edges are destroyed. Furthermore, some random graphs result 
from more complex probabilistic experiments, and here the sky is the limit. 
Restricted random graph processes constitute an interesting class of such ex-
periments, but we should better define the unrestricted case first. 

Random graph processes 

In general, a random graph process is a stochastic process that describes a 
random graph evolving in time. In other words, it is a family {G(t)}t of 
random graphs (defined on a common probability space) where the parameter 
t is interpreted as time; the time can be either discrete or continuous. The 
processes studied here will have a fixed vertex set (typically [n]), and they will 
start without any edges and grow monotonically by adding edges according 
to some rule but never deleting any. 

A simple and important random graph process {G(n, M)}M (sometimes 
called the random graph process) was introduced by Erdös and Rényi (1959) 
and has been well studied since then. It begins with no edges at time 0 and 
adds new edges, one at a time; each new edge is selected at random, uniformly 
among all edges not already present. Hence this random graph process is a 
Markov process, with time running through the set {0,1, . . . , (2)}· The M-th 
stage of this process can be identified with the uniform random graph G(n, M). 
The process, however, allows one to study the random graph G(n, M) as it 
evolves with M growing from 0 to ("). For example, a typical result, meaning-
ful only for random graph processes, says that, with probability approaching 
1 as n -> 00, the very edge which links the last isolated vertex with another 
vertex makes the graph connected (Bollobas and Thomason (1985); see also 
Bollobás (1985)). 

A related continuous time random graph process can be defined by assign-
ing a random variable Te to each edge e of the complete graph Kn, such 
that the (") variables Te are independent with a common continuous dis-
tribution, and then defining the edge set of {G(t)}t to consist of all e with 
Te < t. Clearly, the resulting random graph {G(t)}t0 at a fixed time to can 
be identified with the binomial random graph G(n,p), where p = P(Te < to). 
Furthermore, since almost surely no two values of the random variables Te co-
incide, we may define T^) as the random time at which the i-th edge is added. 
Then, by symmetry, G(T(¿)) is the uniform random graph G(n,i), and the 
sequence {G(T(¿))} for t = 1, . . . , (2), equals the ordinary random graph pro-
cess {G(n,M)}M defined above. Hence, this continuous time random graph 
process is a joint generalization of the binomial random graph, the uniform 
random graph and the standard discrete time random graph process. 

Clearly, different choices of the distribution of Te affect the model only 
trivially, by a change in the time variable. The continuous time evolving 
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model was introduced by Stepanov (1970) with Tr exponentially distributed; 
we prefer the uniform distribution over the interval [0,1], in which case p = 
W(Te < t) = t, 0 < t < 1. Thus, we may unambiguously use the notation 
{Gin,«)}!-

Recently, a number of restricted random graph processes have been stud-
ied. In general, such a process can be defined as a random graph process 
in which edges are chosen one by one uniformly from a dynamically mod-
ified set of available pairs of vertices until this set becomes empty. More 
formally, consider a Markov chain of random edge sets Eo - 9,Ei,...,E„ 
where Ei = {e\,...,ei\ and e< is chosen uniformly from a set A{ which de-
pends only on the set £?<_ι. 

In one of these restricted models, studied by Rucinski and Wormald (1992), 
the maximum degree is bounded from above by a given integer d. Thus, the 
set Ai contains only those pairs whose addition to the set 2?i_i does not create 
a vertex of degree d + 1. The graph at the end of the process may not be 
d-regular, though it is shown to be so with probability approaching 1. See 
also Wormald (1999a), where, moreover, further related processes are defined 
and studied. 

Another restricted process is studied by Erdös, Suen and Winkler (1995), 
in which it is not allowed to create a triangle. In this model it is even an open 
problem to determine the length of a typical process, measured by the number 
of edges in the final graph. It is only known that with high probability the 
process takes more than ein3 /2 but fewer than C2n3/2logn steps, where c\ 
and c2 are positive constants. Recently, this result was generalized to a wide 
class of forbidden subgraphs by Osthus and Taraz (2000+). 

By forbidding cycles, one obtains a process which creates a non-uniform 
random tree (Aldous 1990), while forbidding components with more than one 
cycle leads to a random graph which still is to be studied. 

Random subsets 

The two basic models of random graphs fall into the framework of random 
subsets of a set. Monotonicity, equivalence and threshold behavior of the 
probabilities of properties of random graphs can often be proved at no extra 
cost in this general setting. Other principal examples of random subsets of a 
set include random sets of integers and random hypergraphs. In the remaining 
sections of this chapter (as well as in parts of Chapter 2) we will mainly study 
this more general random set framework. For an arbitrary set X and an 
integer k, let [X]k stand for the family of all Jk-element subsets of X. If 
X = [n], we will simplify this notation to [n]k. 

Let Γ be a finite set, |Γ| = N, let 0 < p < 1 and 0 < M < N. Then 
the random subset Γρ of Γ is obtained by flipping a coin, with probability 
po f success, for each element of Γ to determine whether the element is to 
be included in Γρ; the distribution of Γρ is the probability distribution on 
Ω = 2 r given by P(F) = plF l ( l - p ) l r Hf | for F C Γ. Similarly, let TM be 
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a randomly chosen element of [Γ]Μ; that is, ΓΜ has the uniform distribution 
nF) = {'¿í)~lforF£[r}M. 

Taking Γ = [n]2 we obtain the two basic models of random graphs defined 
above, G(n,p) and G(n,M). 

The binomial model Γρ can be generalized to ΓΡι ,P/V, where the element 
i is included with probability p¿, independently for all i - 1, . . . , N. 

Two-round exposure 

The two-round exposure is a successful proof technique applicable to the bi-
nomial model. It relies on viewing Γρ as a union of two independent random 
subsets ΓΡι and Γρ,, where p\ and p¿ are such that p = Pi + P2 — P1P2· (It 
is easy to see that this union indeed is distributed as Γρ - Exercise!) In the 
special case of random graphs we first generate a random graph G(n, p\) and 
then, independently, another random graph G(n,p2) on the same vertex set. 
By replacing double edges by single ones, we obtain G(n,p). 

An argument typically used in applications of the two-round exposure can 
be expressed in the following general form. Let Pi be the probability distri-
bution associated with Γρ,, and let P F be the conditional probability in Γρ 
under the condition Γρ, = F. Then for any two families Λ and B of subsets 
ofT 

PM) > Σ P F M ) P I ( F ) > PFoM)P1(ß), (1.1) 
Fee 

where FQ minimizes the probability PF(-4) over all F € B. Thus, knowing 
that Pi(ß) -> 1, in order to prove that also Ψ(Α) -* 1, it is enough to 
show that PF(-4) -» 1, for every F e B. In practice, computing the last 
probability means fixing an instance of ΓΡ1 6 B and throwing in new elements 
independently with probability pi (the second round of exposure). 

1.2 NOTES ON NOTATION AND MORE 

Graph theory 

All graphs are simple and undirected, unless otherwise stated. We use stan-
dard notation for graphs. For example, V(G) is the vertex set of a graph G, 
E{G) is the edge set, VQ = |V(G)| is the number of vertices and ec = \E(G)\ 
is the number of edges; for typographical reasons we sometimes write the 
latter two as v(G) and e(G). In this book the size of G always means v(G) 
(and not e(G) as sometimes used by other authors). However, we also will 
call v(G) the order of G. 

Moreover, let d(G) = βσ/υσ be the density and m(G) = maxHCGd(H) 
the maximum density of G. (Note that d(G) equals half the average degree 
of G, and that some authors define d(G) as the average degree, which is twice 
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our value.) Another measure of the density of a graph G, ranging between 0 
and 1, is defined as p(G) = e(G)/(" (^ ' ) . (It is sometimes called the relative 
density of G.) 

Furthermore, 6(G) is the minimum degree, Δ((7) is the maximum degree, 
x(G) is the chromatic number, D(G) = max//cG &(H)1S t n e degeneracy num-
ber, a{G) is the stability number (the size of the largest stable, or independent, 
set of vertices), and aut(G) is the number of automorphisms of G. 

We let N(v) = NG(V) denote the neighborhood of a vertex v in G, that 
is, the set {w € V(G) : vw € E(G)}. Its size is called the degree of v and 
is denoted by deg(i>) = degG(t/). Similarly, if 5 C V(G), its neighborhood 
NG(S) = U„es NG{V) \ 5 is the set of all vertices outside 5 adjacent to at 
least one vertex in S. Moreover, we let Nc(v) = NG(V) U {V} and NG(S) = 
NG(S) U 5 denote the corresponding closed neighborhoods, which include v 
and 5 , respectively. 

Any graph without edges will be called empty, while the graph with no 
vertices (and thus no edges) will be called the null graph and denoted by 0. 

Some special graphs are: the complete graph Kn on n vertices, the complete 
bipartite graph Km,n on m + n vertices, the cycle C* with k vertices, and the 
path Pk with k edges and thus k +1 vertices. A star is any graph K\t„,n > 0. 
We let jG denote the union of j vertex-disjoint copies of G. A matching is a 
forest consisting of isolated edges only (i.e., a graph of the form jK2, j > 0). 

If G is a graph and V C V(G), then G[V] denotes the restriction of G to 
V, defined as the graph with vertex set V and edge set E(G) Π [V]2; similarly, 
if E C [V(G)]2, G[E] denotes the graph with vertex set V(G) and edge set 
E(G) D E. A subgraph of G of the type G[V] is called induced or spanned 
by V, while a subgraph of the type G[E] is called spanning. The number of 
edges in the subgraph G[V] is sometimes denoted by ec(V) = e(V), while for 
two disjoint subsets A,B c V(G), the quantity eo{A, B) counts the number 
of edges of G with one endpoint in A and the other in B. 

By a copy of a given graph G inside another graph F we mean any, not 
necessarily induced, subgraph of F which is isomorphic to G. If the subgraph 
happens to be induced, we call it an induced copy of G. 

Although we define our random graphs as labelled, we are mainly inter-
ested in properties that are independent of the labelling, that is, properties 
that depend on the isomorphism type only. Such properties are called graph 
properties. (In contrast, "vertex 1 is isolated" is not a graph property; such 
properties will occasionally be studied too.) 

Probability 

We use Bi(n,p), Be(p) = Bi(l,p), Ρο(λ) and Ν(μ,σ2) to denote the binomial, 
Bernoulli, Poisson and normal distributions, respectively. We further write 
X 6 C, meaning that X is a random variable with distribution C. (e.g., X € 



8 PRELIMINARIES 

N(0,1)). The distribution of a random variable X is occasionally denoted by 
C(X). 

We denote by 1[£] the indicator function of the event £, which equals 1 
if £ occurs and 0 otherwise. We will often consider random variables that 
are the indicator functions of some events; such random variables will be 
called indicator or zero-one random variables. They clearly have Bernoulli 
distributions with p = P(£), where £ is the corresponding event. 

The expected value and the variance of a random variable X (if they ex-
ist) will be denoted by E X and VarX, respectively. Thus, the well-known 
Chebyshev's inequality, which will be frequently used throughout the book, 
can be stated in the following, standard form. If Var X exists, then 

P ( | X - E X | > 0 < ^ 3 ^ , « > 0 . (1.2) 

Similarly, Markov's inequality states that, if X > 0 a.s., then 

*{X > * ) < — . t>0. (1.3) 

We denote the covariance of two random variables X and Y by Cov(X, Y). 
Recall that the variance of a (finite) sum of random variables is given by 
Var (Zi Xi) = Σ ί Σ ; Cov(X«, Xj). 

The conditional expectation of X given an event £ is denoted by E(X | £). 
We similarly write E(X \ Yi,..., Y*) for the conditional expectation of X given 
some random variables Y\,...,Yk; note that this conditional expectation is 
a function of (Κ ι , . . . , ϊ * ) and thus itself a random variable. When using 
martingales (Section 2.4), we will more generally denote by E(X \ Q) the 
conditional expectation of X given a sub-a-algebra Q of T. 

Quite frequently our proofs will rely on the elementary law of total probabil-
ity which states that for any partition of the probability space Ω = £i U £2 . . . 
and any random variable X defined on Ω, 

EX = YtE(X\£i)?(£i). 
i 

In particular, if X = 1[£], then P(£) = £ t P(£ | £ ) P(£<). 
If X\, X2, · . - are random variables and a is a constant, we say that Xn 

converges in probability to o as n -> 00, and write Xn A a, if V{\Xn — o| > 
ε) -> 0 for every ε > 0; see, for example, Gut (1995, Chapter VI). 

One similarly defines X n A Y, where Y is another random variable, but 
then Y and every Xn have to be defined on the same probability space; this 
can be reduced to the preceding case, since Xn A Y if and only if X„ - Y -► 0. 

Let X\,X2, ■ ■. and Z be random variables. We say that Xn converges in 
distribution to Z as n -> 00, and write Xn A Z, if P(X„ < x) -* P (£ < x) for 
every real x that is a continuity point of P(Z < 1) (Billingsley 1968, Gut 1995). 



NOTES ON NOTATION AND MORE 9 

If Xi, X2,... and Z are integer-valued then, equivalently, Xn A Z if and only 
if P(X„ = Jfc) ->· F(Z = k) for every integer k. 

Note that convergence in distribution is really a property of the distribu-
tions of the random variables and does not require the variables to be defined 
on the same probability space. Nevertheless, it is customary (and convenient) 
to talk about convergence of random variables. We also use hybrid notation 
such as Xn -» N(0,1), which means Xn A Z for some (and thus every) 
random variable Z € N(0,1). 

An important special case is one in which Z is a (non-random) real con-
stant. It is easily shown that convergence in distribution to a constant is the 
same as convergence in probability, that is, λ'η -* a if and only if Xn -* o. for 
a G R. A useful fact is that if Xn -> Z and Yn A a, where a is a constant, 
then Xn + Y„ -¥ Z+a and YnXn -> aZ (Cramer's theorem), see, for example, 
Gut (1995, Theorem VI.7.5). 

The definition of convergence in distribution extends to random vectors 
with values in R* for every fixed k; this is also expressed as joint convergence 
in distribution of the components of the vectors. A powerful method for 
extending results on the real random variables to the vector-valued ones is 
known as the Cramér-Wold device (Billingsley 1968, Theorem 7.7). It states 
that (Xnl,...,Xnk) A (Ζ ι , . . . ,Ζ» ) if and only if ¿2i*iXm 4 £i*«Z< for 
every sequence of real numbers t i , . . . , i*. For more details, as well as for the 
convergence of random variables with values in even more general spaces, see 
Billingsley (1968). 

Remark 1.1. Convergence in distribution does not, in general, imply con-
vergence of the sequence of means or variances. However, in many specific 
applications we find that these sequences do, in fact, converge to the mean 
and variance of the limit distribution. 

Asymptotics 

We will often use the following standard notation for the asymptotic behavior 
of the relative order of magnitude of two sequences of numbers a„ and b„, 
depending on a parameter n -> oo. The same notation is also used in other 
situations, for example, for functions of a variable ε that tends to 0. We will 
often omit the phrase "as n -> oo" when there is no risk of confusion. For 
simplicity we assume bn > 0 for all sufficiently large n. 

• an = 0(bn) as n -> oo if there exist constants C and no such that 
\an\ < Cbn for n > no, i.e., if the sequence an/bn is bounded, except 
possibly for some small values of n for which the ratio may be undefined. 

• on = Ω(6η) as n -* oo if there exist constants c > 0 and no such that 
o« > cb„ for n > no- If a„ > 0, this is equivalent to 6„ = 0(an)-
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• αη = θ(6„) as n ->· οο if there exist constants C, c > 0 and n0 such that 
cbn <an< Cbn for n > n0 , i.e., if a„ = 0(bn) and αη = Ω(6„). This is 
sometimes expressed by saying that an and 6„ are of the same order of 
magnitude. 

• an χ ό η if an = θ(6„). 

• α„ ~ 6 n if α η /6 η -*· 1. 

• αη = ο(ί>„) as n -> oo if a n / 6 n -+ 0, i.e., if for every ε > 0 there exists 
ne such that \an\ < ebn for n >ne. 

• an < 6n or 6„ » o„ if a„ > 0 and an = o(bn). 

Since most results in this book are asymptotic, we will be frequently as-
suming in the proofs that n is sufficiently large, sometimes without explicitly 
saying so. 

Probability asymptotics 

We say that an event £„, describing a property of a random structure depend-
ing on a parameter n, holds asymptotically almost surely (abbreviated a.a.s.), 
if P(£n) -¥ 1 as n -> oo. 

Remark 1.2. In many publications on random structures the phrase "almost 
surely" or a.s. is used. However, we wish to reserve that phrase for what it 
normally means in probability theory, i.e. that the probability of an event 
equals exactly 1. It seems that the first paper where the phrase a.a.s. and 
not a.s. was used is Shamir and Upfal (1981). (Some authors use the phrase 
"almost every" or a.e. which we reject for the same reason as "almost surely". 
Others write "with high probability", or whp.) 

When discussing asymptotics of random variables, we avoid expressions like 
"X„ = 0(1) o.o.s." or uXn = o(l) a.a.s.", which may be ambiguous, since 
they combine two asymptotic notions. As a substitute we give probabilistic 
versions of some of the symbols above, denoting them with a subscript p or C. 
Let X„ be random variables and an positive real numbers. We then define: 

• Xn = 0p{an) as n -¥ oo if for every δ > 0 there exist constants C¡ and 
no such that P( |X n | < C¡an) > 1 - δ for every n > no. 

• Xn = Oc(an) as n -> oo if there exists a constant C such that a.a.s. 
\Xn\ < Can. 

• Xn = θρ(αη) as n -> oo if for every δ > 0 there exist constants c¿ > O, 
Cs > 0 and no such that P(c¿an < X n < Csan) > 1 — 5 for every n > no-

• Xn = ©c(on) as n -* oo if there exist positive constants c and C such 
that a.a.s. can < Xn < Can. 
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• X„ - op(an) as n -+ oo if for every e > 0, a.a.s. \Xn\ < εαη. 

Note that Xn = Oc{an) implies Xn = Op(an), but not conversely; indeed, 
Xn = θ£'(α„) if and only if the constant Cs in the definition of Op can 
be chosen independently of δ. For example, any sequence Xn of identically 
distributed random variables is Op(l), but such a sequence is Oc( l ) only if 
the common distribution has support in a finite interval. 

Similarly, .Yn = Θο{αη) implies Xn = Θρ(α„), but not conversely. On the 
other hand, Xn = op(a„) implies X„ = Oc(a n ) · 

Remark 1.3. It is easy to verify (Exercise!) that Xn = Op(an) if and only if 
for every function ω(η) -» oo, \Xn\ < ω(η)αη a.a.s. Similarly, Xn = op(an) if 
and only if for some function ω(η) -* oo, \Xn\ < αη/ω(η) a.a.s. 

Such notation with an unspecified sequence ω(η) is common in publications 
on random structures, but we believe that the equivalent notation Op and op 
is clearer. 

It is an immediate consequence of the definitions (Exercise!) that Xn — 
op{an) if and only if Xn/an A 0. Conversely, Xn A a if and only if X„ = 
a + Op(l) (and Xn A Y if and only if Xn = Y + op(l)). 

Remark 1.4. The symbol Op can also be expressed by equivalent standard 
probabilistic concepts. In fact, a sequence Xn is bounded in probability, or 
tight, if Xn = Op(l). Hence, Xn = Op(a„) if and only if the sequence Xn/an 
is bounded in probability (or tight). 

Dependency graphs 

Let {X¡}i€2 be a family of random variables (defined on a common probability 
space). A dependency graph for {Xi} is any graph L with vertex set V(L) = I 
such that if A and B are two disjoint subsets of X with ei{A,B) = 0, then 
the families {Xi}ieA and {X¿}¿eB are mutually independent. 

Dependency graphs will be used several times in this book. They are partic-
ularly useful when they are sparse, meaning that there is a lot of independence 
in the family {X,}. 

Example 1.5. In a standard situation, there is an underlying family of inde-
pendent random variables {VOJae.4. and each Xi is a function of the variables 
{Ya}a€A, for some subset Ai C A. Let S = {Ai : i e 1}. Then the graph 
L = L(S) with vertex set I and edge set {ij : Ai Π Aj φ 0} is a dependency 
graph for the family {Xi}iex (Exercise!). 

Example 1.6. As a special case of the preceding example, let { i / J j g i be 
given subgraphs of the complete graph Kn and let X¡ be the indicator that 
Hi appears as a subgraph in G(n,p), that is, Xi = l[i/¿ C G(n,p)], i 6 I. 
Then L(S), with S = {E(Hi) : i € X), is a natural dependency graph with 
edge set {ij : E(Hi) Π E{Hj) φ 0} (Exercise!). 
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Remark 1.7. In particular, if L is a dependency graph for {X¿}, then two 
variables X, and X} are independent unless there is an edge in L between i 
and j . Note, however, that this is only a necessary condition, and does not 
imply that L is a dependency graph (Exercise!). 

Remark 1.8. Another context, outside the scope of this book, in which de-
pendency graphs are used is the Lovász Local Lemma (Erdös and Lovasz 
(1975); see also Alon and Spencer (1992)). There it actually suffices to use 
a slightly weaker definition, considering only singletons B in the definition 
above. 

Remark 1.9. In our applications, there exists a natural dependency graph, 
but it should be observed that, in general, there is no canonical choice and 
the dependency graph is not unique, even if it is required to be minimal 
(Exercise!). 

The subsubsequence principle 

It is often convenient to use the well-known subsubsequence principle, which 
states that if for every subsequence of a sequence there is a subsubsequence 
converging to a limit a, then the entire sequence must converge to the same 
limit. This holds for sequences of real numbers, vectors, random variables 
(both for convergence in probability and for convergence in distribution) and, 
in general, for sequences in any topological space. 

For example, this means that if we want to prove a limit theorem for 
G(n,p), we may without loss of generality assume that an expression such as 
napb converges to some c < oo (provided, of course, that the result we want 
to prove does not depend on the limit c). 

We will be using this principle throughout the book (see, e.g., the proof of 
Proposition 1.15), sometimes without explicitly mentioning it. 

And finally . . . 

The base of all logarithms is e, unless specified otherwise. 

1.3 MONOTONICITY 

A family of subsets Q C 2 r is called increasing if A C B and A 6 Q imply that 
B € Q. A family of subsets is decreasing if its complement in 2 r is increasing, 
or, equivalently, if the family of the complements in Γ is increasing. A family 
which is either increasing or decreasing is called monotone. A family Q is 
convex if A C B C C and A, C € Q imply B € Q. We identify properties of 
subsets of Γ with the corresponding families of all subsets having the property; 
we thus use the same notation and terminology for properties. 
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In the special case in which Γ = [n\2, any family Q C 2 r is a family 
of graphs and, if it is closed under isomorphism, it can be identified with 
a graph property. Some examples of increasing graph properties are "being 
connected", "containing a triangle" and "having a perfect matching". Au-
tomatically, the negations of all of them are decreasing. Natural decreasing 
graph properties include "having at least k isolated vertices", "having at most 
Jfc edges" and "being planar". The property of "having exactly k isolated ver-
tices" is an example of a convex but not monotone property, whereas "the 
largest component is a tree" is not even convex (Exercise!). 

It is reasonable to expect that the probability of a random set falling into 
an increasing family of sets gets larger when the (expected) size of the random 
set does. This is indeed the case. Lemma 1.10 below appeared first in Bollobás 
(1979). 

L e m m a 1.10. Let Q be an increasing property of subsets ofT, 0 < p\ <p?< 
1 andO<Mi <M2< N. Then 

Ρ(ΓΡι G Q) < P ( r w G Q) 

and 

Ρ(ΓΜ ι 6 Q) < Ρ(ΓΜ2 6 Q). 

Proof. To prove the first inequality we employ a simple version of the two-
round exposure technique (see Section 1.1). Let po = (j>2— Pi)/(1— Pi)· Then 
ΓΡ2 can be viewed as a union of two independent random subsets, ΓΡ1 and Γ^. 
As then Γρ, C Γρ, and Q is increasing, the event 'T P l G Q" implies the event 
'Tpj G Q", completing the proof of first inequality. 

For the second inequality, we construct a random subset process {TM}M, 
similar to the random graph process defined in Section 1.1, by selecting the 
elements of Γ one by one in random order. Clearly, ΓΜ can be taken as the M-
th subset in the process. Then ΓΜ, Q ΓΜ 2 . and, as in the first part, the event 
T W l G Q" implies the event "ΓΜ2 G Q", which completes the proof. ■ 

Trivially, each monotone property is convex. In a special case this can 
be, in a sense, reversed: if Q is convex, and for some M we have [Γ]Μ C Q 
then, for M' < M, Q behaves like an increasing property, and in particular 
P ( I V 6 Q) < Ρ (ΓΜ« G Q) for all M' < M" < M (Exercise!). Similarly, 
for M" > M, Q can be treated as decreasing. A probabilistic version of this 
simple observation is stated in the next lemma. 

L e m m a 1.11. Let Q be a convex property of subsets ο /Γ, and let Μχ,Μ,Μι 
be three integer functions of N satisfying 0 < Mi < M < M<i < N'. Then 

Ρ(ΓΜ G Q) > Ρ(ΓΜ | G Q) + Ρ(ΓΜ ι 6 Q) - 1. 

Hence, iff{TM, G Q) -► 1 as N -> oo, then Ρ(ΓΜ , € Q) < Ρ(ΓΜ G Q)+o(l) . 
In particular, ι /Ρ (Γ Μ ; 6 Q) -► 1 05 N -> oo, i = 1,2, then Ρ (Γ Μ G Q) -> 1. 
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Proof. The following simple proof was observed by Johan Jonasson (personal 
communication). It is easily seen that a convex property Q is the intersection 
of an increasing property Q' and a decreasing property Q". (Exercise! - Note 
that the converse is obvious.) Thus 

Ρ ( Γ Μ 6 Q) > Ρ ( Γ Μ € Q') + Ρ(ΓΜ 6 Q") - 1 
> Ρ(ΓΜ ι e Q·) + Ρ(ΓΜ 2 e Q") - l 
> Ρ(ΓΜι € Q) + Ρ(ΓΜ , e Q) - 1. ■ 

1.4 ASYMPTOTIC EQUIVALENCE 

In this section we examine the asymptotic equivalence of the two models Γρ 
and Γ Μ ; recall that this includes the random graphs G(n,p) and G(n, M) as 
a special case. Our goal is to establish conditions under which convergence of 
Ρ(ΓΡ € Q) implies convergence of Ρ(Γ\ί € Q) to the same limit and vice versa. 
One expects such equivalence when M is near Np. Since Γρ is a mixture of 
ΓΛ/'S for different M, the above implication is more straightforward in the 
direction from the uniform to the binomial model and then does not require 
any restriction on Q. The only tools we use are the elementary law of total 
probability and Chebyshev's inequality. Most results in this section are based 
on Luczak (1990a); in the case in which the limit is one they already appeared 
in Bollobás (1979, 1985). 

Let Γ(η) be a sequence of sets of size N(n) = |Γ(η)| -> oo. (In the example 
of main concern to us, viz. random graphs, Γ(η) = [n]2 and thus N(n) = 
(2) ·) ^ e further consider a property Q of subsets of these sets; formally the 
property corresponds to a sequence Q(n) C 2r^n^ of families of subsets of 
Γ(η), n = 1,2, Finally, p(n) is a given sequence of real numbers with 
0 < p(n) < 1, and M(n) is a sequence of integers with 0 < M(n) < N(n). 
We usually omit the argument n and write Γ, N, Q, p and M; moreover, we 
let q = 1 - p. 

Propos i t i on 1.12. Let Q be an arbitrary property of subsets ofT = Γ(η) as 
above, p — p(n) 6 [0,1] and 0 < a < 1. If for every sequence M = M(n) such 
that M = Np + 0(y/Npq) it holds that ¥{TM € Q) -* a as n -> 00, then also 
Ρ(ΓΡ € Q) -y a as n -* 00. 

Proof. Let C be a large constant and define (for each n) 

M(C) = {M : \M - Np\ < Cy/Ñpq}. 
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Furthermore, let M. be the element M of M(C) that minimizes Ρ(ΓΛ/ e Q). 
By the law of total probability, 

Ρ(ΓΡ 6 Q) = £ Ρ(ΓΡ € Q I |ΓΡ | = M) Ρ(|ΓΡ | = M) 
Λ/=0 

N 
= £ P ( r M € Q ) P ( | r p | = M) 

M=O 

> Σ Ρ ( Γ Μ . € Q ) P ( | r p | = Af) 
M€A4(C) 

= Ρ ( Γ Μ . 6 β ) Ρ ( | Γ ρ | 6-M(C)) . 

By assumption, Ρ ( Γ Μ . 6 Q) -> n, and using Chebyshev's inequality (1.2), we 
also have Ρ(|ΓΡ | £ M(C)) < Var | r p | / (CvWpg) 2 = 1/C2. Consequently, 

liminf Ρ(ΓΡ 6 Q) > aliminf Ρ( |ΓΡ | € M(C) ) > a(l - C~2). 
n—►oo n—foo 

Similarly, if M* maximizes Ρ(ΓΆί 6 Q) among M É M(C) , 

Ρ(ΓΡ 6 Q) < Ρ(ΓΜ · € Q) + Ρ(|ΓΡ | £ .M(C)) < Ρ(ΓΜ · € Q) + C~2 , 

and 
l imsupP(r p eQ)<a + C~2. 

n—»oo 

The result follows by letting C -> oo. ■ 

In the other direction no asymptotic equivalence can be true in such gener-
ality. The property of containing exactly M edges serves as a simplest coun-
terexample (Exercise!). However, the additional assumption of monotonicity 
of Q suffices. 

P ropos i t ion 1.13. Let Q be a monotone property of subsets ofT = Γ(η) as 
above, 0 < M < N and 0 <¿ a < 1. If for every sequence p = p(n) € [0,1] 
such that p = M/N + 0(y/M(N - M)/N3) it holds that Ρ(Γρ € Q) -► a, 
then Ρ{ΓΜ € Q) -> a as n -► oo. 

Proo/. We consider only the case in which Q is increasing (the decreasing case 
is similar). Let C be a large constant, po = M/N, qo — 1 - po, and define 
p+ = min(po + Cy/poqo/N, 1) and p_ = max(po - Cy/poqo/N,0). Arguing 
as in the proof of Proposition 1.12 and using Lemma 1.10, we have 

Ρ ( Γ Ρ + € < 2 ) > Σ P ( r M ' € Q ) P ( | r p + | = M') 
M'>M 

> P ( r M € Q ) P ( | r p + | > M ) 
> Ρ ( Γ Μ € 2 ) - Ρ ( | Γ Ρ + | < Μ ) (1.4) 
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and similarly 

Ρ(ΓΡ_ € Q) < Ρ(ΓΜ 6 Q) + Ρ(|ΓΡ . | > M). (1.5) 

The cases M = 0 and M = N are trivial (Exercise!), so we may further 
assume 1 < M < N - 1, and thus Npoqo = M(N - M)/N > 1/2. Since |ΓΡ_ | 
has the binomial distribution with mean JVp_ and variance 

Np_( l - p_) < M( l - po + Cy/poQo/N) < Npoqo + Cy/Ñpoqo, 

Chebyshev's inequality (1.2) yields, with S{C) = C~2 + \ / 2 C - 1 , 

Ρ( |Γρ.| > M) < r y - ( 1 -p-}
2 < »M + Cyt*™* < Ó(C), 

(Npo-Np-)2 - C2Npoqo 

and similarly Ρ( |ΓΡ + | < M) < <5(C). Since 

lim Ρ(ΓΡ+ € Q) = lim Ρ(ΓΡ_ e Q) = a 
n-»oo n-foo 

by assumption, the inequalities (1.4) and (1.5) yield 

a - 6{C) < liminf Ρ(ΓΜ G Q) < l imsupP(r M 6 Q) < a + 6(C), 
n-*oo n-*oo 

and the result follows by letting C -» oo, which implies S(C) -> 0. ■ 

R e m a r k 1.14. In the above proof one can relax the monotonicity of Q and 
instead require only that in the range M' = M + 0(\/M(N - M)/N) 

Ρ(ΓΜ< € Q) < Ρ(ΓΜ € Q) + o(l) 

for M' < M, and 

Ρ ( Γ Μ · ε ς ) > Ρ ( Γ Μ € δ ) + ο(1) 

for M' > M. By Lemma 1.11, these conditions are satisfied whenever Q is 
convex and for some M' with M' - M ^> \/M{N - M)/N, it holds that 
limn-*«, Ρ(ΓΜ- € Q) = 1 (Exercise!). 

The next result simplifies Proposition 1.13 for a = 1 by showing that for 
convex properties Q, we have o.o.s. I V € Q provided a.a.s. TM/N € Q. 

Proposition 1.15. Let Q be a convex property of subsets of Γ and let 0 < 
M <N. If Ψ(ΓΜ/Ν € Q) -* 1 os n -> oo, i/»en Ρ(ΓΜ e Q ) - » l . 

Proof. We assume for simplicity that M(N — M)/N -► oo, leaving the cases 
in which M or N - M is bounded to the reader (Exercise!). (Note that the 
subsubsequence principle implies that it suffices to consider these three cases 
- Exercise!) 


